01;09

Решение дисперсионных уравнений для планарных волноводов в случае комплексных корней

© А.А. Романенко, А.Б. Сотский

Институт прикладной оптики АН Белоруссии, 212793 Могилев, Белоруссия

(Поступило в Редакцию 30 апреля 1996 г.)

Изложен метод расчета комплексных корней нелинейного уравнения, сводящий решение задачи к вычислению квадратур. Рассмотрены приложения метода к исследованию дисперсионных зависимостей для различных открытых волноведущих структур с комплексной диэлектрической проницаемостью. Проанализированы возможности призменного возбуждения мод, которым соответствуют корни дисперсионных уравнений, расположенные на различных римановых листах. Получено решение обратных задач по восстановлению комплексных постоянных распространения мод и определению параметров пленок, направляющих волноводные и вытекающие моды. Решение основано на обработке угловой зависимости коэффициента отражения в схеме призменного возбуждения.

Введение

Строгое нахождение комплексных корней дисперсионных уравнений имеет принципиальное значение в электродинамической теории открытых волноводов. Несмотря на давнюю историю этой проблемы, она не получила еще удовлетворительного разрешения. Этим объясняется наличие ряда альтернативных вычислительных подходов. Сюда относятся различные интерационные [1-4] и градиентные [5,6] методы. Их общими недостатками является необходимость задания достаточно точного нулевого приближения для корня и вычисления производных от дисперсионных уравнений, что представляет собой в ряде случаев достаточно сложную задачу. Кроме того, существенной для сходимости оказывается гладкость входящих в уравнения функций, которые тем не менее могут претерпевать разрывы на линиях разрезов. Принципиально также требование невырожденности корней.

В настоящей работе предложен свободный от этих ограничений метод строгого вычисления комплексных корней дисперсионных уравнений для планарных волноводов с произвольным распределением комплексной диэлектрической проницаемости. Метод представляет собой развитие результатов работы [7]. Он основан на технике контурного интегрирования и позволяет найти все корни нелинейного уравнения f(u) = 0 в области аналитичности функции f(u).

1. Метод расчета комплексных корней нелинейных уравнений

Предположим, что требуется найти корни уравнения f(u) = 0 в односвязной замкнутой области *G* комплексной переменной *u*, ограниченной контуром *C*. Предположим также, что в данной области функция f(u) является аналитической. Полное число корней *m* (с учетом их кратности) может быть найдено на основании принципа

аргумента [8], согласно которому *m* равно полному изменению аргумента величины W = f(u) при обходе контура *C*, деленному на 2π . Допустим вначале, что все корни некратные. Если m = 1, то, рассчитав численно интегралы $I_c^{(0)}$ и $I_c^{(1)}$, где

$$I_c^{(k)} = \frac{1}{2\pi i} \oint\limits_c \frac{u^k du}{f(u)},$$

и воспользовавшись теоремой о вычетах, найдем значение корня $u_1 = I_c^{(1)}/I_c^{(0)}$. Если m > 1, то, последовательно сужая область и подсчитывая на каждом шаге изменения аргумента W, придем к области G_1 , ограниченной контуром C_1 , в которой располагается m-1 корень. Для выпавшего корня получаем

$$u_{1} = \left[I_{c_{1}}^{(1)} - I_{c}^{(1)}\right] / \left[I_{c_{1}}^{(0)} - I_{c}^{(0)}\right]$$

Повторяя процесс, последовательно находим все корни. Заметим, что расчет изменения аргумента величины *W* сводится к подсчету числа пересечений границ координатных четвертей. Он может быть выполнен параллельно с накоплением интегральных сумм, что способствует вычислительной эффективности метода.

Получим обобщение расчетной схемы на случай присутствия двукратного корня u_0 . Эту ситуацию мы рассмотрим как предельную при $u_1 \rightarrow u_2 \rightarrow u_0$, где u_1 и u_2 однократные корни. Допустим, что в области *G* оказалось два корня. Введем в дополнение к интегралам $I_c^{(0)}$ и $I_c^{(1)}$ интегралы $I_c^{(2)}$ и $I_c^{(3)}$. Воспользовавшись теоремой о вычетах, приходим к системе четырех уравнений

$$I_c^{(k)} = u_1^k [f'(u_1)]^{-1} + u_2^k [f'(u_2)]^{-1} \quad (k = 0, 1, 2, 3) \quad (1)$$

с четырьмя неизвестными u_1 , u_2 , $f'(u_1)$, $f'(u_2)$. Ее решение имеет вид

$$u_{1,2} = a/2 \pm \sqrt{(a/2)^2 - b},$$
 (2)

$$a = \frac{I_c^{(1)} I_c^{(2)} - I_c^{(0)} I_c^{(3)}}{\left[I_c^{(1)}\right]^2 - I_c^{(0)} I_c^{(2)}},$$
(3)

$$b = \frac{\left[I_c^{(2)}\right]^2 - I_c^{(3)}I_c^{(1)}}{\left[I_c^{(1)}\right]^2 - I_c^{(0)}I_c^{(2)}}.$$
(4)

Воспользовавшись разложениями Тейлора функции f(u) и ее производных, получаем

$$f'(u_1) = -\frac{1}{2}f''(u_1)\Delta u - \frac{1}{6}f'''(u_1)(\Delta u)^2 + 0\left[(\Delta u)^3\right], \quad (5)$$

$$f'(u_2) = \frac{1}{2}f''(u_1)\Delta u + \frac{1}{6}f'''(u_1)(\Delta u)^2 + 0\left[(\Delta u)^3\right], \quad (6)$$

$$f''(u_2) = f''(u_1) + f'''(u_1)\Delta u + 0\left[(\Delta u)^2\right],$$
(7)

