02;04;07;10;12 Плотность ионного тока в разлетающейся лазерной плазме

© С.В. Латышев, Ю.Н. Чеблуков

Институт теоретической и экспериментальной физики, 117259 Москва, Россия

(Поступило в Редакцию 11 ноября 1996 г.)

Теоретически исследованы зависимости плотности ионного тока в разлетающейся лазерной плазме от параметров лазерного излучения, материала мишени и расстояния от мишени. Проведены расчеты, необходимые для проектирования лазерных источников ионов для ускорительной техники. Дано объяснение двугорбой формы коллекторных сигналов, наблюдаемой в ряде экспериментов с лазерной плазмой. Рассмотрены дополнительные возможности получения информации об условиях эксперимента из коллекторных сигналов.

Данная работа посвящена расчету плотности ионного тока $j = Zn_1u$ в лазерной плазме, разлетающейся по нормали к поверхности мишени, и исследованию зависимости этой величины от параметров лазерного излучения, материала мишени и расстояния от мишени (Z — средний заряд ионов, n_1 — концентрация ионов, u — скорость разлета ионов вдоль нормали).

В настоящее время имеются лишь отдельные расчеты, моделирующие коллекторные сигналы в экспериментах с лазерной плазмой [1,2] без выяснения вопроса о зависимостях ионных токов от параметров эксперимента. Выяснение этого вопроса важно как для проектирования лазерного источника ионов для ускорительной техники, так и для интерпретации результатов коллекторной диагностики разлетающейся лазерной плазмы.

Квазидвумерная модель лазерной плазмы

Все расчеты в данной работе выполнены с помощью квазидвумерной двухтемпературной гидродинамической модели лазерной плазмы, предложенной в работе [3]. Эта модель успешно использовалась ранее для расчета зарядового состава ионов в разлетающейся лазерной плазме [4], температуры лазерной плазмы [5] и ряда рекомбинационных эффектов [6,7]. Согласно этой модели, лазерная плазма моделируется "крупными частицами" равной массы в виде тонких дисков. Под действием сил газокинетического давления диски могут перемещаться вдоль нормали к мишени и менять свой радиус. Поперечное расширение дисков рассматривается в автомодельном приближении, т. е. радиальные скорости расширения внутренних точек диска связаны с радиальной скоростью границы диска законом $v_r(\xi) = u_r \xi / r$, где ξ — радиус внутренней точки диска, *г* и *u_r* — радиус и радиальная скорость границы диска. Таким образом, квазидвумерная модель представляет собой нечто среднее между чисто одномерной плоской моделью плазмы и двумерной цилиндрически-симметричной моделью.

Модель включает в себя следующие физические процессы: поглощение лазерного излучения за счет обратного тормозного механизма и отражение от слоя плазмы с критической плотностью [8]; электронную теплопроводность с учетом классического ограничения теплового потока [9]; теплообмен между электронами и ионами при упругих столкновениях [10]; ионизационные процессы в приближении среднего заряда с учетом ионизации электронным ударом, тройной, диэлектронной и фоторекомбинаций [11]; энергобаланс при неупругих процессах. В энергобалансе при неупругих процессах энергия, возвращаемая электронам плазмы при тройной рекомбинации ионов через высоковозбужденные состояния, учитывается по формуле, предложенной в [12],

$$E_t = 7 \cdot 10^{-22} (n_e/Z)^{2/3} / \Theta_e$$
 [spr],

где Θ_e — температура электронов в eV.

Это является существенным отличием данной модели от моделей других авторов.

Зависимость плотности ионного тока от параметров лазерного излучения, материала мишени и расстояния до мишени

Простейшую функциональную зависимость плотности ионного тока $j = eZn_1u$ от параметров эксперимента можно получить, полагая $n_1 \sim W_{\text{las}}/(ZT_eL^3)$ и $u \sim (ZT_e/m_i)^{1/2}$, где W_{las}/ZT_e — оценка количества ионов, производимых лазерным импульсом; L — расстояние от мишени; скорость разлета ионов оценивается по скорости звука u_s на стадии нагрева. Откуда получаем

$$j \sim e W_{\text{las}} L^{-3} m_i^{-1/2} (Z/T_e)^{1/2}.$$
 (1)

Из формулы (1) видно, что плотность ионного тока пропорциональна энергии лазерного импульса $W_{\rm las}$, обратно пропорциональна $m_i^{1/2}$ и наиболее сильно ($\sim L^{-3}$) зависит от расстояния до мишени. Все остальные зависимости менее существенны.

