06;07;12

Особенности разрешенной во времени фотолюминесценции систем пористый кремний-алмазоподобная пленка углерода

© Ю.П. Пирятинский¹, В.А. Семенович², Н.И. Клюй³, А.Г. Рожин³

¹Институт физики НАН Украины, 252028 Киев, Украина ²Институт сверхтвердых материалов НАН Украины, 254074 Киев, Украина ³Институт физики полупроводников НАН Украины, 252028 Киев, Украина

(Поступило в Редакцию 29 ноября 1996 г.)

Изучена разрешенная во времени фотолюминесценция (ФЛ) систем пористый кремний–алмазоподобная пленка углерода. После нанесения пленки наблюдаются увеличение интенсивности ФЛ углеродной пленки, изменение интенсивности и коротковолновый сдвиг полосы ФЛ пористого кремния, зависящие от пористости его исходных слоев. Наблюдаемые изменения объясняются образованием на поверхности кремниевых нитей углеродных нанокластеров.

Введение

Перспектива создания на основе пористого кремния (ПК) излучающих элементов кремниевой оптоэлектроники [1,2] обусловливает значительный интерес исследователей к изучению свойств этого материала. Простота получения ПК и интенсивная фотолюминесценция (ФЛ) в видимой области спектра привели к появлению огромного количества работ в этом направлении [1-4]. Вместе с тем для объяснения ФЛ ПК в настоящее время выдвинуто ряд гипотез, связанных с предложениями о размерном квантовании носителей заряда, локализованных в тонких кремниевых нитях [1,2], о хемосорбции молекул на поверхности ПК и образовании силоксана, гидридов кремния и т.д. [5,6] и, наконец, об излучении границы раздела кремний-адсорбат [7]. С другой стороны, низкая деградационная стойкость ПК [5] существенно ограничивает возможность его практического применения. В этой связи представляются актуальными работы, направленные, с одной стороны, на поиск путей повышения деградационной стойкости ПК и, с другой стороны, дающие дополнительную информацию для понимания механизма видимой ФЛ ПК. Как отмечалось в работе [8], одним из путей получения такой информации может быть контролируемое удаление (или, наоборот, нанесение) адсорбата с поверхности (на поверхность) кремниевых нитей. Таким адсорбатом может быть газ, например молекулярный хлор [8], углерод в виде молекул фуллерена, внедренных в ПК [9], или другие вещества.

Учитывая результаты, полученные в работах [8,9], особый интерес представляет изучение влияния углерода на ФЛ ПК. Так в [8] было установлено, что повышенное содержание углерода в ПК может приводить при отжигах к его агломерации с образованием графитных нанокластеров, существенно модифицирующих спектр ФЛ ПК. С другой стороны, в работе [9] показано, что в обычных условиях слабая люминесценция молекул С₆₀ резко усиливается при внедрении их в ПК благодаря переносу носителей заряда из кремниевых нанокристаллитов в адсорбированные на их поверхности молекул С₆₀. В то же время влияние углерода в других формах, например в виде его алмазоподобной модификации на свойства ПК, остается неизученным. Также необходимо отметить, что в большинстве работ по изучению люминесцентных свойств ПК [1–9] применялась традиционная методика измерения стационарных спектров ФЛ. Очевидно, что, применяя методику измерения разрешенных во времени спектров ФЛ [10], особенно для изучения систем ПК–адсорбат, можно дискриминировать в ряде случаев вклады в результирующий спектр ФЛ различных излучающих объектов и, следовательно, получить дополнительную информацию о механизмах ФЛ таких систем.

Целью настоящей работы было изучение особенностей разрешенной во времени ФЛ систем ПК-алмазоподобная пленка (АПП) углерода.