где $\Delta u = u_2 - u_1$. При учете (5)–(7) выражения (1) приводятся к виду

$$I_c^{(0)} = -\frac{2}{3} \frac{f'''(u_1)}{f''(u_1)} + 0(\Delta u),$$

$$I_c^{(1)} = \frac{2}{f''(u_1)} + u_1 I_c^{(0)} + 0(\Delta u),$$

$$I_c^{(2)} = \frac{4u_1}{f''(u_1)} + u_1^2 I_c^{(0)} + 0(\Delta u),$$

$$I_c^{(3)} = \frac{6u_1^2}{f''(u_1)} + u_1^3 I_c^{(0)} + 0(\Delta u).$$

Отсюда следует, что $a^2/4 \to b$, и $u_1 \to u_2 \to u_0 = a/2$ при $\Delta u \to 0$. В случае m > 2 необходимо вновь обратиться к сужению области. Если в области G_1 окажется m - 2 корня, то значения двух выпавших корней могут быть рассчитаны по формулам (2)–(4) после замен $I_c^{(k)} \to I_c^{(k)} - I_{c_1}^{(k)}$. При этом для двукратного корня вновь получаем $u_0 = a/2$.

Сочетанием описанных расчетных схем могут быть найдены все, не более чем двукратно вырожденные корни уравнения f(u) = 0. Аналогично можно рассмотреть случай *l*-кратного вырождения (l > 2), вычисляя интегралы $I_c^{(k)}$, где $k = 0, 1, \ldots; 2l - 1$. Соответствующие выражения достаточно громоздки и здесь не приводятся. Основанием для этого служит то, что корни дисперсионных уравнений для планарных волноводов, как правило, не вырождены и лишь в редких ситуациях, встречающихся при рассмотрении анизотропных волноводов и систем связанных волноводов, двукратно вырождены.

2. Решение дисперсионных уравнений

Рассмотрим волновод, представляющий собой слоистую среду с комплексной диэлектрической проницаемостью, заключенную в области $-d \leq y \leq 0$ и окруженную однородными средами с относительными диэлектрическими проницаемостями ε_g (y > 0) и ε_s (y < -d). Дисперсионное уравнение для мод, поля которых зависят от

времени и координаты *z* как $\exp(i\omega t - ihz)$, имеет вид [7,9]

$$F_{\nu} = i\psi(0)\nu + \psi'(+0) = 0, \qquad (8)$$

где $\psi(y)$ имеет смысл компоненты E_x для TE- и H_x для TM-мод, $\nu = \sqrt{k_0^2 \varepsilon_g - h^2}$, $k_0 = 2\pi/\lambda_0$ — волновое число вакуума.

При получении (8) выбрана зависимость $\psi(y) = \psi(0) \exp(-i\nu y), y \ge 0$. Для задания входящих в (8) величин воспользуемся методом стратификации, представив волновод совокупностью *n* однородных слоев [10]. В этом случае величины $\psi'(+0), \psi(0)$ могут быть рассчитаны из рекуррентных соотношений [7]

$$\psi_{j+1} = \psi_j K + \psi'_j S, \tag{9}$$

$$\psi_{j+1}' = \left(\varepsilon_{j+1}/\varepsilon_j\right)^T \left(\psi_j' K - \psi_j \nu_j^2 S\right),\tag{10}$$

$$\psi_1 = 1, \tag{11}$$

$$\psi_1' = i\nu_1 \left(\varepsilon_2/\varepsilon_1\right)^I,\tag{12}$$

где $S = \sin(\nu_j \Delta y_j)/\nu_j$; $K = \cos(\nu_j \Delta y_j)$; $\nu_j = \sqrt{k^2 \varepsilon_j - h^2}$; $\varepsilon_1 = \varepsilon_s$, $\varepsilon_{n+2} = \varepsilon_g$; $\psi_{n+2} = \psi(0)$; $\psi'_{n+2} = \psi'(+0)$; ε_j и Δy_j — диэлектрическая проницаемость и толщина *j*-го слоя; T = 0 для TE- и T = 1 для TM-мод, причем в области y < -d использовано представление поля $\psi(y) = \exp[i\nu_i(y+d)]$.

В частном случае однородного пленочного волновода (n = 1) уравнение (8) с учетом (9)–(12) приводится к виду

$$F_{\nu} = \left[\nu_1 \left(\frac{\varepsilon_2}{\varepsilon_s}\right)^T + \nu \left(\frac{\varepsilon_2}{\varepsilon_g}\right)^T\right] \cos(\nu_2 d) + i \left[\nu_2 + \frac{\nu_1 \nu}{\nu_2} \left(\frac{\varepsilon_2^2}{\varepsilon_s \varepsilon_g}\right)^T\right] \sin(\nu_2 d) = 0.$$
(13)

В качестве неизвестной уравнений (8), (13) удобно выбрать величину $u = \nu_1$. Тогда $\nu_j = \sqrt{k_0^2(\varepsilon_j - \varepsilon_s) + u^2}$ $(j = 2, \ldots; n + 2; \nu_{n+2} = \nu)$. В соответствии с выражениями (8)–(13) функция $F_{\nu}(u)$ ограничена (в конечной части комплексной плоскости) и инвариантна относительно выбора знаков величин ν_j (j < n + 2), при этом неаналитичность данной функции связана только с наличием точек ветвления и разрезов функции $\nu(u)$. Неаналитичность устраняется, если перейти к рассмотрению произведения

$$f(u) = F_{\nu}(u)F_{-\nu}(u),$$
 (14)