Рассмотрим основные зависимости плотности ионного тока от параметров греющего излучения на примере разлетающейся плазмы золота, нагреваемой импульсом CO₂ — лазера прямоугольной формы. Все расчеты плотностей ионных токов, приведенные в данном разделе,

Рис. 1. Зависимость ионного импульса от мощности лазерного излучения. Au, d = 1 mm, $\tau = 100$ ns, $\lambda = 10.6 \,\mu$ m, L = 1 m; *P*, W/cm²: $I - 10^9$, $2 - 3 \cdot 10^8$, $3 - 10^8$.

соответствуют, если это особо не оговорено, расстоянию от мишени 1 m. Кроме того, в дальнейшем для краткости зависимость плотности ионного тока от времени будем называть ионным импульсом.

На рис. 1 приведены ионные импульсы при различных мощностях лазерного излучения (P) в диапазоне $10^8 - 10^9$ W. Длительность лазерного импульса и диаметр пятна фокусировки были $\tau = 100$ ns и d = 1 mm. Приведенные на рис. 1 расчеты свидетельствуют о росте амплитуды ионного импульса в соответствии с оценкой (1) и об уменьшении времени задержки начала ионного импульса с ростом мощности лазерного излучения (время задержки отсчитывается от начала лазерного импульса). Такие зависимости объясняются увеличением энергии лазерного импульса, а следовательно, количества ионов, производимых лазерным излучением, и ростом температуры плазмы, а следовательно, и скорости разлета ионов.

На рис. 2 приведены ионные импульсы при различных диаметрах пятна фокусировки лазерного излучения и прочих равных параметрах. Результаты, приведенные на рис. 2, свидетельствуют об уменьшении амплитуды ионного импульса и времени задержки ионного импульса с уменьшением диаметра пятна фокусировки. Объяснение данных зависимостей также достаточно простое. С уменьшением диаметра пятна фокусировки растет температура плазмы, а следовательно, и скорость разлета ионов, что приводит к уменьшению времени задержки ионного импульса. С другой стороны, при более острых фокусировках и неизменной энергии лазерного излучения уменьшается количество плазмы, производимой на стадии нагрева и, что еще более важно, увеличивается боковой разлет плазмы. Последнее приводит к значительному уменьшению количества ионов, разлетающихся по нормали к мишени в дальней зоне, что является определяющим эффектом в уменьшении амплитуды ионного импульса по сравнению с его ростом за счет увеличения скорости разлета.

Зависимость ионного импульса от атомного веса мишени приведена на рис. 3. С ростом атомного веса мишени происходят уменьшение амплитуды ионного импульса в соответствтии с оценкой (1) и увеличение времени задержки ионного импульса. Эти зависимости объясняются уменьшением скорости разлета и количества ионов с увеличением атомного веса мишени.

Зависимость ионного импульса от длины волны лазерного излучения представлена на рис. 4. Она является наиболее слабой из всех рассмотренных. Относительно

Рис. 2. Зависимость ионного импульса от диаметра пятна фокусировки лазерного излучения. Au, $P = 10^8$ W/cm², $\tau = 100$ ns, $\lambda = 10.6 \,\mu$ m, L = 1 m; d, mm: I - 1.0, 2 - 0.6, 3 - 0.2.

Рис. 3. Зависимость ионного импульса от материала мишени. $P = 10^8$ W/cm², d = 1 mm, $\tau = 100$ ns, $\lambda = 10.6 \mu$ m, L = 1 m; I - C, 2 - Fe, 3 - Au.

Рис. 4. Зависимость ионного импульса от длины волны лазерного излучения. Au, $P = 10^8$ W/cm², $\tau = 100$ ns, L = 1 m; λ , μ m: I = 1.06, 2 = 3.0, 3 = 10.6.

Рис. 5. Зависимость ионного импульса от длительности лазерного излучения. $P = 10^8$ W/cm², d = 1 mm, $\lambda = 10.6 \,\mu$ m, L = 1 m; τ , ns: I = 1000, 2 = 600, 3 = 300, 4 = 100.

небольшое увеличение амплитуды и времени задержки ионного импульса с уменьшением длины волны объясняется некоторым уменьшением температуры плазмы и бокового расширения при уменьшении длины волны лазерного излучения. При более острых фокусировках в этом же направлении будет действовать уменьшение количества испаренного вещества за счет снижения поглощения длинноволнового лазерного излучения по сравнению с коротковолновым.

