01;06;07;12 Поверхностные плазмон-фононные поляритоны гексагональной окиси цинка

© А.В. Мельничук, Л.Ю. Мельничук, Ю.А. Пасечник

Украинский государственный педагогический университет, 252030 Киев, Украина

(Поступило в Редакцию 21 мая 1996 г.)

Исследована анизотропия поверхностных плазмон-фононных поляритонов первого и второго типов гексагональной окиси цинка при разных концентрациях электронов и ориентациях оси *C* кристалла относительно его поверхности. Показано, что при концентрации электронов больше $2 \cdot 10^{18}$ сm⁻³ в ZnO при $K \perp C$ и $xy \perp C$ генерируются поверхностные плазмон-фононные поляритоны третьего типа. Рассчитан спектр ППФП 3-го типа и определены условия существования поверхностных плазмон-фононных поляритонов третьего типа в монокристаллах ZnO.

Взаимодействие электромагнитных волн с колебаниями решеток пленки и подложки изменяет пространственную структуру полей, области существования и дисперсионные зависимости различных поверхностных возбуждений твердотельной системы [1,2]. Впервые поверхностные плазмон-фононные поляритоны сильно легированных анизотропных полупроводников исследованы в работе [3]. Поверхностные плазмон-поляритоны в одноосном полупроводнике имеют дисперсионные зависимости, число которых зависит от концентрации носителей зарядов и от ориентации оптической оси кристалла С относительного его поверхности ху. Экспериментальные дисперсионные зависимости поверхностных плазмон-фононных поляритонов в сильно легированном гексагональном карбиде кремния (SiC 6H) получены в работе [4]. Однако их различия определяются преимущественно анизотропией эффективной массы электронов в SiC 6H. В данной работе решалась задача исследования анизотропии поверхностных плазмон-фононных поляритонов гексагонального монокристалла окиси цинка при разных ориентациях оси С кристалла относительно его поверхности. При расчетах использованы взаимно согласованные параметры модели ZnO, полученные в работе [5].

Окись цинка кристаллизуется в структуре вюртцита с пространственной группой $C_{6V}^4(P6_3mc)$ [6]. Экспериментальные спектры модифицированного нарушенного полного внутреннего отражения поляритонов ZnO получены при помощи спектрометра ИКС-29М и приставки НПВО-2. В качестве элемента нарушенного полного внутреннего отражения выбран полуцилиндр из *KRS*-5 с показателем преломления n = 2.38. Размер монокристаллов ZnO ($10 \times 8 \times 8$ mm) позволил получить спектры в поляризованном излучении при различных ориентациях оси *C* относительно поверхности *xy*.

На рис. 1 (точки) показаны три экспериментальные дисперсионные зависимости $\nu_s(K)$ образца ZO2-3, соответствующие высокочастотным ветвям ν^+ поляритонов [3]. Кривая *I* получена при ориентации $K \parallel C$, $xy \parallel C$. Безразмерный волновой вектор $q = Kc/\omega_{\text{т}\parallel}$, где K —

волновой вектор ППФП, c — скорость света, $\omega_{T\parallel}$ — циклическая частота поперечного оптического фонона при $E \parallel C, E$ — электрический вектор инфракрасного излучения. Кривая 2 соответствует $\nu_s(K)$ при $K \perp C$ и $xy \perp C$, а кривая 3 — ориентации $K \perp C$, $xy \parallel C$.

На рис. 2 представлены экспериментальные спектры образца ZO2-3 при ориентации $K \parallel C$ и $xy \parallel C$ монокристалла ZnO. Спектры записаны при воздушном зазоре между элементом отражения и образцом толщиной d = 26 (кривые 1, 2) и 3 мкм (кривые 3-5) при углах падения ИК излучения α в элементе нарушенного полного внутреннего отражения, указанных в подписях к рисунку. Минимумы спектров соответствуют частотам $\nu_{\min} = 408, 450, 496, 518$ и 527 cm^{-1} , при этом ширина спектров $\Gamma_s = 32, 27, 22, 17$ и 15 cm^{-1} . Кривая 8 рассчитана при использовании данных образца ZC1M (концентрация электронов $n_0 = 4.2 \cdot 10^{18} \text{ cm}^{-3}$) для поляритонов 3-го типа.

Зависимости $\nu_s(K)$ (рис. 1, сплошные кривые) получены при помощи выражения

$$K_x^2 = [\varepsilon_{\parallel}(\nu) - \varepsilon_{\perp}(\nu)\varepsilon_{\parallel}(\nu)]/[1 - \varepsilon_{\perp}(\nu)\varepsilon_{\parallel}(\nu)], \quad (1)$$

где $K_x = Kc/\omega$, ω — циклическая частота, ν — частота излучения, $\varepsilon_{\perp}(\nu)$ и $\varepsilon_{\parallel}(\nu)$ — диэлектрические функции ZnO перпендикулярно и параллельно оси *C*.