являющегося целой функцией переменной u [9]. Корни уравнения (14) совпадают с корнями уравнений (8), (13), соответствующих двум ветвям функции $\nu(u)$ (например, ветвям Im $\nu \leq 0$ и Im $\nu \geq 0$). Заметим, что при $\nu \neq 0$ уравнение (14) и уравнения $F_{\pm\nu}(u) = 0$ имеют корни одинаковой кратности. Действительно, кратность корней возрастает, если выполняется система $F_{\nu}(u) = 0$,

0-, 1.5 1 5009 11 1.5003 3.62 3.52 1.495 h -2 3

Рис. 1. Дисперсионные зависимости для мод однородного и неоднородного волновода. $a - \text{Re} h/k_0, b - \text{Im} h/k_0.$

 d/λ_0

 $F_{-\nu}(u) = 0$, из которой в соответствии с (8) следует $\psi(0) = 0, \ \psi'(+0) = 0 \ (\nu \neq 0)$. При этом решение задачи Коши для дифференциального уравнения, описывающего поле моды, дает $\psi(y) \equiv 0, \psi'(y) \equiv 0$, что противоречит условиям (11), (12). Случай же $\nu \neq 0$ допускает отдельное аналитическое рассмотрение. Заметим также, что из выражение (8)–(12) следует, что если $d \neq 0$, то величина |W| экспоненциально возрастает при $|u| \to \infty$. В этом случае число корней уравнения (14) m = 0(r)при $r \to \infty$, где r — радиус окружности C [9], т.е. при рассмотрении в качестве G всей комплексной плоскости число *m* неограниченно велико. Если же d = 0, то из (13) получаем, что m = 2 при T = 1, m = 0 при T = 0и $\varepsilon_g \neq \varepsilon_s$, m = 1 при T = 0 и $\varepsilon_g = \varepsilon_s$.

С использованием метода, изложенного в первом разделе, нами получены решения уравнения (14) для ряда волноведущих структур. На рис. 1, а, b представлены типичные зависимости $h = \sqrt{k_0^2 \varepsilon_s - \nu_1^2}$ (Re $h \ge 0$) Они получены для мод ТЕ-поляризации OT d/λ_0 . однородного волновода с $\varepsilon_s = 2.25 - i3 \cdot 10^{-6}$, $\varepsilon_2 = 2.295225 - i3.03 \cdot 10^{-6}, \varepsilon_g = 1.$ Значки "+" и "-" на рисунках относятся к зависимостям, для которых Im $\nu \ge 0$ и Im $\nu \le 0$ соответственно. Для кривых $1\pm, 3\pm,$

Im $\nu_1 > 0$, Re $\nu_1 > 0$. При этом зависимости 1+, 3+, для которых $\operatorname{Re} \nu > 0$, соответствует волнам, вытекающим из волновода в обе открытые области y > 0 и y < -d, а 1-, 3- (Re $\nu < 0$) — волнам, вытекающим только в области y < -d. Для кривых $0\pm$, $2\pm$, $4\pm$ выполняется неравенство Re $\nu_1 < 0$. Данные кривые на рис. 1, *а* имеют точки касания с линией $\operatorname{Re} h/k_0 = 1.5$. Этим точкам соответствуют критические толщины, $d = d_k$ (k — символ кривой). При $d > d_k$ имеем Re $\nu < 0$, $\operatorname{Im} \nu_1 < 0 \ (k = 0-, 2-, 4-)$ или $\operatorname{Re} \nu > 0, \ \operatorname{Im} \nu_1 < 0$ (k = 0+, 2+, 4+). В этом случае кривые 0-, 2-, 4описывают обычные дисперсионные зависимости для волноводных мод, а кривые 0+, 2+, 4+ соответствуют волнам, вытекающим из волновода в область у > 0. При $d < d_k$ имеем Re $\nu > 0$, Im $\nu_1 > 0$ (k = 0-, 2-, 4-) или $\operatorname{Re}\nu < 0, \operatorname{Im}\nu_1 > 0 \ (k = 0+, 2+, 4+).$ В этом случае кривые 0-, 2-, 4- соответствуют волнам, приходящим к волноводу из области y < -d (они возрастают при $v \to -\infty$), а затем уходящим от волновода в область y > 0 и спадающим при $y \to \infty$, а кривые 0+, 2+, 4+соответствуют волнам, приходящим к волноводу из обоих открытых областей и возрастающим при $|y| \rightarrow \infty$. Особенностью всех этих волн является рост поля при $z \rightarrow \infty$ (Im h > 0, рис. 1, b). Из представленного обсуждения следует, что наборы зависимостей $(1\pm, 2\pm)$ и $(3\pm, 4\pm)$ соответствуют модам. имеюшим подобные свойства. Решение уравнения (14) показало, что увеличение *d* приводит к появлению новых наборов $(5\pm, 6\pm), (7\pm, 8\pm), \ldots,$ аналогичных данным. Указанные особенности поведения дисперсионных зависимостей и полей мод сохраняются также и для мод ТМ-поляризации. Подобны они и при рассмотрении неоднородных волноводов. Последнее иллюстрируется кривыми $\Gamma +$ и $\Gamma -$ на рис. 1, *a*, *b*, рассчитанными для ТЕ-мод волновода профиля $\varepsilon(y) = 2.25 - i3 \cdot 10^{-6} + (0.045225 - i2.73 \cdot 10^{-5}) \exp[-(y/d)^2],$ $y \leq 0, \ \varepsilon(y) = \varepsilon_g = 1, \ y > 0$. Эти кривые аналогичны рассмотренным выше кривыми 0+ и 0-. Отметим, однако, что полученные результаты характерны для волноводов, имеющих повышенную по сравнению с окружающими средами диэлектрическую проницаемость. Дисперсионные зависимости для волноведущих сред с пониженной проницаемостью (например, металлических пленок на диэлектрических подложках и низкопреломляющих пленок на высокопреломляющих подложках) имеют определенные отличия. Их мы коснемся ниже. Заметим также, что обсуждавшиеся неравенства $Im \nu_1 > 0$, $Im \nu > 0$ отвечают модам с экспоненциально возрастающими при удалении от волновода полями. Такие моды не входят в полные наборы мод [9], поэтому необходимо выяснить возможности их возбуждения и практического использования.