Методика эксперимента

Образцы ПК были получены по стандартной методике электрохимического травления кремния. Использовались пластины *p*-Si с удельным сопротивлением $10 \,\Omega \cdot \text{сm}$ (КДБ-10), ориентации (100). На тыльную сторону пластин перед изготовлением ПК наносился алюминиевый омический контакт, а слои ПК формировались во фторопластовой ячейке с платиновым электродом. Травление осуществлялось в темноте в растворе 48%HF: C₂H₅OH при соотношении компонент 1:1. Образцы ПК изготавливались при плотностях тока 10–75 mA/cm² и временах травления 1.5–10 min.

АПП пленки углерода осаждались из плазмы ВЧ разряда (13.56 MHz) емкостного типа при низком давлении (0.8 Torr) и комнатной температуре подложки (300 K). Использовалась газовая смесь CH₄:H₂:N₂. В процессе осаждения подложка находилась под ВЧ потенциалом,

Рис. 1. Спектры фотолюминесценции АПП, ПК, ПК + АПП с наносекундным разрешением. На рис. 1, так же как и 2–4, по оси ординат масштаб линейный, *l* — длина волны.

равным 1900 V [11]. Толщины АПП пленок измерялись на лазерном эллипсометре ЛЭФ-3М на длине волны 632.8 nm и изменялись в пределах 50–100 nm.

Разрешенные во времени спектры ФЛ ПК, АПП и систем ПК + АПП измерялись по методике, описанной в [10]. Для возбуждения использовался азотный лазер ($\lambda = 337.1$ nm) с длительностью возбуждающего импульса 10 ns и мощностью в импульсе 3 kW. Использовалась стробическая система регистрации, позволяющая записывать спектры ФЛ и исследовать кинетику их изменения. Спектры ФЛ записывались с наносекундной и микросекундной временной задержкой (t_d) относительно максимума лазерного импульса при комнатной температуре.

Результаты и обсуждение

На рис. 1 представлены наносекундные спектры ФЛ АПП углерода, нанесенных на кварцевую подложку (кривая 2, d = 70 nm) и на нетравленную поверхность Si (кривая 1, d = 70 nm). Здесь же приведены наносекундные спектры ФЛ ПК (кривая 3, j = 75 mA/cm², t = 5 min) и системы ПК + АПП (d = 70 nm, кривая 4). Как видно из рис. 1 (кривая 2) в спектре ФЛ АПП, нанесенной на кварцевую подложку, можно выделить полосу с максимумом 600 nm, а также плечи при 500 и 440 nm с коротковолновой стороны от нее. Однако интенсивность J ФЛ тонкой АПП (d = 70 nm), нанесенной на нетравленную поверхность Si (рис. 1, кривая 1) существенно меньше, нежели для АПП, нанесенной на кварцевую подложку, а ее спектр бесструктурен. Данные различия для тонких АПП на поверхности кремния могут быть обусловлены наличием центров безызлучательной рекомбинации на границе раздела АПП-кремний. Также необходимо отметить, что ФЛ АПП пленок короткоживущая и проявляется только в спектрах, измеренных с наносекундным разрешением. Одной из причин этого может быть образование сильносвязанной электрон-дырочной пары малого радиуса, что связано с малой диэлектрической проницаемостью АПП [12,13]. При измерении спектров ФЛ ПК с наносекундным разрешением наблюдается слабое излучение короче 590 nm. При измерении $\Phi \Pi$ при $t_d = 0$, т.е. в максимуме лазерного импульса, максимум ФЛ находится около 440 nm (рис 1, кривая 3). Интенсивность этого максимума ФЛ зависит от условий получения ПК и, обычно наблюдается при длительном травлении. Кроме того, в спектрах наблюдается полоса при 600 nm. В интегральных спектрах ФЛ ПК обычно преобладает излучение в области $\lambda > 600$ nm [8,9].

Нанесение тонкой (d = 70 ns) АПП на поверхность ПК приводит к сдвигу полосы от 600 до 540 nm и резкому увеличению ее интенсивности (рис. 1, кривая 4). При этом полоса 440 nm, наблюдаемая в спектре ФЛ ПК, исчезает.