Уравнение (1) записано для ориентации $K \perp C$ и $xy \perp C$ (кривая 2). Если $\varepsilon_{\perp}(\nu)$ и $\varepsilon_{\parallel}(\nu)$ поменять местами, то при помощи (1) можно получить $\nu_s(K)$ (кривая 1). Зависимости 1, 2 на рис. 1 соответствуют необыкновенным поверхностным поляритонам. Обыкновенные проявляются при ориентации $K \perp C$ и $xy \parallel C$, выражение (1) преобразуется при замене $\varepsilon_{\perp}(\nu)$ на $\varepsilon_{\parallel}(\nu)$ (кривая 3).

Согласие расчета с экспериментальными данными достигнуто при использовании в расчете оптических параметров ZnO, полученных на основе дисперсионного анализа спектров отражения ZO2-3 при концентрации электронов $n_0 = 9.3 \cdot 10^{16}$ сm⁻³ и учете анизотропии их эффективной массы в ZnO [5]. Частоты плазмон-фононных колебаний (кривые 2, 3) соответственно 548 и 560 сm⁻¹

Puc. 1. Дисперсионные зависимости $\nu_s(K)$ ППФП ZnO (образец ZO2-3, $n_0 = 9.3 \cdot 10^{16}$ cm⁻³. $1 - K \parallel C$, $xy \parallel C$; $2 - K \perp C$, $xy \perp C$; $3 - K \perp C$, $xy \parallel C$; $a - K \parallel C$, $xy \parallel C$.

при частотах плазменного резонанса $\nu_{p\perp} = 90 \,\mathrm{cm}^{-1}$ и $\nu_{p\parallel} = 100 \,\mathrm{cm}^{-1}$ ($E \perp C, E \parallel C$).

Уравнение (1) позволяет получить аналогично изотропному случаю две дисперсионные ветви. Высокочастотная ветвь ν^+ начинается в точке $\nu = \nu_{r\perp}$ и при $K \gg \omega/c$ частота ν_s асимптотически приближается к значению, соответствующему решению дисперсионного уравнения в отсутствии учета запаздывания $\varepsilon_{\perp} = -1$,

$$\nu_{\pm} = (1/2)^{1/2} \{ \varepsilon_{\tau\perp}^2 + \xi_{p\perp} \pm [(\xi_{\tau\perp}^2 + \xi_{p\perp}^2)^2 - 4\xi_{p\perp}^2 \xi_{\tau\perp}^2]^{1/2} \}^{1/2},$$

$$\xi_{\tau\perp}^2 = [(1 + \varepsilon_{0\perp})/(1 + \varepsilon_{00\perp})] \nu_{\tau\perp}^2,$$

$$\xi_{p\perp}^2 = \varepsilon_{00\perp} \nu_{p\perp}^2/(1 + \varepsilon_{00\perp}).$$
 (2)

Низкочастотная ветвь ν^- существует при всех значениях *К*. Исследуемые поляритоны проявляются при двух условиях:

1)
$$\varepsilon_{\perp} < 0$$
, $\varepsilon_{\parallel} < 0$; 2) $\varepsilon_{\perp} < 0$, $\varepsilon_{\parallel} > K_x^2$. (3)

В отличие от изотропного случая при $K \parallel C$, $xy \parallel C$ в ZnO появляются новые ветви, число и области существования которых зависят от концентрации электронов в зоне проводимости и от относительного расположения частот $\nu_{\mathrm{T},\perp,\parallel}$; $\nu_{L\perp,\parallel}$; $\nu_{p\perp,\parallel}$; $\nu_{\perp,\parallel}^{+,-}$; $\Omega_{\perp,\parallel}^{+,-}$. Последние 8 величин определяются соотношениями [3]

$$egin{aligned} arepsilon_{ot}(
u_{ot}^{+,-}) &= 0, \quad arepsilon_{\|}(
u_{\|}^{+,-}) &= 0, \ \ arepsilon_{ot}(\Omega_{ot}^{+,-}) &= 1, \quad arepsilon_{\|}(\Omega_{\|}^{+,-}) &= 1, \end{aligned}$$

Журнал технической физики, 1998, том 68, № 1

$$\nu_{\perp,\parallel}^{+,-} = (1/2)^{1/2} \{ (\nu_{L\perp,\parallel})^2 + (\nu_{p\perp,\parallel})^2 \pm [((\nu_{L\perp,\parallel})^2 + (\nu_{p\perp,\parallel})^2)^2 - 4(\nu_{p\perp,\parallel})(\nu_{\perp,\parallel})^2]^{1/2} \}^{1/2}.$$
(4)

