05;11;12

Влияние замещений на магнитную анизотропию Gd-содержащих магнитооптических пленок феррит-гранатов

© В.В. Рандошкин, В.И. Козлов, В.Ю. Мочар, Н.В. Васильева, В.В. Воронов

Совместная хозрасчетная лаборатория "Магнитооптоэлектроника"

Института общей физики РАН при Мордовском государственном университете им. Н.П. Огарева, 430000 Саранск, Россия

(Поступило в Редакцию 20 августа 1996 г. В окончательной редакции 20 января 1997 г.)

Рентгеновским методом и методом ферромагнитного резонанса изучены свойства магнитооптических пленок системы $(Bi,Gd,Ln)_3/(Fe,M)_5O_{12}$, где Ln = Lu или La, M = Ga или Al, выращенных методом жидкофазной эпитаксии на подложках Nd₃Ga₅O₁₂ с ориентацией (100), (110) и близкой к (111).

В различных магнитооптических устройствах используются висмутсодержащие монокристаллические пленки феррит-гранатов (МПФГ), в состав которых входят ионы Cd^{3+} [1,2]. Обычно эти пленки выращивают на подложках с ориентацией (111) [1–5]. Целью настоящей работы являются исследование магнитной анизотропии в случае, когда ориентация висмутсодержащих МПФГ отличается от (111), а также изучение влияния на нее ионов, замещающих Cd^{3+} и Fe³⁺. В частности, выясняется, вносят ли ионы Gd^{3+} в паре с ионами Bi^{3+} вклад в ромбическую магнитную анизотропию (PMA).

ΜΠΦΓ Висмутсодержащие системы $(Bi,Gd,Ln)_3(Fe,M)_5O_{12}$, где Ln = Luили La, M = Gaили А1, выращивали методом жидкофазной эпитаксии из переохлажденного раствора-расплава на основе РbO-Bi₂O₃-B₂O₃ на подложках Nd₃Ga₅O₁₂ с разной Кристаллографическую ориентацией. ориентацию ΜΠΦΓ (базисную плоскость висмутсодержащих и угол Θ , отклонение плоскости пленки от нее) контролировали на дифрактометре ДРОН-2.0 точностью 0.1°.

Рассогласование параметров решеток пленки и подложки $\delta a/a$, измеренное в направлении нормали к плоскости пленки ($\delta a/a = (a_f - a_s)/a_s$, a_f — параметр решетки пленки, a_s — параметр решетки подложки) определял стандартным методом по кривым качания, измеренным на двукристальном рентгеновском спектрометре. Спектрометр был собран на базе дифрактометра ДРОН-3М и блока монохроматора с использованием совершенного кристалла Ge и отражения (333). Для идентификации пиков от пленки и подложки записывали кривые качания для двух порядков отражений и сравнивали соотношения интенсивностей пиков. Рассогласование рассчитывали по формуле [6]

$$\delta a/a = -\Delta \vartheta \operatorname{ctg} \vartheta, \tag{1}$$

вытекающей из формулы Вульфа–Брегга. Здесь ϑ — угол Брегга; $\Delta \vartheta$ — угловое расстояние между пиками, относящимися к пленке и подложке. Значения Θ и $\delta a/a$ приведены в таблице.

Для пленок системы $(Bi,Gd)_3Fe_5O_{12}$, содержание висмута X_{Bi} и гадолиния X_{Gd} можно определить по данным табл. 9.4 в [7], учитывая только рассогласование параметров решеток пленки и подложки (считалось, что вклад висмута составляет $\Delta a/\Delta X$ (рт на формульную единицу)). Для висмутсодержащих МПФГ (Bi,Gd,Ln)₃Fe₅O₁₂ необходимо дополнительно учитывать содержание редкоземельных элементов в шихте и их коэффициенты распределения, приведенные в [8]. Когда в состав пленки входит немагнитный ион M³⁺, химический состав висмутсодержащих МПФГ по данным $\delta a/a$ и составу шихты определить нельзя, поскольку коэффициент распределения м³⁺ сильно зависит от скорости роста пленки. Значения X_{Bi}, X_{Gd} и X_{Ln} приведены в таблице.

Для пленок системы (Bi,Gd)₃Fe₅O₁₂ намагниченность насыщения $4\pi M_s$ можно определить по данным табл. 9.3 в [7], полагая, что $4\pi M_s$ в системе (Bi,Ln)_xGd_{3-x}Fe₅O₁₂ увеличивается с ростом *x* по линейному закону от значения, соответствующего Gd₃Fe₅O₁₂, до значения, соответствующего гипотетическому гранту Bi₃Fe₅O₁₂. Намагниченность насыщения для последнего считали такой же, как у Lu₃Fe₅O₁₂. Определенные таким образом значения $4\pi M_s$ приведены в таблице.