Наблюдаемые изменения, по нашему мнению, обусловлены проникновением углерода в поры ПК в процессе нанесения АПП и образованием на поверхности кремниевых нитей углеродных нанокластеров [8]. Значительное увеличение интенсивности полосы ФЛ, характерных для АПП (при 600 nm), обусловлено, вероятно, переносом носителей заряда из кремниевых нитей в углеродные кластеры, адсорбированные на их поверхности. При этом

Puc. 2. Спектры фотолюминесценции (1-6), ПК + АПП (I'-6') с микросекундным разрешением. (ПК получен при $J = 70 \text{ mA/cm}^2$, время травления 5 min. Чувствительность кривых I', 2', 3', 4', 5', 6' увеличена в 2 раза. Время задержки, μ s: I = 0, 2 = 5, 3 = 10, 4 = 15, 5 = 20, 6 = 30.

ПК играет роль генератора носителей заряда, а углеродные кластеры выступают как центры излучательной рекомбинации аналогично поверхностным состояниям в модели, предложенной Кохом с соавторами [7] и использованной авторами [9] для объяснения аномального увеличения интенсивности ФЛ молекул фуллерена, адсорбированных в слоях ПК. Наблюдаемый нами коротковолновый сдвиг полосы ФЛ от 600 до 540 nm обусловлен, вероятно, проявлением квантово-размерного эффекта, а его величина должна зависеть от размеров углеродных кластеров.

Несколько иной характер носят изменения спектров ФЛ ПК, измеренных с микросекундной временной задержкой, при нанесении на него АПП толщиной $d = 70 \,\mathrm{nm}$ (рис. 2). Подчеркнем, что, по причинам, описанным выше, в микросекундном диапазоне АПП углерода не люминесцируют, т.е. спектры, представленные на рис. 2, обусловлены люминесценцией собственно слоев ПК и ПК + АПП. Как видно из рис. 2 в микросекундных спектрах ФЛ ПК наблюдается интенсивная полоса при 680 nm. При увеличении времени задержки от 0 до 30 µs максимум указанной полосы смещается в длинноволновую область спектра до 720 nm (рис. 2, кривые 1-6), что может быть связано с разбросом размеров кремниевых нитей [1]. На этом же рисунке представлены спектры ФЛ ПК после нанесения АПП (рис. 2, кривые l'-6'), измеренные с такой же временной задержкой 0-30 µs. Видно, что после нанесения АПП спектр долгоживущей $\Phi \Pi$ смещается в коротковолновую область спектра примерно на 50 nm.

Наблюдаемые изменения спектров долгоживущей ФЛ ПК при нанесении АПП также, вероятно, связаны с образованием на поверхности кремниевых нитей нанокластеров углерода. Данный вывод подтверждают изменения ФЛ, выполненные для слоев ПК, полученных при различных плотностях тока и, следовательно, имеющих различную пористость [4]. Поскольку при уменьшении пористости меньшее количество атомов углерода будет проникать в поры в процессе нанесения АПП, то логично предположить, что в этом случае количество и, возможно, размер углеродных кластеров, адсорбирующихся на поверхности кремниевых нитей, будут также уменьшаться. Действительно, как следует из рис. 3 и 4, на которых представлены спектры ФЛ ПК (с микросекундным разрешением), полученного при J = 35 и 50 mA/cm² соответственно, заметного сдвига полосы 660 nm при нанесении АПП не наблюдается в отличие от образца ПК, имеющего большую пористость (рис. 2, $J = 75 \,\mathrm{mA/cm^2}$). При этом интенсивности соответственных полос несколько ниже, чем исходных ПК. Следует отметить, что наблюдаемые изменения в спектрах ФЛ ПК + АПП также могут быть связаны с образованием в процессе адсорбции углерода на границах раздела углеродный кластер-кремний химических связей и, следовательно, появлением новых центров излучательной рекомбинации. Последнее особенно сильно

Puc. 3. То же, что на рис. 2, но ПК получен при $J = 35 \text{ mA/cm}^2$, время травления 10 min. $1-3 - \Pi K$, $1'-3' - \Pi K + A\Pi \Pi$. Чувствительность кривых 1'-3' увеличена в 5 раз. Время задержки, μ s: 1 - 0, 2 - 5, 3 - 15.