Рассмотрим возбуждение мод с помощью призменного устройства связи [11,12]. Схема этого устройства представлена на рис. 2. Призма р (для простоты рассмотрения неограниченная) отделена от волновода буферным слоем толщины g. Призма и буферный слой имеют

Рис. 2. Схема призменного устройства возбуждения и зависимость коэффициента отражения возбуждающей волны от *z*-составляющей ее волнового вектора при $\varepsilon_p = 3.811$.

вещественные диэлектрические проницаемости ε_p и ε_g , причем $\varepsilon_g < \varepsilon_p$. Структура возбуждается плоской волной, волновой вектор которой составляет угол α с основанием призмы. Рассматривая рекуррентные соотношения (9), (10) в буферном слое, получаем для коэффициента отражения возбуждающей волны выражение

$$R = \frac{(1-\delta)F_{\nu} - \exp(-2i\nu g)(1+\delta)F_{-\nu}}{(1+\delta)F_{\nu} - \exp(-2i\nu g)(1-\delta)F_{-\nu}},$$

$$\delta = (\nu/\nu_p)(\varepsilon_p/\varepsilon_g)^T, \quad \nu = \sqrt{k_0^2\varepsilon_g - k_z^2}, \quad \text{Im}\,\nu \leqslant 0,$$

$$\nu_p = \sqrt{k_0^2\varepsilon_p - k_z^2}, \quad \text{Re}\,\nu_p \geqslant 0, \ k_z = k_0\sqrt{\varepsilon_p}\cos\alpha.$$
(15)

Величины $F_{\nu}, F_{-\nu}$ могут быть рассчитаны из (8)–(13), где $\nu_j = \sqrt{k_0^2 \varepsilon_j - k_z^2}$ и в соответствии с условием излучения Re $\nu_1 \ge 0$.

Известно, что эффективное возбуждение волноводных мод, характеризующееся появлением резонансных провалов в зависимости $R_2(k_z)$ ($R_2 = |R|^2$), имеет место при условиях слабой связи призмы с волноводом [11,12]

$$k_z^2 > k_0^2 \varepsilon_g, \tag{16}$$

$$\exp(-i\nu g) \ll 1. \tag{17}$$

В соответствии с выражениями (8)–(13), (15)–(17) величина R_2 может заметно отличаться от 1, если только $F_{\nu} = 0[\exp(-2i\nu g)]$. Учитывая, что переменная k_z в (15) принадлежит вещественной оси риманова листа Re $\nu_1 > 0$, заключаем, что данное условие может быть выполнено, если существует область H, определяемая неравенством $|k_z - h| < \rho$ (h — постоянная распространения возбуждаемой моды, $\rho = 0[\exp(-2i\nu g)]$) и содержащая в себе отрезок вещественной оси листа

Re $\nu_1 > 0$, в которой функция $F_{\nu}(k_z)$ аналитична. Представленные соображения согласуются с тем очевидным фактом, что резонансное возбуждение допускают только моды, имеющие спадающие при удалении от волновода в буферный слой поля, постоянные распространения которых удовлетворяют уравнению $F_{\nu}(h) = 0$.

О свойствах аналитичности функции $F_{\nu}(k_z)$ в окрестности корней позволяют судить рис. 3, a, b. Сплошными кривыми них представлены на зависимости $\operatorname{Im} k_{z}(\operatorname{Re} k_{z})$ (эквивалентные $\operatorname{Im} h(\operatorname{Re} h)$) для корней уравнения $F_{\nu}(k_z) = 0.$ Штриховыми линиями обозначены разрезы для функции $\nu_1(k_z)$, определяемые условиями $\operatorname{Im} k_z = k_0^2 \operatorname{Im} \varepsilon_s / (2 \operatorname{Re} k_z),$ $k_0^2 \operatorname{Re} \varepsilon_s - (\operatorname{Re} k_z)^2 + (\operatorname{Im} k_z)^2 < 0$. Разрезы проходят ниже вещественных осей $\text{Im} k_z = 0$. Кривые 0 - - 4 - 4соответствуют одноименным кривым рис. 1, а, b. Из рис. 3, а следует, что оказаться в области Н могут только отрезки кривых 1-, 3-, расположенные левее точки

Рис. 3. Расположение корней уравнения $F_{\nu}(k_z) = 0$ на римановых листах $\operatorname{Re} \nu_1 > 0$ (*a*) и $\operatorname{Re} \nu_1 < 0$ (*b*). $X_{a,b} = A_{a,b} + B_{a,b}\operatorname{Re} k_z/k_0, Y_{a,b} = C_{a,b} + D_{a,b}\operatorname{Im} k_z/k_0; A_{a,b} = 0,$ $B_{a,b} = 1, C_{a,b} = 0, D_a = 10^3, D_b = 10^5$ для кривых 0 - 4 - ; $I - A_a = 1.494, B_a = 5.45 \cdot 10^{-3}, C_a = -0.44, D_a = 30; 2 - A_b = 1.493, B_b = 1.47 \cdot 10^{-3}, C_b = -0.72, D_b = 19.7; 3 - A_b = 1.497, B_b = 2.65 \cdot 10^{-3}, C_b = 9.77 \cdot 10^{-2}, D_b = 14.8;$ $4 - 6 - A_a = 4.35 \cdot 10^{-2}, B_a = 1, C_a = 0, D_a = 4 \cdot 10^4.$ Стрелками указаны направления убывания d.