Параметры магнитной анизотропии исследовали методом ферромагнитного резонанса (ФМР) на частоте 9.34 GHz. При этом регистрировали резонансные поля при ориентации внешнего магнитного поля перпендикулярно (H_n , перпендикулярный резонанс) и параллельно

Рис. 1. Азимутальная зависимость $H_{in}(\varphi)$ резонансного поля при параллельном резонансе для висмутсодержащих МПФГ (Bi,Gd)₃Fe₅O₁₂ с ориентацией (100).

Параметры висмутсодержащих МПФГ системы $(Bi,Gd,Ln)_3(Fe,M)_5O_{12}$

Образец	Номер образца							
	1	2	3	4	5	6	7	8
Ln	_	-	Lu	_	_	_	Lu	_
Μ	—	—	—	—	—	Ga	Ga	Al
X _{Ві} , формульная единица	0.61	0.61	1.56	0.04	0.20			
X _{Gd} , формульная единица	2.39	2.29	0.86	2.96	2.80			
X _{Ln} , формульная единица	—	—	0.58	_	_			_
Ориентация	(100)	(110)	(110)	(111)	(111)	(111)	(111)	(111)
Θ , grad	2.3	1.6	1.0	1.4	2.6	6.5	0.8	4.75
$\delta a/a \cdot 10^4$	0.0	0.0	-32.0	-50.0	-40.0	-3.4	+7.0	-13.0
H _{in min} , Oe	3250	2300	2550	2820	2950	3770	4720	3650
H _{in max} , Oe	3540	3480	3220	2850	3020	5170	4935	4000
$\delta H_{ m in}$, Oe	350	1180	670	30	70	1400	215	350
$2\Delta H_{\min}$, Oe	87	70	35	87	210	870	240	360
H _n ,Oe	3540	4200	4300	3800	3710	2000	50	1530
$2\Delta H_{\rm n},{\rm Oe}$	60	40	52	87	280	1200	240	810
$H_{\rm eff}$, Oe	-207	-870	-970	-470	-380	1330	3280	1800
$4\pi M_s, G$	415	415	1300	80	180			

 $(H_{\rm in},$ параллельный резонанс) плоскости пленки, а также соответствующие значения ширины линии ФМР $2\Delta H_{\rm n}$ и $2\Delta H_{\rm in}$. Для определения анизотропии в плоскости пленки регистрировали азимутальные зависимости $H_{\rm in}(\varphi)$ при параллельном резонансе. Результаты измерений методом ФМР приведены в таблице, где $H_{\rm in\,min}$ и $H_{\rm in\,max}$ — минимальное и максимальное значения резонансного поля при параллельном резонансе соответственно, $\delta H_{\rm in}$ — разность этих значений.

Поскольку висмутсодержащие МПФГ системы $(Bi,Gd,Ln)_3$ (Fe,M)₅O₁₂ не содержат быстрорелаксирующих магнитных ионов, а гиромагнитное отношение медленнорелаксирующих ионов Gd³⁺ и Fe³⁺ одинаково и составляет $\gamma_0 = 1.76 \cdot 10^7 \text{ Oe}^{-1} \cdot \text{s}^{-1}$, то и для них в соответствии с формулой Уангснесса [2,9]

$$\gamma = (M_{\rm Gd} + M_{\rm Fe})/(M_{\rm Gd}/\gamma_{\rm Gd} + M_{\rm Fe}/\gamma_{\rm Fe})$$
(2)

эффективное значение гиромагнитного отношения γ равно γ_0 (по крайней мере вдали от точки компенсации магнитного момента). Здесь $M_{\rm Gd}$ — суммарный магнитный момент ионов Gd³⁺ в додекаэдрической подрешетке структуры граната, $M_{\rm Fe}$ — суммарный магнитный момент ионов Fe³⁺ в тетра- и октаэдрической подрешетках. Это обстоятельство позволяет в отличие от [10,11] определить эффективное поле магнитной анизотропии $H_{\rm eff}$ только по данным перпендикулярного резонанса, для которого резонансное соотношение можно записать как

$$\omega/\gamma = H_{\rm eff} + H_{\rm n},\tag{3}$$

где ω — круговая частота ФМР.

Тогда факт, что ионы Gd³⁺ и Fe³⁺ в динамике ведут себя одинаково, подтверждается результатами исследований вблизи точки компенсации момента импульса (КМИ) [11–13]. В частности, при введении ионов Gd³⁺

в состав висмутсодержащих МПФГ уровень замещения железа немагнитными ионами, необходимый для обеспечения КМИ, снижается. Значения *H*_{eff} приведены в таблице.

