04;07;12

Исследование предельных энергетических характеристик комбинированного разряда в потоке газов

© В.В. Осипов, М.Г. Иванов, В.В. Лисенков

Институт электрофизики УрО РАН, 620219 Екатеринбург, Россия

(Поступило в Редакцию 27 ноября 1996 г.)

Используя комбинированный метод возбуждения газовой среды, исследуются энергетические характеристики несамостоятельного разряда в зависимости от емкости конденсаторной батареи, числа импульсов в пакете, частоты следования пакетов при различном временном интервале между импульсами в пакете и скоростями прокачки газа. Показано, что при оптимальных условиях накачки лазеров ИК диапазона средняя мощность разряда может достигать 8.5 W/cm³ при импульсной мощности 25 W/cm³.

Введение

Создание СО2 и СО лазеров нового поколения, способных генерировать излучение с удельной средней мощностью 2-3 W/cm³ при КПД 15-20% в активных средах объемом в десятки и сотни литров, является крайне важной задачей, тем более, что возможность ее решения обоснована наличием лазеров, в которых накачка среды производится несамостоятельным разрядом, управляемым электронным пучком [1,2]. Однако лазеры нового поколения кроме достоинств электроионизационных лазеров должны обладать важными дополнительными качествами: долговечностью и надежностью в работе, отсутствием радиационной опасности, малыми габаритами. Основные надежды на решение данной задачи, повидимому, следует связывать с заменой электронного пучка самостоятельным разрядом малой длительности, создающем плазму с заданной концентрацией [3]. При этом основная доля энергии в газ вводится несамостоятельным разрядом в распадающейся плазме. Аналогом таких лазеров могут служить электроионизационные лазеры, возбуждаемые несамостоятельным разрядом, инициируемым электронным пучком [4], которые мало чем уступают другим типам электроионизационных лазеров.

Разряды, сочетающие последовательные ярко выраженные стадии самостоятельного и несамостоятельного разрядов, получили название комбинированных разрядов. Для их возбуждения предложен ряд методов [3,5,6], отличающихся вариантами развязки электрических цепей самостоятельного и несамостоятельного разрядов. Проверка возможности реализации этих методов проводилась, как правило, в условиях отсутствия прокачки газа, в режимах одиночных импульсов [3] или пакета импульсов [5,6] и показала возможность реализации объемных разрядов с удельными мощностями более 10 W/cm³ [3] и даже более 100 W/cm³ [6]. При этом предполагалось, что если обеспечить смену газа за время действия импульса несамостоятельного разряда, то подобные характеристики можно реализовать в непрерывном режиме. Однако длительное время реализовать это не удавалось, поскольку прокачка газа вносит существенные изменения в энергетику разряда. Лишь в последнее время благодаря исследованиям [7,8] появились надежды на решение этой проблемы.

В частности, в [7] сообщается о создании двенадцатимодульного CO₂ лазера с объемом активной среды 401 и средней мощностью излучения 10 kW, где накачка среды производилась комбинированным разрядом. В лазере [8] с объемом активной среды 101, накачиваемом непрерывным самостоятельным разрядом с интенсивной предварительной ионизацией среды, получена еще бо́льшая мощность излучения — 20 kW. К сожалению, авторам [7,8] не удалось избежать необходимости использования резистивной стабилизации разряда, что, как известно, не менее чем в два раза снижает полный КПД лазера.

В настоящей работе развивается новый метод возбуждения комбинированного разряда, согласно которому в цепях самостоятельного и несамостоятельного разрядов отсутствуют элементы, ограничивающие ток. Основное внимание уделяется исследованию влияния на предельные энергетические характеристики разрядов параметров среды, элементов цепи питания и их местоположения относительно разрядной зоны.

Методика эксперимента

Принципиальная схема возбуждения комбинированного разряда аналогична приведенной в работе [9]. При проведении экспериментов общий объем разрядной зоны составлял $4.2 \times 2 \times 80$ cm, высота каждого из межэлектродных промежутков 2.1 cm. Средний электрод был выполнен в виде пластины толщиной 1 cm, основные электроды имели цилиндрическую поверхность большого радиуса. Электроды вспомогательного разряда (в виде ряда острий), производящего предварительную ионизацию, располагались вблизи основных электродов в различных местах газовой кюветы. Полная емкость конденсаторов вспомогательного разряда не превышала 1.5 nF. Частота следования и амплитуда высоковольтных импульсов, обеспечивающих зажигание самостоятельного разряда,

Рис. 1. Осциллограммы импульсов тока самостоятельного (*a*) и несамостоятельного (*b*) разрядов.