Наиболее нетривиальной оказалась зависимость ионного импульса от длительности лазерного излучения. Приведенные на рис. 5 результаты расчета ионных импульсов при длительностях лазерного импульса 100-1000 ns показывают, что в общем случае ионный импульс состоит из двух пиков: быстрого и медленного. При малых длительностях лазерного излучения ионный импульс состоит из одного быстрого пика. С увеличением длительности лазерного излучения появляется второй пик в области малых скоростей. При достаточно больших длительностях медленный пик начинает сильно превалировать над быстрым. Быстрый пик обусловлен ионами, происхождение которых связано с начальным нестационарным режимом нагрева лазерной плазмы, а медленный пик с ионами, которые появились уже в установившемся стационарном режиме нагрева. Для появления медленного пика необходимо, чтобы длительность лазерного импульса была много больше характерного гидродинамического времени, т.е. $\tau_{\text{las}} > 3 - 5d/u_s$.

Одногорбые и двугорбые коллекторные сигналы регистрировались в различных экспериментах с лазерной плазмой, где использовалась коллекторная диагностика [13,14]. Кроме того, в ряде экспериментов наблюдались многопичковые коллекторные сигналы, что, повидимому, связано со сложной формой лазерного импульса, а также с электростатическим механизмом ускорения ионов при высоких плотностях потока лазерного излучения [15].

Рис. 6. Зависимость ионного импульса от расстояния до мишени. Au, $P = 10^8$ W/cm², d = 1 mm, $\tau = 1000$ ns; *L*, m: I - 1, 2 - 2, 3 - 3.

Наиболее сильно зависит ионный импульс от расстояния до мишени. Соответствующие расчеты, представленные на рис. 6, показывают, что с увеличением расстояния до мишени происходит резкое уменьшение амплитуд как быстрого, так и медленного пиков в ионном импульсе примерно по закону $j \sim L^{-3}$, а также происходит линейное увеличение времени задержки ионного импульса.

Интерпретация коллекторной диагностики лазерной плазмы

Очевидный и весьма важный вывод из результатов, рассмотренных в предыдущем разделе, заключается в том, что плотность ионного тока весьма чувствительна к большинству параметров эксперимента, таких как расстояние от мишени, мощность и длительность лазерного излучения, вещество мишени и т.д. Это приводит к тому, что, добиваясь максимально точного совпадения расчетных данных с экспериментом, можно получать дополнительную информацию об условиях эксперимента. Но, с другой стороны, любой эксперимент, условия которого известны неточно, можно достаточно легко "согласовать" с расчетными результатами, корректируя расчетные параметры в ту или иную сторону. Продемонстрируем данную ситуацию на примере двух экспериментов [13,14].

В работе [13] использовался неодимовый лазер с максимальной энергией в импульсе $W \sim 30 \, \text{J}$ длительностью лазерного импульса на полувысоте $\tau \sim 25 \, \text{ns}$ и пятном фокусировки $d \sim 300 \, \mu \text{m}$. Наиболее обширная информация имеется по коллекторным сигналам ионов углерода на расстоянии 2 m от мишени, полученным в эксперимен-

Рис. 7. Сравнение экспериментального и теоретического импульсов плотности тока ионов углерода. $P = 5 \cdot 10^7 \text{ W/cm}^2$, $\tau = 35 \text{ ns}$, d = 0.3 mm, $\lambda = 1.06 \,\mu\text{m}$, L = 2 m. Сплошная кривая — теория, штриховая — эксперимент.

Рис. 8. Сравнение экспериментального и теоретического импульсов плотности тока ионов циркония. $P = 4 \cdot 10^7 \text{ W/cm}^2$, $\tau = 2000 \text{ ns}, d = 0.4 \text{ mm}, \lambda = 10.6 \mu\text{m}, L = 2 \text{ m}.$ Сплошная кривая — теория, штриховая — эксперимент.

тах, в которых энергия лазерного излучения ослаблялась с помощью калиброванного поглотителя в 5 раз. Кроме того, по оценкам авторов, происходило дополнительное ослабление энергии лазерного импульса в 2 раза в оптической системе за счет геометрической расходимости лазерного излучения. Еще примерно в 2 раза излучение ослаблялось за счет отражения лазерного излучения от весьма многочисленных элементов оптической системы. Таким образом, энергия излучения, поглощаемая мишенью составляла, по-видимому, 1-2 J. Цикл расчетов показал, что наилучшим образом с экспериментом согласуется расчет, в котором энергия лазерного импульса составляла 1.1 J, диаметр пятна фокусировки 300 µm, а лазерный импульс моделировался полусинусоидой с длительностью по основанию 35 ns. Данный расчет коллекторного сигнала и соответствующий экспериментальный сигнал приведены на рис. 7.