ветвления функции $\nu_1(k_7)$. Аналогичная ситуация имеет место для отрезков кривых 0-, 2-, 4-, расположенных ниже разреза. В этом случае область Н принадлежит двулистной римановой поверхности, склеенной по берегам разреза. Обратившись теперь к рис. 1, а, b заключаем, что эффективное возбуждение волноводных мод, возможно только при толщинах волноводной пленки, превышающих критические $(d > d_k)$. Вместе с тем при $d < d_k$ могут наблюдаться резонансные провалы, соответствующие возбуждению вытекающих мод, относящихся к зависимостям 1-, 3- и их аналогам 5-, 7-, Эти выводы иллюстрируются на рис. 2 кривой 1, рассчитанной на основании выражений (9)–(12), (15) при $d/\lambda_0 = 3$, $g/\lambda_0 = 0.16$. Ее правый минимум соответствует волноводной (0-), а левый вытекающей (1-) моде.

Рассмотрим теперь вопрос о призменном возбуждении мод пленок, имеющих пониженную по сравнению с окружающими средами вещественную часть диэлектрической проницаемости. Кривыми 1-3 на рис. 3, а, b представлены решения уравнения $F_{\nu}(k_{\tau}) = 0$ для *ТМ*мод оптического диапазона, направляемых серебряной пленкой ($\varepsilon_2 = -18 - i0.47$), окруженной диэлектрическими средами ($\varepsilon_g = 1$, $\varepsilon_s = 2.25 - i3 \cdot 10^{-6}$). На кривой 1 имеем $\operatorname{Re} \nu_1 > 0$, $\operatorname{Im} \nu_1 > 0$, т.е. она относится к волнам. вытекающим в область v < -d. Начало кривой $(d \rightarrow \infty)$ соответствует плазмонной моде границы раздела y = 0, а конец $(d \rightarrow 0)$ поверхностной волне границы раздела двух диэлектриков. Кривая 2, вдоль которой $\operatorname{Re} \nu_1 < 0$, $\operatorname{Im} \nu_1 < 0$, начинается в точке, соответствующей плазмонной моде границы раздела y = -d и уходит в бесконечность $(\operatorname{Re}(k_z/k_0) \rightarrow \infty, \operatorname{Im}(k_z/k_0) \rightarrow -\infty)$ при $d \rightarrow 0.$ На кривой 3 имеем $\operatorname{Re} \nu_1 < 0$, $\operatorname{Im} \nu_1 > 0$. Она относится к волнам, приходящим к волноводу из области y < -d и имеющим возрастающие поля при $y \to -\infty$, $z \rightarrow \infty$. В соответствии с вышеизложенным резонансное возбуждение допускают моды, соответствующие кривым 1 и 2. Дополнительным ограничением для такого возбуждения служит условие (16), исключающее, в частности, возможность возбуждения поверхностной волны границы раздела двух диэлектриков. Зависимостями 4-6 на рис. 3, а представлены решения уравнения $F_{\nu}(k_z) = 0$ для трех низших *TE*-мод оптического диапазона, направляемых пленкой двуокиси кремния $(\varepsilon_2 = 2.121975 - i2.9134 \cdot 10^{-6})$, граничащей с воздухом $(\varepsilon_{g} = 1)$ и кремниевой подложкой $(\varepsilon_{s} = 15.21 - i0.39).$ Для всех этих зависимостей $\operatorname{Re} \nu_1 > 0$, $\operatorname{Im} \nu_1 > 0$, т.е. они относятся к модам, вытекающим в подложку. Кривые 4-6 начинаются в точке $k_z/k_0 = \sqrt{\varepsilon_2} (d \to 0)$, которая значительно удалена от разреза функции $\nu_1(k_z)$ (расположенного вне поля рисунка). Соответственно все рассмотренные моды допускают резонансное возбуждение. Сделанные выводы подтверждены нами расчетами зависимостей $R_2(k_z)$, для которых характерны резонансные провалы (подобные представленным на рис. 2), соответствующие возбуждению указанных мод.

Обратные задачи восстановления комплексных постоянных распространения мод и параметров волноведущих пленок

Измерение комплексных постоянных распространения мод *h* играет важную роль при исследовании свойств волноводов и приповерхностных слоев. Для определения *h* в настоящее время широко используется подход, основанный на экспериментальной регистрации резонансных провалов в зависимостях $R_2(k_z)$ [13–16]. В данном подходе, однако, учитывается довольно ограниченная информация об этих зависимостях: измеряются только координаты минимумов функций $R_2(k_z)$, которые отождествляются с вещественными частями постоянных распространения Reh. Величины Im h определяют в дополнительных измерениях, наблюдая затухание мод вдоль направления их распространения [14]. Такая процедура определения h достаточно трудоемка в экспериментальном плане и имеет принципиальный недостаток, который заключается в отсутствии учета возмущающего влияния призмы на исследуемую структуру.

Одним из важных приложений волноводных методов является восстановление параметров волноведущих пленок. В этом случае использование значений h для двух мод с известными номерами позволяет записать систему двух дисперсионных уравнений, содержащих обратные тригонометрические функции, численное решение которой дает величины ε_2 и d [13,14]. При этом, однако, в случае строгого решения системы возникают трудности, обусловленные наличием точек ветвления и разрезов для обратных тригонометрических функций. Данная проблема особенно существенна при использовании мод, находящихся при условиях, близких к критическим.