могли регулироваться в пределах 0.1–20 kHz и 6–15 kV соответственно. Для исследования пакетного режима импульсов накачки была собрана схема, позволяющая изменять частоту следования пакетов, число импульсов в пакете и время между этими импульсами. Соответственно, изменяя эти параметры, можно было получить и квазинепрерывный режим подачи импульсов с постоянной частотой. Емкость конденсаторов самостоятельного разряда составляла 2 nF. Источник питания несамостоятельного разряда мощностью до 7.5 kW мог поддерживать постоянное напряжение на электродах 1–2.5 kV. Емкость блока конденсаторов несамостоятельного разряда в ходе экспериментов варьировалась в диапазоне 1–11 μ F.

Скорость газового потока через разрядную камеру могла изменяться в пределах 0–50 m/s. Газовая смесь при проведении большинства экспериментов имела состав $CO_2: N_2: He = 2: 14: 44 \text{ mm/Hg}.$

Предельные энергетические характеристики объемного разряда определялись на основе регистрации и анализа осциллограмм тока разряда и напряжения на электродах. Характерные осциллограммы импульсов тока самостоятельного разряда (a), производящего ионизацию рабочей среды, и несамостоятельного разряда (b), обеспечивающего ввод основной доли энергии в газ на стадии распада плазмы, приведены на рис. 1. Длительность тока самостоятельного разряда составляет 10^{-7} s, в то время как для несамостоятельного разряда она менялась в ходе экспериментов от 10^{-4} до $1.5 \cdot 10^{-4}$ s. Анализ соотношения энергий, поступающих в газ на стадии самостоятельного (W_c) и несамостоятельного (W) разрядов, показывает, что оно в типичных режимах составляет \sim 5%. Видно также, что, несмотря на постоянство амплитуды импульсов тока самостоятельного разряда, амплитуда импульсов тока несамостоятельного разряда в пакете вначале нарастает, а затем снижается. Если нарастание амплитуды связано с особенностями используемой схемы возбуждения, то ее спад, по нашему мнению, обусловлен наработкой в среде электроотрицательных компонент типа O2, NO2, N2O, NO, увеличивающих скорость прилипательных процессов и снижающих ток разряда [10].

Энергия, вводимая в активную среду на стадии несамостоятельного разряда, определялась графическим интегрированием произведения тока и напряжения

$$W = \int_{0}^{\infty} I(t)U(t)dt$$

где I(t) и U(t) — ток и напряжение несамостоятельного разряда.

Результаты исследований

В ходе экспериментов исследовались предельные электрические мощность и энергия, поступающие в газ в течение пакета импульсов, в зависимости от емкости конденсаторной батареи, питающей несамостоятельный разряд, частоты следования пакетов импульсов, числа импульсов в пакете и временно́го интервала между ними, т. е. находились оптимальные значения этих параметров при условии устойчивого горения объемного разряда.

В первую очередь выяснялось оптимальное местоположение вспомогательного разряда, производящего предварительную ионизацию среды. При этом система электродов для его возбуждения устанавливалась "вверх" или "вниз" по потоку газа на расстоянии соответственно 0.5-10 и 4-10 cm от электродов основного разряда или под ними. В последнем случае в электродах имелись щели для прохождения излучения вспомогательного разряда. Зависимости концентрации электродов в самостоятельном разряде от емкости конденсаторов, питающих вспомогательный разряд, при различном его местоположении приведены в [9]. Здесь же отметим, что наилучшая устойчивость разряда и соответственно максимальные энерговклады и несамостоятельный разряд были получены, когда вспомогательный разряд располагался "выше" по потоку и как можно ближе к основному разряду, что было особенно заметно в смесях с СО2, так как испускаемое УФ излучение сильно поглощается молекулами СО₂. Также заметим, что

Рис. 2. Зависимости удельного энерговклада от емкости конденсаторной батареи несамостоятельного разряда. Время между импульсами в пакете 100 µs; *1*, *4* — 2 импульса; *2*, *5* — 3; *3*, *6* — 4 импульса в пакете; *1*–3 — расчет, *4*–6 — эксперимент.