При этом максимальное число ветвей может быть 4. При $K \gg \omega/c$ их частоты асимптотически приближаются к граничным частотам, соответствующим решениям уравнения $\varepsilon_{\perp}\varepsilon_{\parallel} = 1$. Поверхностным поляритонам отвечают лишь те участки кривых, которые лежат в областях плоскости (ν , K), где выполняются условия (3). $\varepsilon_{\perp}\varepsilon_{\parallel} = 1$ — уравнение четвертого порядка относительно ν^2 , но лишь одно, два или три решения лежат в областях,

Рис. 2. Спектры НПВО ZnO (ZO2-3, K || C, xy || C). 1, 2 $d = 26, 3-5 - 3 \mu \text{m}; 1-5 - \alpha = 25.3, 28, 34, 42, 52^{\circ}$ соответственно; $\Gamma_s = 32, 27, 22, 17, 15 \text{ cm}^{-1}, 6, 7$ — расчет: d = 72 и 49 μ m, $\gamma_{ph} = 11 \text{ cm}^{-1}; \alpha_6 = 25.2^{\circ}; \alpha_7 = 25.7^{\circ};$ $\nu_6 = 401 \text{ cm}^{-1}, \nu_7 = 423 \text{ cm}^{-1}, \Gamma_{s6.7} = 12 \text{ cm}^{-1}; 8$ — расчет для образца ZC1M: $\gamma_{ph} = 6 \text{ cm}^{-1}, \gamma_{p\perp} = \gamma_{p\parallel} = 1 \text{ cm}^{-1},$ $\alpha = 28^{\circ}, d = 26 \,\mu$ m.

Рис. 3. $\nu_s(K)$ ППФП ZnO при $K \perp C$ и $xy \parallel C$.

где $\varepsilon_{\perp} < 0$, т.е. они ограничены конечными значениями *K*.

В изотропном случае для обыкновенного поляритона существует одна низкочастотная ветвь ν^- , которая начинается при $\nu = 0$ и возрастает до ν^- при $K \to \infty$. Поверхностные поляритоны имеют две ветви дисперсионных зависимостей $\nu_s^{+,-}(K)$. На рис. 3 показаны $\nu_s(K)$ ZnO при ориентации $K \parallel C$ и $xy \parallel C$. При данной ориентации проявляются обыкновенные поляритоны. Расчеты дисперсионных зависимостей проведены применительно к образцам ZO2-3 (кривые 1, 2) и ZO1-3 (кривые 3, 4). Кривые 1, 2 получены при $\nu_{p\perp} = 90 \, {\rm cm}^{-1}$, а 3, 4 при $\nu_{p\perp} = 240 \,\mathrm{cm}^{-1}$. Соответственно $\nu_{pf}^+ = 561 \,\mathrm{cm}^{-1}$, $\nu_{pf}^{-} = 59 \,\mathrm{cm}^{-1}$ и $\nu_{pf}^{+} = 578 \,\mathrm{cm}^{-1}$, $\nu_{pf}^{-} = 152 \,\mathrm{cm}^{-1}$ при $Kc/\omega_{\mathrm{T}\parallel} \rightarrow \infty$. Индекс (pf) применяется для граничных значений, соответствующих значениям $\nu^{+,-}$, которые получены согласно (2). Расчеты показывают, что частоты поляритонов тем выше, чем больше концентрация свободных носителей зарядов (электронов для ZnO). Кривые 1-4 соответствуют поляритонам 1-го типа, которые существуют при любых $K_r^2 > 1$ [7].

Для ZnO $\nu_{T\parallel} < \nu_{L\perp} < \nu_{L\parallel} < \nu_{L\perp}$ дисперсионные кривые $\nu_s(K)$ начинаются с частот на световой линии $\omega = Kc$.

$$u = 0; \quad \nu = \nu_{\mathrm{T}\perp}(\varepsilon_{\perp} = 00) \quad \mathrm{M}$$

$$\nu = \Omega_{\parallel}^{+}, \quad \nu = \Omega_{\parallel}^{-}(\varepsilon_{\parallel} = 1). \tag{5}$$

Для монокристаллов окиси цинка невыполнение условия $\Omega^+_{\parallel} < \nu < \nu^+_{\perp}$ приводит к наличию только