Рис. 4. То же, что на рис. 2, но ПК получен при $J = 50 \text{ mA/cm}^2$, время травления 5 min. Время задержки то же, что и на рис. 3.

может влиять на интенсивность ФЛ ПК + АПП в зависимости от пористости исходного ПК, что и наблюдается на эксперименте (рис. 3 и 4). С другой стороны, описанные изменения спектров ФЛ при нанесении АПП не могут быть объяснены поглощением света в АПП и проявлением особенностей в спектре поглощения АПП. Представленная на рис. 5 спектральная зависимость коэффициента поглощения АПП свидетельствует о ее

Рис. 5. Спектральная зависимость коэффициента поглощения АПП (K) (d = 70 nm) (ε — энергия фотонов).

высокой прозрачности в исследуемой области спектра (вплоть до 300 nm) и об отсутствии каких-либо особенностей в спектре. Отметим также, что оптическая ширина запрещенной зоны использованной АПП составляла около 4 eV.

Принимая во внимание низкие температуры осаждения и высокие скорости роста АПП [11], использованных в наших экспериментах, наблюдаемые изменения люминесцентных свойств ПК не могут быть объяснены ни удалением адсорбата с поверхности кремниевых нитей [8], ни его модификацией в плазме ВЧ разряда, ни тем более изменением структуры кремниевых нанокристаллов. Описанные выше эффекты обусловлены, по нашему мнению, образованием в процессе осаждения АПП углеродных кластеров на поверхности кремниевых нитей. Наличие кластеров, а также то, что они могут выступать в качестве эффективных центров излучательной рекомбинации, и приводит, с одной стороны, к спектральным изменениям ФЛ, особенно в длинноволновой области спектра, а с другой стороны, к росту интенсивности коротковолновой (наносекундной) ФЛ.

Список литературы

- [1] Canham L.T. // Appl. Phys. Lett. 1990. Vol. 57. P. 1046.
- [2] Cullis A.G., Canham L.T. // Nature. 1991. Vol. 353. P. 335.
- [3] Halimaoni A., Oules C., Bomchil G. et al. // Appl. Phys. Lett. 1991. Vol. 59. P. 304.
- [4] Свечников С.В., Саченко А.В., Сукач Г.А. и др. // Оптоэлектроника и полупроводниковая техника. 1994. Т. 27. С. 3.
- [5] Stutzman M., Brandt M.S., Rosenbauer M. et al. // Phys. Rev. 1993. Vol. B. 47. P. 4806.
- [6] Brandt M.S. et al. // Sol. St. Commun. 1991. Vol. 8. P. 307.
- [7] Koch F., Petrova-Koch V., Muschik T. et al. // Mat. Res. Soc. Proc. 1993. Vol. 238. P. 137.
- [8] Ельцов К.Н., Караванский В.А., Мартынов В.В. // Письма в ЖЭТФ. 1995. Т. 63. С. 106.
- [9] Feng Yan, Xi-mao Bao, Xiao-wei Wu. // Appl. Phys. Lett. 1995. Vol. 67. P. 3471.

- [10] Piryatinskii Yu.P., Kurik M.V. // Mol. Mat. 1992. Vol. 43. P. 1.
- [11] Semenovich V.A., Klyui N.I. // J. of CVD. 1995. Vol. 4. P. 29.
- [12] Watanabe Ichiro, Inoue Makoto. // Jap. J. of Appl. Phys. 1983. Vol. 22. P. L176.
- [13] Бабаев А.А., Абдулвагабов М.Ш., Теруков Е.И. и др. // Неорган. материалы. 1991. Vol. 27. Р. 2205.

Журнал технической физики, 1998, том 68, № 4