наилучшие результаты были получены, когда обеспечивалась максимальная освещенность катода, так как большое значение для зажигания однородного разряда имеет фотоэмиссия электронов с катода. В то же время при зажигании вспомогательного разряда под электродами основного разряда неоднородная структура электродов существенно сказывается на неоднородности основного разряда. Исходя из полученных результатов, острия электродов вспомогательного разряда были установлены на расстоянии 5 mm перед электродами основного разряда "вверх" по потоку газа. При этом, так как катодом в самостоятельном разряде служила промежуточная пластина, обеспечивалась именно ее максимальная освещенность.

Одним из наиболее важных параметров, влияющих на энергию, вводимую в газ, и габариты лазера, является емкость конденсаторной батареи, питающей несамостоятельный разряд. Ранее величина этой емкости оптимизировалась для несамостоятельного разряда, инициируемого электронным пучком, возбуждаемого в режиме одиночных импульсов [11]. Поскольку в нашем случае возбуждение осуществлялось пакетом импульсов в пороговых условиях с точки зрения контракции разряда, то логично ожидать расхождение наших данных с полученными в [11].

Результаты выбора оптимальной емкости конденсаторной батареи, при которой сохраняется объемный вид разряда, приведены на рис. 2 в виде зависимостей приведенной удельной энергии, введенной в разряд, от ее емкости. Эксперименты выполнялись при частоте следования пакета 100 Hz и скорости прокачки 50 m/s, т.е. между импульсами реализовывалась 25-кратная смена газа. Это с большим запасом обеспечивало выполнение условия отсутствия влияния предыдущего импульса на последующий. Поэтому можно утверждать, что контракция объемного разряда обусловливалась только процессами, происходящими в течение пакета импульсов.

Видно, что, когда число импульсов в пакете не более двух, кривая 4 в диапазоне 4-6 µF выходит на насыщение и энергия. вволимая в газ пакетом импульсов. не зависит от емкости конденсаторной батареи С. Заметим, что при получении данной зависимости начальное напряжение U₀, подаваемое на электроды, при изменении емкости С не менялось. Если число импульсов в пакете 3 и более, кривые 5,6 имеют достаточно ярко выраженный максимум при C_m , равном 2–4 μ F. В последнем случае одновременно с увеличением емкости более $3 \,\mu F$ (после достижения максимума) снижалось начальное напряжение на конденсаторной батарее (U_0) до уровня, обеспечивающего отсутствие контракции разряда. Для того чтобы объяснить такой ход кривых и определить оптимальную С, были проанализированы распад плазмы и его влияние на предельные энергетические характеристики объемного разряда. Для этого рассматривалась система уравнений, учитывающая разрядку конденсаторной батареи вследствие протекания тока несамостоятельного разряда и уменьшения концентрации электронов из-за процессов прилипания и рекомбинации

$$\frac{dU}{dt} = -\frac{S}{Cd}e\mu Un_e,$$
$$\frac{dn_e}{dt} = (\nu_t - \nu_D)n_e - \beta n_e^2,$$
(1)

где S — площадь электродов, C — емкость конденсатора, μ — подвижность электронов, d — межэлектродное расстояние, ν_i и ν_D — частоты соответственно ионизации и диссоциативного прилипания, β — коэффициент электрон-ионной рекомбинации.

Значения кинетических коэффициентов, за исключением β , были получены с помощью численного решения уравнения Больцмана. Значение β было взято из работы [12].

Решая систему (1), можно получить следующее выражение для остаточного напряжения на конденсаторе:

$$U_{\rm res} = U_0 \exp\left[-\frac{eS\mu}{Cd}\left((K-1)\int_0^{\tau_{\rm imp}} \frac{dt}{Y} + \int_0^{\infty} \frac{dt}{Y}\right)\right], \quad (2)$$

где

$$Y = \left(\frac{1}{n_0} + \frac{\beta}{\nu_D - \nu_i}\right) \exp\left((\nu_D - \nu_i)t\right) - \frac{\beta}{\nu_D - \nu_i}$$

 U_0 — начальное напряжение на конденсаторной батарее, K — число импульсов в пакете. Удельную энергию, введенную в газ можно определить как

$$w = \frac{C}{2Sd} (U_0^2 - U_{\rm res}^0), \tag{3}$$

где $U_{\rm res}$ вычисляется по формуле (2).

Для случая двух импульсов в пакете зависимость w от C рассчитывалась по формуле (3) в предположении постоянства U_0 (рис. 2, кривая I). При этом наблюдается неплохое сходство с экспериментом (кривая 4).