Для пленок (Bi,Gd)₃Fe₅O₁₂ с ориентацией (100) (образец 1 в таблице) характерно наличие четырех эквивалентных максимумов на кривой $H_{in}(\varphi)$ (рис. 1), положение которых соответствует осям типа (100). При этом значение δH_{in} относительно невелико (см. таблицу). Сравнение значений $4\pi M_s$ и H_{eff} , приведенных в таблице, позволяет заключить, что магнитная анизотропия в этих пленках обусловлена полями размагничивания.

В висмутсодержащих МПФГ того же состава с ориентацией (110) (образец 2 в таблице) магнитная анизотропия в плоскости пленки более чем в 3 раза выше,

Рис. 2. То же, что на рис. 1, но ориентация (110).

Рис. 3. То же, что на рис. 1, но ориентация вблизи (111) $(\Theta = 1.4^{\circ}).$

Рис. 4. То же, что на рис. 1, но для висмутсодержащих МПФГ (Bi,Gd,Lu)₃Fe₅O₁₂ с ориентацией вблизи (111) ($\Theta = 2.6^{\circ}$).

чем в пленках с ориентацией (100) (ср. значения $\delta H_{\rm in}$ в таблице). При этом на азимутальной зависимости резонансного поля при параллельном резонансе (рис. 2) наблюдаются только два пика, что характерно для пленок с РМА. Эффективное поле анизотропии для этих пленок также невелико. Введение Lu в пленки с этой ориентацией (образец 3 в таблице) приводит к снижению как ширины линии ФМР, так и анизотропии в плоскости пленки. При этом эффективное поле анизотропии H_{eff} изменяется незначительно, а кривая $H_{\rm in}(\varphi)$ имеет такой вид, как на рис. 2.

Для пленок (Bi,Gd)₃Fe₅O₁₂ с ориентацией, близкой, но не совпадающей точно с (111) (образцы 4 и 5 в таблице), характерно наличие сложной зависимости $H_{in}(\varphi)$ в плоскости пленки. Для образца 4, обладающего наименьшей (среди исследованных) анизотропией в плоскости пленки и относительно небольшим отклонением Θ от базовой ориентации пленки (см. таблицу), на кривой $H_{in}(\varphi)$ имеется шесть пиков (рис. 3), что характерно для кубической кристаллографической анизотропии пленок с ориентацией (111). Однако из-за отличия Θ от нуля эти максимумы имеют разную амплитуду. Заметим, что содержание Bi в этом образце крайне незначительно (см. таблицу). При увеличении Θ значение δH_{in} возрастает (образец 5 в таблице), при этом два из шести пиков на кривой $H_{in}(\varphi)$ становятся слабо выраженными. Эффективное поле анизотропии для обоих образцов 4 и 5 невелико. Как и для пленок с ориентацией (110), введение Lu в состав висмутсодержащих МПФГ не приводит к существенным изменениям параметров магнитной анизотропии.

Введение Ga в состав пленок (Bi,Gd)₃Fe₅O₁₂ (образец 6) и (Bi,Gd,Lu)₃Fe₅O₁₂ (образец 7) с ориентацией (111) приводит к появлению достаточно большой одноосной магнитной анизотропии. Как следствие, резонансное поле при перпендикулярном резонансе становится ниже, чем при параллельном. Азимутальная зависимость $H_{in}(\varphi)$ для образца 6 имеет вид двух широких максимумов с периодом 180° (как и на рис. 2), на которых практически не выражены особенности, обусловленные кубической анизотропией. Для образца 7 на этой зависимости наблюдается четыре практически эквидистантных пика (рис. 5). Более высокая анизотропия в плоскости для образца 6 по сравнению с образцом 7 объясняется более сильным отклонением ориентации подложки от плос-

Рис. 5. То же, что на рис. 1, но висмутсодержащих для $M\Pi\Phi\Gamma$ (Bi,Gd,Lu)₃(Fe,Ga)₅O₁₂ с ориентацией вблизи (111) ($\Theta = 0.8^{\circ}$).

Рис. 6. То же, что на рис. 1, но для висмутсодержащих МПФГ (Bi,Gd)₃(Fe,Al)₅O₁₂ с ориентацией вблизи (111) ($\Theta = 4.75^{\circ}$).

8*

кости (111) (ср. значения Θ в таблице). Заметим, что для этих образцов из-за противоположного знака $\delta a/a$ магнитострикционный механизм дает противоположный вклад в одноосную магнитную анизотропию. Более высокое значение $H_{\rm eff}$ для образца 7 позволяет заключить, что при растягивающих напряжениях ($\delta a/a > 0$) вклад магнитострикционного механизма в одноосную магнитную анизотропию положительный, а при сжимающих напряжениях ($\delta a/a < 0$) — отрицательный.