Ниже представлены более эффективные подходы к решению упомянутых обратных задач. Одновременное нахождение вещественной и мнимой частей постоянной распространения моды планарной волноведущей структуры (в общем случае неоднородной) осуществляется с учетом возмущающего влияния призмы путем интегрирования зависимости $R_2(k_z)$ в окрестности резонансных провалов. Величины ε_2 и *d* определяются системой уравнений (13), взятых при двух значениях *h*. Решение системы сводится к нахождению корней целых функций рассмотренным выше способом.

С использованием разложения Тейлора функции $F_{\nu}(k_z)$ в области *H* может быть получено следующее приближение для зависимости $R(k_z)$ в окрестности резонансов [7]:

$$R = \frac{1-\delta}{1+\delta} - \frac{4\delta}{1-\delta^2} \frac{\Delta h}{k_z - \bar{h}} + 0(|\Delta h|).$$
(18)

Здесь величина δ вычисляется при $k_z = \text{Re }h, \bar{h}$ — постоянная распространения моды системы волновод-призма, $\Delta h = \bar{h} - h$. Выражение (18) определено в случае возбуждения произвольной плоскослоистой вол-

новедущей структуры, при этом

$$\Delta h = -\frac{i\nu(1-\delta)\exp(-2i\nu g)}{(\varepsilon_g)^T (1+\delta)I\operatorname{Re} h},$$
(19)

$$I = \int_{-d}^{\infty} \frac{\psi^2(y)}{\left[\varepsilon(y)\right]^T} dy + \frac{\psi^2(-d)}{2i\nu_1(\varepsilon_s)^T},$$
 (20)

где функция $\psi(y)$ с нормировкой $\psi(0) = 1$ описывает распределение поля возбуждаемой моды $\nu_1 = \sqrt{k_0^2 \varepsilon_s - h^2}, \ \nu = -i \sqrt{(\text{Re } h)^2 - k_0^2 \varepsilon_g}.$ Для решения обратной задачи нахождения h удобно

Для решения обратной задачи нахождения *h* удобно ввести параметры [17]

$$p_1 = \frac{\mathrm{Im}\,\bar{h}}{k_0},\tag{21}$$

$$p_2 = -\frac{2\delta\nu\exp(-2i\nu g)}{(\varepsilon_g)^T(1-\delta)Ik_0\operatorname{Re} h},$$
(22)

$$p_4 = \frac{\operatorname{Re}\bar{h} - k_z}{k_0},\tag{23}$$

характеризующие затухание моды нагруженной призмой структуры, связь призмы с волноводом и отстройку *z*-составляющей волнового вектора возбуждающей волны от резонансного значения $\operatorname{Re} \overline{h}$. Параметр p_2 является, вообще говоря, комплексной величиной, т.е. $p_2 = |p_2| \exp(i\sigma)$. Однако в представляющем основной практический интерес случае слабо затухающих мод выполняются неравенства $|\operatorname{Re} I| \gg |\operatorname{Im} I|$, $\sigma \ll 1$. Это позволяет опустить в дальнейших выкладках малые $0(\sigma^2)$. Учитывая выражения (18)–(23), находим

$$R_{2} = |R|^{2} = 1 + \left[4|p_{2}|(p_{1}+|p_{2}|-p_{4}\sigma)\right] / (p_{1}^{2}+p_{4}^{2}).$$
(24)

Из (24) следует, что наличие затухания мод ($\sigma \neq 0$) приводит к асимметрии в зависимости $R_2(p_4)$, степень которой возрастает с ростом потерь (рис. 2). Определим координату минимума функции $R_2(p_4)$, которую мы обозначим через $p_4^{(0)}$. Продифференцировав выражение (24), получаем

$$p_4^{(0)} = -\frac{p_1^2 \sigma}{2(|p_2| + p_1)},\tag{25}$$

$$R_2^{(0)} = 1 + \frac{4|p_2|(p_1 + |p_2|)}{p_1^2},$$
(26)

где $R_2^{(0)} = R_2 \left(p_4^{(0)} \right)$. Из (26) следует, что

$$|p_2| = 0.5p_1 \left[\operatorname{sign}(g/g_0 - 1) \sqrt{R_2^{(0)}} - 1 \right].$$
 (27)

Здесь g_0 — толщина буферного слоя, при которой $R_2^{(0)} = 0$. Для нахождения параметров p_1 и σ выделим

Журнал технической физики, 1998, том 68, № 4

интервал $(p_4^{(0)} - \Delta k_z/k_0, p_4^{(0)} + \Delta k_z/k_0)$ изменения величины p_4 и составим интегралы

$$I_{1} = \int_{-\Delta k_{z}/k_{0}}^{0} R_{2} \left(p_{4}^{(0)} + x \right) dx, \quad I_{2} = \int_{0}^{\Delta k_{z}/k_{0}} R_{2} \left(p_{4}^{(0)} + x \right) dx,$$

где $R_2(p_4)$ — функция вида (24).