Видно, что при малых C w растет линейно с ростом C. При больших C рост w становится незначительным вследствие уменьшения степени разрядки конденсатора и w стремится к своему предельному значению

$$w_{\max} = \left(\frac{U_0}{d}\right)^2 e\mu \int_0^\infty n_e dt.$$

Очевидно, что оптимальное значение емкости будет то, при котором наступает насыщение роста *w*.

При дальнейшем увеличении числа импульсов в пакете характер зависимости w от C принципиально меняется. Рост w при малых C сменяется спадом при больших C. Причиной этого является возникновение неустойчивостей. В результате для получения безыскрового режима в ходе экспериментов, как уже было сказано выше, приходилось снижать начальное напряжение несамостоятельного разряда с увеличением емкости, что и вело к уменьшению w.

Чтобы объяснить данные результаты предполагалось следующее. В результате теплового расширения нагретого газа происходит уменьшение его числовой плотности N, что приводит к увеличению отношения E/N в межэлектродном промежутке. Если за время длительности цуга $\tau_n = K \tau_{imp}$ газ успевает прогреться настолько, что E/N превысит некоторое критическое значение $(E/N)_k$, то вследствие развития тепловой неустойчивости разряда образуется искровой канал.

Действительно, в случае малых емкостей уменьшение N компенсируется уменьшением E вследствие разряда конденсатора. С увеличением емкости степень разрядки конденсатора уменьшается и не в состоянии компенсировать рост E/N из-за теплового расширения газа. В результате при емкости конденсатора более $C_m \approx 3\mu F$ E/N в конце пакета импульсов превышает его начальное значение. Именно при $C > C_m$ и наблюдается спад экспериментальных кривых w = w(C).

Таким образом, для $C > C_m$, используя условие

$$\frac{U_{\rm res}}{dN_d} = (E/N)_k,\tag{4}$$

где N_d — числовая плотность газа в конце пакета импульсов.

Используя (2) и (4), можно получить следующие выражения для U_{res} и U_0 :

 $U_0 = (E/N)_k dN_d$

$$U_{\rm res} = (E/N)_k dN_d, \tag{5}$$

$$\times \exp\left[\frac{eS\mu}{Cd}\left((K-1)\int_{0}^{\tau_{\rm imp}}\frac{dt}{Y}+\int_{0}^{\infty}\frac{dt}{Y}\right)\right].$$
 (6)

Значение N_d определяется как

$$N_d = N_0 \frac{T_0}{T_d},\tag{7}$$

где N_0 и T_0 — начальные значения температуры и числовой плотности газа, соответственно T_d — температура газа в момент времени

$$T_d = T_0 + \xi \frac{w}{c_p},\tag{8}$$

где c_p — теплоемкость газа; ξ — доля энергии, перешедшая в тепло к моменту времени τ_d .

Чтобы определить ξ был проведен численный анализ кинетики заселения и тепловой релаксации основных колебательно-возбужденных состояний молекул CO₂ и N₂. Необходимые константы были взяты из работы [13]. Для пакетов из двух, трех и четырех импульсов значения ξ соответственно равны 0.35, 0.4, 0.47. В результате выражения для $U_{\rm res}$ и U_0 принимают вид

$$U_{\rm res} = (E/N)_k dN_0 \frac{T_0}{T_0 + \xi \frac{w}{c_p}},$$
(9)

$$U_{0} = (E/N)_{k} dN_{0} \frac{T_{0}}{T_{0} + \xi \frac{w}{c_{p}}}$$

$$\times \exp\left[\frac{eS\mu}{Cd}\left((K-1)\int_{0}^{\tau_{imp}} \frac{dt}{Y} + \int_{0}^{\infty} \frac{dt}{Y}\right)\right]. \quad (10)$$

Значения $(E/N)_k$ определялись из анализа экспериментальных данных.

Как уже отмечалось выше, авторы связывают наличие $(E/N)_k$ с развитием перегревно-ионизационной неустойчивости и предлагают следующее обоснование данного положения. Известно [14], что инкремент перегревно-ионизационной неустойчивости пропорционален $\Omega \sim E^2/N \sim (E/N)^2 N$. Величина Ωt характеризует степень развития неустойчивости за время t. Если вычислить произведение $(E/N)_k^2 N_d \tau_d$, для двух, трех и четырех импульсов в пакете, то обнаружится, что для всех трех случаев данная величина постоянна (с точностью ~ 5%). Это доказывает, что в наших условиях контракция разряда обусловлена развитием именно тепловой (перегревно-ионизационной) неустойчивости.