Введение Ga приводит к значительному уширению линии ФМР (см. значения ФМР $2\Delta H_n$ и $2\Delta H_{in}$ в таблице). Однако, несмотря на повышенную одноосную анизотропию, для висмутсодержащей МПФГ системы Lu (образец 7) линия ФМР (см. таблицу). Не исключено, что это связано с меньшим рассогласованием параметров решетки пленки и подложки.

Введение A1 в состав пленок (Bi,Gd)₃Fe₅O₁₂ с ориентацией (111) (образец 8 в таблице) также приводит к появлению достаточно большой одноосной магнитной анизотропии (см. значение H_{eff} в таблице). Азимутальная зависимость $H_{\text{in}}(\varphi)$, как и для Ga-содержащих пленок, имеет вид двух максимумов с периодом 180°, на которые наложены более узкие и слабые пики (рис. 7). Введение La в состав висмутсодержащих МПФГ для уменьшения рассогласования параметров решетки пленки и подложки и изменение ориентации подложки (образец 9 в таблице) не приводит к существенному изменению вида кривой $H_{\text{in}}(\varphi)$, хотя по сравнению с образцом 8 анизотропия в поскости увеличивается, а одноосная магнитная анизотропия уменьшается (ср. значения δH_{in} и H_{eff} в таблице).

Общим свойством для всех исследованных висмутсодержащих МПФГ является то, что при параллельном резонансе линия ФМР по крайней мере не шире, чем при перпендикулярном (ср. значения $2\Delta H_n$ и $2\Delta H_{in}$ в таблице). Таким образом, в настоящей работе при исследовании висмутсодержащих МПФГ системы (Bi,Gd,Ln)₃(Fe,M)₅O₁₂ показано следующее.

1. В пленках феррит-гранатов, содержащих в додекаэдрической подрешетке только ионы Gd^{3+} и Bi^{3+} , при ориентации (110), а также при отклонении плоскости пленки от ориентации (111) в процессе эпитаксиального роста наводится РМА.

2. Введение в состав висмутсодержащих МПФГ Ga Al приводит к появлению достаточно большой одноосной магнитной анизотропии, тогда как при отсутствии замещений Fe векторы намагниченности ориентированы в плоскости пленки.

3. Азимутальная зависимость резонансного поля для висмутсодержащих МПФГ состава $(Bi,Gd)_3Fe_5O_{12}$ отражает кристаллографическую магнитную анизотропию: при ориентации (110) имеет вид двух максиумов с периодом 180°; при ориентации (100) — четырех эквивалентных максимумов; при отклонении ориентации пленки от плоскости (111) число выраженных максимумов в зависимости от величины Θ изменяется (от 6 до 2).

4. Введение замещений (Lu,La,Ga,Al) приводит к уширению и слиянию соседних максимумов на этой азимутальной зависимости.

Список литературы

- [1] Звездин А.К., Котов В.А. Магнитооптика тонких пленок. М.: Наука, 1988. 192 с.
- [2] Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М.: Энергоатомиздат, 1990. 320 с.
- [3] Hansen P., Heitman H., Witter K. // Phys. Rev. B. 1981.
 Vol. 23. N 4. P. 6085–6098.
- [4] Hansen P., Witter K., Tolksdorf W. // Phys. Rev. B. 1983.
 Vol. 27. N 7. P. 4375–4383.
- [5] Hansen P., Tolksdorf W., Witter K., Robertson J.M. // IEEE Trans. Magn. 1984. Vol. MAG-20. N 5. P. 1099–1104.
- [6] Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ. М.: Изд-во МИСиС, 1994.
- [7] Элементы и устройства на цилиндрических магнитных доменах. Справочник / Под ред. Н.Н. Евтихиева, Б.Н. Наумова. М.: Радио и связь, 1987. 488 с.
- [8] Рандошкин В.В., Чани В.И., Цветкова А.И. // Письма в ЖТФ. 1987. Т. 13. Вып. 4. С. 839–842.
- [9] Wangsness R.K. // Phys. Rev. 1953. Vol. 91. N 5.
 P. 1085–1091.
- [10] Gangulee K., Kobliska R.J. // J. Appl. Phys. 1980. Vol. 51. N 6. P. 3333–3337.
- [11] Логинов Н.А., Логунов М.В., Рандошкин В.В. // ФТТ. 1989. Т. 31. Вып. 10. С. 58–63.
- [12] Рандошкин В.В., Сигачев В.Б. // Письма в ЖЭТФ. 1985. Т. 42. Вып. 1. С. 34–37.
- [13] Рандошкин В.В. Магнитооптические пленки ферритгранатов и их применение. М.: Наука, 1992. С. 49–107 (Тр. ИОФАН. Т. 35).