Вычислив величины $(I_1 + I_2)/2$ и $(I_1 - I_2)/2$, получаем

$$\begin{bmatrix} 1 - \frac{1}{2\Delta k_z} \int_{-\Delta k_z}^{\Delta k_z} R_2 \left(k_z^{(0)} + x \right) dx \end{bmatrix} \begin{bmatrix} 1 - R_2^{(0)} \end{bmatrix}^{-1}$$
$$= \frac{p_1 k_0}{\Delta k_z} \operatorname{arctg} \left(\frac{\Delta k_z}{p_1 k_0} \right), \tag{28}$$

$$\sigma = \left[\int_{-\Delta k_z}^{0} R_2 \left(k_z^{(0)} + x \right) dx - \int_{0}^{\Delta k_z} R_2 \left(k_z^{(0)} + x \right) dx \right] \\ \times \left\{ 4k_0 |p_2| \left[\left(1 + (k_0 p_1 / \Delta k_z)^2 \right)^{-1} - \ln \left(1 + \left(\Delta k_z / (k_0 p_1) \right)^2 \right) \right] \right\}^{-1},$$
(29)

где $R_2(k_z)$ — экспериментально регистрируемая функция на интервале $(k_z^{(0)} - \Delta k_z, k_z^{(0)} + \Delta k_z), k_z^{(0)}$ — координата минимума этой функции.

Таким образом, отождествив величину $R_2^{(0)}$ с минимальным значением функции $R_2(k_z)$, мы можем определить значение параметров p_1 , p_2 , $p_4^{(0)}$. При этом первоначально решается уравнение (29) относительно p_1 , имеющее единственный корень ввиду монотонности функции $f(x) = x \arctan(x^{-1})$ в области $x \leq 0$. Последующее нахождение величин p_2 и $p_4^{(0)}$ осуществляется по формулам (25), (27), (29) прямым расчетом. Согласно (21)–(23), искомая постоянная распространения моды

$$h = k_z^{(0)} + p_4^{(0)} + i \Big[p_1 - p_2 (1 - \delta)^2 (2\delta)^{-1} \Big].$$
(30)

Заметим, что величина δ в (30) зависит от Re *h*. Однако ввиду малости $|p_4^{(0)}|$, $|p_1|$, $|p_2|$ она может быть взята при Re $h = k_z^{(0)}$ и, если это необходимо, уточнена методом итераций. Заметим также, что использование операций интегрирования в выражениях (28), (29) обеспечивает устойчивость восстанавливаемой величины *h* по отношению к шумам функции $R_2(k_z)$.

Обратимся теперь к вопросу восстановления параметров волноводной пленки ε_2 и d. Предположим, что найдены значения h для двух мод, заданы значения ε_g и ε_s , величина ε_2 находится в области G комплексной плоскости, а d — в промежутке (d_1, d_2) . Зафиксируем некоторое d из данного промежутка и подставим первое из значений h в уравнение (13). Нетрудно

N₂	Поляри-	h/k_0	q/λ_0	h/k_0	N₂	$arepsilon_2$	d/λ_0
моды	зация	(точное)	8/ 10	(восстановленное)	моды	(восстановленные))
Волноводная пленка $\varepsilon_2 = 2.295225 - i3.03 \cdot 10^{-5}, \ d/\lambda_0 = 5$							
1 2 3	TE_W TE_W TM_W	$\begin{array}{c} 1.512636 - i9.819 \cdot 10^{-6} \\ 1.505806 - i8.999 \cdot 10^{-6} \\ 1.512560 - i9.805 \cdot 10^{-6} \end{array}$	0.28 - -	$\begin{array}{r} 1.512636 - i9.819 \cdot 10^{-6} \\ 1.505805 - i8.999 \cdot 10^{-6} \\ 1.512560 - i9.806 \cdot 10^{-6} \end{array}$	$ \begin{array}{r} 1-2 \\ 1-3 \\ 2-3 \\ 5 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 $	$2.295225 - i3.030 \cdot 10^{-5} 2.295222 - i3.030 \cdot 10^{-5} 2.295225 - i3.030 \cdot 10^{-5} 2.295225 - i3.030 \cdot 10^{-5} 2$	4.99998 5.00089 4.99999
Волноводная пленка $\varepsilon_2 = 2.295225 - i3.03 \cdot 10^{-5}, \ d/\lambda_0 = 3$							
1	TE_W	$1.509681 - i9.295 \cdot 10^{-6}$	0.16	$1.509674 - i9.296 \cdot 10^{-6}$	1-2	$2.295251 - i3.031 \cdot 10^{-5}$	2.9943
2 3	TE_L TM_W	$\frac{1.498070 - i3.363 \cdot 10^{-5}}{1.509436 - i9.223 \cdot 10^{-6}}$	_	$\frac{1.498177 - i3.585 \cdot 10^{-5}}{1.509432 - i9.222 \cdot 10^{-6}}$	1-3 2-3	$2.295090 - i3.029 \cdot 10^{-5}$ $2.295269 - i3.031 \cdot 10^{-5}$	3.0131 2.9937
Серебряная пленка $\varepsilon_2=-18-i0.47,\;\;d/\lambda_0=0.06$							
1 2	TM_L TM_W	$\begin{array}{r} 1.031124 - i4.595 \cdot 10^{-3} \\ 1.625144 - i4.617 \cdot 10^{-3} \end{array}$	1.6 0.16	$\begin{array}{l} 1.031198 - i4.668 \cdot 10^{-3} \\ 1.624916 - i4.595 \cdot 10^{-3} \end{array}$	1–2	-18.0039 - i0.4694	0.06014
Пленка двуокиси кремния $\varepsilon_2 = 2.121975 - i2.913 \cdot 10^{-5}, \ d/\lambda_0 = 3$							
1 2 3	$TE_L \ TE_L \ TE_L$	$\begin{array}{l} 1.448039 - i2.524 \cdot 10^{-4} \\ 1.421781 - i9.937 \cdot 10^{-4} \\ 1.377055 - i2.279 \cdot 10^{-3} \end{array}$	0.32 - -	$\begin{array}{l} 1.448039 - i2.526 \cdot 10^{-4} \\ 1.421779 - i9.960 \cdot 10^{-4} \\ 1.377052 - i2.290 \cdot 10^{-3} \end{array}$	1-2 1-3 2-3	$\begin{array}{l} 2.121977 - i2.966 \cdot 10^{-5} \\ 2.121977 - i2.967 \cdot 10^{-5} \\ 2.121981 - i3.517 \cdot 10^{-5} \end{array}$	2.99981 2.99983 2.99984