Таким образом, для определения оптимальной емкости конденсаторной батареи расчет w = w(C) следует производить по формуле (3), соблюдая следующие условия: при числе импульсов в пакете K = 2, а так же при K = 3-4 и $C \leq C_m U_0 = \text{const}, U_{\text{res}}$ определяется по формуле (2); при K = 3-4 и $C > C_d U_0$ определяется по формуле (10), U_{res} — по формуле (9). Полученные таким способом расчетные кривые 1-3 на рис. 2 неплохо согласуются с экспериментальными кривыми 4-6 на рис. 2.

В ходе работы исследовалась также зависимость предельной мощности несамостоятельного разряда от числа

Рис. 3. Зависимость удельной мощности несамостоятельного разряда от числа импульсов в пакете. C, μ F: 1 - 11, 2 - 4, 3 - 2, 4 - 1.

Рис. 4. Зависимость отношения E/p несамостоятельного разряда от числа импульсов в пакете. C, μ F: I - 11, 2 - 9, 3 - 4, 4 - 3, 5 - 1.

импульсов в пакете и частоты следования пакетов. Было установлено, что выбранному значению емкости конденсаторов несамостоятельного разряда соответствует свое оптимальное число импульсов в пакете (рис. 3). Так, при количестве импульсов в пакете меньше трех не достигается максимальная мощность разряда, а при большем трех снижается его устойчивость и соответственно приходится снижать начальное напряжение на накопительной емкости несамостоятельного разряда. В то же время маленькая емкость позволяет поднять начальное напряжение на разряде и увеличить энерговклад за первые импульсы, но при большом количестве импульсов она существенно разряжается и в течение последующих импульсов скорость ввода энергии в газ резко снижается. Значения начальной напряженности электрического поля E_0/p несамостоятельного разряда при различном числе импульсов в пакете и емкости конденсаторной батареи приведены на рис. 4.

На рис. 5, 6 приведены зависимости средней мощности несамостоятельного разряда Р от частоты следования пакетов импульсов при различных временных интервалах между импульсами в пакете, скоростях прокачки газа и числе импульсов в пакете. Очевидно, что, пока влияние предыдущего импульса на последующий незначительно, Р растет по мере увеличения частоты следования импульсов, и наоборот. Видно, что при одинаковой скорости потока газа на низкой частоте следования пакетов (< 700 Hz) эффективен режим с большим временем между импульсами, а на больших частотах пакетов становится необходимо уменьшать или время между импульсами в пакете (рис. 5) или число импульсов в пакете (рис. 6). При меньшей же скорости прокачки необходимо снижать частоту или уменьшать длительность пакета.

Рис. 5. Зависимость удельной мощности несамостоятельного разряда от частоты следования пакетов импульсов при различных скоростях потока газа и длительности пакетов (в пакете 3 импульса). *1, 2 — 50*; *3, 4 — 40* m/s; τ_{imp} , μ s: *1, 3 — 100*; *2, 4 — 150*.

Рис. 6. Зависимость удельной мощности несамостоятельного разряда от частоты следования пакетов импульсов при различных скоростях потока газа и числе импульсов в пакете. $\tau_{\rm imp} = 100$ мкс; I-3 - 50, 4-6 - 40 m/s; I, 4 - 1 импульс; 2, 5 - 2 импульса; 3, 6 - 3 импульса в пакете.

Данный вывод хорошо согласуется с результатами, приведенными в [7], где авторы, к сожалению, не указали на видимые причины такой зависимости. В проводимых экспериментах был замечен устойчивый максимум энерговкладов в несамостоятельный разряд на частотах ~ 800 Hz как в цуговом, так и в квазинепрерывном режимах, хотя самостоятельный разряд устойчиво горел на частотах до 15 kHz.

Мы склонны связывать это с процессами энерговыделения в наименее устойчивой части разряда — катодном слое и соответственно развитием тепловой неустойчивости в прикатодной области. Следовательно, эффективная длительность пакета импульсов ограничивается временем зарождения тепловой неустойчивости на катоде, а время между пакетами (большее, чем необходимо для однократной смены газа) обусловлено необходимостью охлаждения газа в плохо прокачиваемом пограничном приэлектродном слое. Проведенные расчеты показали, что для условий эксперимента длина катодного падения практически равнялась толщине пограничного слоя Прандтля.