В работе [14] использовался CO_2 лазер, импульс которого состоял из пика длительностью 200–300 ns с энергией около 10 J и хвоста длительностью 2 μ s с энергией до 20 J. На расстоянии 2 m от мишени коллекторный сигнал для ионов циркония имел двугорбую структуру. Соответствующий цикл расчетов показал, что наилучшим образом теоретический коллекторный сигнал аппроксимирует экспериментальный при следующих параметрах расчета: пик лазерного импульса аппроксимировался полусинусоидой с длительностью по основанию 250 ns и энергией 6.4 J, хвост аппроксимировался спадающей прямой от полувысоты пика до нуля с длительностью 1.75 μ s и энергией 18 J, диаметр пятна фокусировки составлял 400 μ m. Соответствующие экспериментальный и расчетный коллекторные сигналы приведены на рис. 8. Расчеты показали, что быстрый пик коллекторного сигнала обусловлен ионами, которые образовались под действием пика лазерного излучения, а медленный пик коллекторного сигнала обусловлен ионами от хвоста лазерного импульса.

Расчеты обоих экспериментов показали, что, не выходя за разумные пределы расчетных параметров, можно хорошо согласовать экспериментальные и расчетные коллекторные сигналы. Набор оптимальных параметров в обоих случаях оказывался достаточно жестко определенным. Так, изменение любого из таких параметров лазерного излучения, как энергия, длительность, диаметр пятна фокусировки в 2 раза приводило к тому, что ни при каких вариациях других параметров удовлетворительного согласия теории и эксперимента не наблюдалось.

1. Выводы

Квазидвумерная гидродинамическая модель лазерной плазмы, несмотря на весьма грубое моделирование бокового растекания плазмы, оказалась пригодной для расчета плотности ионного тока в разлетающейся лазерной плазме.

Теоретически исследованы зависимости плотности ионного тока в разлетающейся лазерной плазме от параметров лазерного излучения, материала мишени и расстояния от мишени. Проведены расчеты, необходимые для проектирования лазерных источников ионов для ускорительной техники. Дано объяснение двугорбой формы коллекторных сигналов, наблюдаемой в ряде экспериментов с лазерной плазмой.

Показана возможность извлечения дополнительной информации об условиях эксперимента из коллекторных сигналов с помощью серии аппроксимационных расчетов.

Список литературы

- [1] Ерема Ю.Н., Латышев С.В., Петров В.В. и др. Препринт ИТЭФ. 1987. № 199. 16 с.
- [2] Макаров К.Н., Сатов Ю.А., Стрельцов А.П. и др. // ЖЭТФ. 1994. Т. 106. Вып. 12. С. 1649–1662.
- [3] Латышев С.В. Препринт ИТЭФ. 1983. 1983. № 66. 20 с.
- [4] Голубев А.А., Латышев С.В., Шарков Б.Ю. // Квантовая электрон. 1984. Т. 11. № 9. С. 1854–1856.
- [5] Латышев С.В., Рудской И.В. Препринт ИТЭФ. 1986. № 2. 16 с.
- [6] Бобашев С.В., Латышев С.В., Рудской И.В. и др. // Физика плазмы. 1987. Т. 13. № 11. С. 1383–1388.
- [7] Ерема Ю.Н., Латышев С.В., Шумшуров А.В. Препринт ИТЭФ. 1988. № 28. 4 с.
- [8] Афанасьев Ю.В., Крохин О.Н. // Тр. ФИАН. 1970. Т. 52.
 С. 118–162.
- [9] Спитцер Л. Физика полностью ионизованного газа. М.: Мир, 1965. 212 с.

- [10] Голант В.Е., Жилинский А.П., Сахаров И.Е. Основы физики плазмы. М.: Атомиздат. 1977. 384 с.
- [11] Вайнштейн С.А., Собельман И.И., Юков Е.А. Возбуждение атомов и уширение спектральных линий. М.: Наука, 1979. 319 с.
- [12] Латышев С.В., Рудской И.В. // Физика плазмы 1985. Т. 11. № 10. С. 1175–1180.
- [13] Ананьин О.Б., Балдин А.М., Быковский Ю.А. и др. // Письма в ЖЭТФ. 1973. Т. 19. С. 19–21.
- [14] Голубев А.А., Ерема Ю.Н., Шарков Б.Ю., Шумшуров А.В. Препринт ИТЭФ. 1988. № 134. 20 с.
- [15] Ehler A.W. // J. Appl. Phys. 1975. Vol. 46. N 6. P. 2464-2467.