видеть, что функция $F_{\nu}(\varepsilon_2)$ является целой, поэтому ее корни в области *G* могут быть найдены по схеме раздела 1. Заметим, что таких корней, вообще говоря, может быть несколько (при рассмотрении в качестве *G* полной комплексной плоскости их количество в силу экспоненциальной асимптотики $F_{\nu}(\varepsilon_2)$ при $|\varepsilon_2| \to \infty$ не ограничено [9]). Обозначим полученные корни через $\varepsilon_{2j}^{(1)}$ (j = 1, 2, ...). Решив аналогичным образом уравнение (13), при втором значении *h* будем иметь другой набор корней $\varepsilon_{2k}^{(2)}$ (k = 1, 2, ...). Перебором разностей $\Delta_{jk} = \left| \varepsilon_{2j}^{(1)} - \varepsilon_{2k}^{(2)} \right|$ может быть найдена величина $\Delta = \min_{j,k} (\Delta_{jk})$. Построив теперь функцию $\Delta(d)$, $d \in (d_1, d_2)$ и определив ее минимум, мы придем к искомым значениям ε_2 и *d*.

В таблице представлены примеры реализации описанной расчетной схемы для рассмотренных выше волноведущих пленочных структур. Данные получены при использовании в качестве "экспериментальных" строго рассчитанных зависимостей $R_2(k_z)$ (приведенной на рис. 2 и аналогичных ей). Величины Δk_z выбирались из условия $R_2\left(k_z^{(0)}+\Delta k_z\right)=\left(1+R_2^{(0)}\right)/2$. В первой колонке таблицы приведены условные номера мод. Поляризация мод обозначена символами TE_p и TM_p , где *p* = *w* для направляемых и *p* = *L* для вытекающих мод. Заметим, что с ростом |Im h| возрастает величина $|\Delta h|$, что ведет к снижению точности приближения (18). Рост $|\Delta h|$ следует из выражений (19)–(22) при учете того факта, что получение контрастных резонансных провалов в зависимости $R_2(k_7)$ возможно, если $|p_2| \sim |\text{Im}\,h|/k_0$. Последнюю оценку нетрудно получить, сопоставив соотношения (19), (22), (26) и учитывая неравенство $\sigma \ll 1$. Вместе с тем все приведенные в таблице данные получены при значениях g, для которых $R_2^{(0)} < 0.75$. Сделанное замечание объясняет видимый рост погрешности решения обратных задач, сопровождающий рост потерь использованных мод. Отметим также возможность восстановления параметров одномодовых (при фиксированной поляризации) волноводных пленок по значениям h для волноводной и вытекающей мод (строки 4–6 таблицы). Точность такого восстановления оказывается более высокой, чем в случае использования величины h для направляемых мод ортогональных поляризаций, поскольку в этом случае система дисперсионных уравнений плохо обусловлена.

Список литературы

- Talisa S.H. // IEEE Trans. Microwave Theory and Tech. 1985. Vol. 33. N 10. P. 967–971.
- [2] Borland W.S., Zelman D.E., Radens C. et al. // IEEE J. Quant. Electron. 1987. Vol. 23. N 7. P. 1172–1179.
- [3] Hulse C, Knoeser A. // IEEE J. Quant. Electron. 1992. Vol. 28.
 N 12. P. 2682–2684.
- [4] Shaw J.K., Jordan A.K., Winfrey W.R. // J. Opt. Soc. Am. A. 1993. Vol. 10. N 6. P. 1157–1167.
- [5] Burton F.A., Cassidy S.A. // J. Lightwave Tech. 1990. Vol. 8. N 12. P. 1843–1849.
- [6] Schlereth K.H., Tack M. // IEEE J. Quant. Electron. 1990. Vol. 26. N 4. P. 627–630.
- [7] Романенко А.А., Сотский А.Б., Хомченко А.В. // Препринт ИФ АНБ. № 649. Минск, 1991. 31 с.
- [8] Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1973. 736 с.
- [9] Шевченко В.В. // Дифференциальные уравнения. 1979.
 Т. 15. № 11. С. 2004–2020.
- [10] Адамс М. Введение в теорию оптических волноводов. М.: Мир, 1984. 512 с.
- [11] Ulrich R. // J. Opt. Soc. Am. 1970. Vol. 60. N 10. P. 1337–1350.

- [12] Дерюгин Л.Н., Марчук А.Н., Сотин В.Е. // Изв. вузов СССР. Радиоэлектроника. 1970. Т. 13. № 8. С. 973–980.
- [13] Singh B.P., Prasad P.N. // J. Opt. Soc. Am. B. 1988. Vol. 5. N 2. P. 453–456.
- [14] Никинт А.К., Тищенко А.А., Черняй А.И. // Зарубежная радиоэлектроника. 1990. № 10. С. 14–30.
- [15] Yang F., Sambles J.R. // J. Opt. Soc. Am. B. 1993. Vol. 10. N 5. P. 858–866.
- [16] Yang F., Sambles J.R., Bradberry G.B. // J. Appl. Phys. 1995. Vol. 78. N 4. P. 2187–2192.
- [17] Сотский А.Б., Хомченко А.В., Сотская Л.И. // Опт. и спектр. 1995. Т. 78. Вып. 3. С. 502–511.