Одновременно с этим, по-видимому, имеет место развитие акустических процессов [15]. В момент начала протекания тока через разрядный промежуток в обе стороны по потоку газа уходит ударная волна, усиливающаяся в зоне несамостоятельного разряда. Соответственно длительность пакета импульсов ограничена временем возврата ударной волны в разрядную зону. А перерыв между пакетами необходим для того, чтобы все созданные неоднородности плотности газа ушли вместе с потоком.

В ходе экспериментов найдены оптимальные состав и давление рабочей смеси для получения максимального энерговклада в активную среду при устойчивой работе лазера (без контрагирования объемного разряда). В газовой смеси CO_2 : N_2 : He = 1 : 7 : 22 давлением 60 Torr при частоте следования пакетов импульсов накачки 800 Hz 3 импульса в пакете через 100 µs каждый было рассеяно 5.2 kW средней мощности несамостоятельного разряда. При увеличении частоты импульсов в пакете до 20 kHz и числа импульсов до 6, при частоте следования пакетов 600 Hz средняя рассеиваемая мощность повысилась до 6 kW, что соответствует средней удельной мощности 8.5 W/cm³, или за время пакета импульсов, в течение которых производится накачка, 25 W/cm³. Это превышает аналогичный параметр известных образцов технологических лазеров. Необходимо отметить, что для получения этих результатов не возникло необходимости применения секционированных электродов и резистивной развязки, что значительно повысило однородность разряда и эффективность ввода энергии в газ.

Заключение

В заключение выделим основные результаты.

Показано, что энергетические параметры комбинированного разряда могут быть близкими к тем, которые реализуются в несамостоятельном разряде, контролируемом электронным пучком.

Определены предельные энергетические характеристики несамостоятельного разряда в зависимости от емкости конденсаторной батареи, числа импульсов в пакете, частоты следования пакетов при различных временных интервалах между импульсами в пакете и скоростях прокачки газа.

Предложена методика расчета оптимальной емкости конденсаторной батареи, питающей несамостоятельный разряд.

Список литературы

- Бугаев С.П., Бычков Ю.И., Карлова Е.К. и др. // Письма в ЖТФ. 1975. Т. 1. Вып. 10. С. 492–496.
- [2] Бычков Ю.И., Карлова Е.К., Карлов Н.В. и др. // Письма в ЖТФ. 1976. Т. 2. Вып. 5. С. 212–216.
- [3] Reilly J.R. // J. Appl. Phys. 1972. Vol. 43. N 8. P. 3411-3416.
- [4] Бычков Ю.И., Коновалов И.Н., Курбатов Ю.А. и др. // ПТЭ. 1974. № 3. С. 165–167.
- [5] Hill A.E. // Appl. Phys. Lett. 1973. Vol. 22. N 12. P. 670-673.
- [6] Bychov Yu.J., Osipov V.V., Telnov V.A. // J. de Physique. 1979.
 Vol. 40. P. 161–162.
- [7] Nikumb S.K., Seguin H.J.J., Seguin V.A. et al. // IEEE J. Quant. Electron. 1989. Vol. 25. N 7. P. 1725–1735.
- [8] Nagai H., Hishii M., Tanaka M. et al. // IEEE J. Quant. Electron. 1993. Vol. 29. N 12. P. 2898–2909.
- [9] Иванов М.Г., Мухачев С.В., Осипов В.В. // Оптика атмосферы и океана. 1995. Т. 8. № 11. С. 1616–1621.
- [10] Карпов В.М., Конев Ю.Г., Орловский В.М. и др. // Квантовая электрон. 1988. Т. 5. № 3. С. 465–470.
- [11] Бычков Ю.И., Королев Ю.Д., Курбатов Ю.А., Месяц Г.А. // ЖТФ. 1974. Вып. 4. С. 791–796.
- [12] Hokazono H., Fujimoto H. // J. Appl. Phys. 1987. Vol. 62. N 5. P. 1585–1594.
- [13] Taylor R.L., Bitterman S. // Rev. of Modern Phys. 1969. Vol. 41. N 1. P. 26–47.
- [14] *Райзер Ю.П.* Физика газового разряда. М.: Наука, 1987. 592 с.
- [15] Dzacowic G.S., Waztke S.A. // J. Appl. Phys. 1973. Vol. 46. P. 5061–5063.