трех дисперсионных ветвей $\nu_s(K)$. На рис. 4 показаны $\nu_s(K)$ образца ZC1M, у которого $\nu_{p\perp} = 605 \,\mathrm{cm}^{-1}$ и $\nu_{p\parallel} = 650 \,\mathrm{cm}^{-1}$. Расчет показывает наличие трех дисперсионных зависимостей (кривые 1–3). $\nu_{pf}^+ = 719 \,\mathrm{cm}^{-1}$ (кривая 1), $\nu_{pf}^- = 305 \,\mathrm{cm}^{-1}$ (кривая 2). Кривая 3 начинается на частоте $\Omega_{\parallel}^- = 309.9 \,\mathrm{cm}^{-1}$ при $Kc/\omega_{\mathrm{T}\parallel} = 0.815$ и заканчивается на частоте $\nu_{\perp}^- = 318.4 \,\mathrm{cm}^{-1}$ при $Kc/\omega_{\mathrm{T}\parallel} = 1.632$. Кривая 3 в увеличенном масштабе представлена на рис. 5, a.

На рис. 5 показаны дисперсионные зависимости поверхностных поляритонов ZnO при $\nu_{p\perp} = 1300 \,\mathrm{cm}^{-1}$ и $u_{p\parallel} = 1430 \,\mathrm{cm^{-1}}$. В этом случае $\nu_{pf}^+ = 1273.7 \,\mathrm{cm^{-1}}$, а $\overline{
u_{pf}^{-}}$ = 363.6 cm $^{-1}$ при $Kc/\omega_{\mathrm{T}\parallel}$ ightarrow 00. При этом $\nu_s(K)$ (кривая 3) начинается на частоте 363.8 сm⁻¹ и при $Kc/\omega_{ ext{thm}}
ightarrow 00$ стремится к значению $u_3 = 390 \, ext{cm}^{-1}$. Расчет $\nu_s(K)$ для ZnO с $\nu_{p\perp} = 1500 \text{ cm}^{-1}$ и $\nu_{p\parallel} = 1650 \text{ cm}^{-1}$ позволяет оценить $\nu_{pf}^+ = 1450 \text{ cm}^{-1}$ и $\nu_{pf}^- = 367.7 \text{ cm}^{-1}$. Граничная частота третьей дисперсионной зависимости $\nu_3 = 395.5 \,\mathrm{cm}^{-1}$. Третья ветвь $\nu_s(K)$ ZnO отличается от $\nu_s(K)$, исследованных ранее в анизотропных кристаллах. При использовании данных образца Zc1M (рис. 4) рассчитан спектр 3-го типа (рис. 2, кривая 8). Спектр получен при $\gamma_{ph\perp} = \gamma_{ph\parallel} = 6 \text{ cm}^{-1}$ и $\gamma_{p\perp} = \gamma_{p\parallel} = 1 \text{ cm}^{-1}$ при угле $\alpha = 28^{\circ}$ и ширине зазора $d = 26 \,\mu$ m. Минимум спектра 3-го типа на частоте $\nu_3 = 312.5 \,\mathrm{cm}^{-1}$ при $Kc/\omega_{\rm T} = 0.92.$

Анизотропия поляритонов проявляется при $Kc/\omega_{\text{т}\parallel} > 1.2$. Так, при $Kc/\omega_{\text{т}\parallel} = 2\delta\nu_s = 18 \text{ cm}^{-1}$ (кривые *I*, *3*). При $K \to 00$ кривые *I*, *2* стремятся к 548 сm⁻¹. На рис. 1, *a* в увеличенном масштабе

Рис. 4. $\nu_s(K)$ ППФП ZnO, $K \perp C$, $xy \perp C$.

Журнал технической физики, 1998, том 68, № 1

Puc. 5. $\nu_s(K) \prod \Pi \Phi \Pi ZnO K \perp C, xy \perp C. 1 - \nu_{pf}^+ = 1273.7 \text{ cm}^{-1}, 2 - \nu_{pf}^- = 363.5 \text{ cm}^{-1}, 3 - \nu_3 = 390 \text{ cm}^{-1};$ $\Omega_{\parallel} = 363.8 \text{ cm}^{-1}; \nu_{\parallel}^- = 363.6 \text{ cm}^{-1}; a - \nu_s(K) \Pi \Pi \Phi \Pi ZnO$ при $K \perp C, xy \perp C; \nu_{p\perp} = 605 \text{ cm}^{-1}, \nu_{p\parallel} = 650 \text{ cm}^{-1}$ (образец ZC1M), $\nu_{\perp}^- = 318.4 \text{ cm}^{-1}; Kc/\omega_{r\parallel} = 1.632$ ($\varepsilon_1 = 0$), $\Omega_{\parallel}^- = 309.9 \text{ cm}^{-1}; Kc/\omega_{r\parallel} = 0.815$ ($\varepsilon_{\parallel} = 1$), $\nu_{\parallel}^- = 306.5 \text{ cm}^{-1}; Kc/\omega_{r\parallel} = 0.017$ ($\varepsilon_{\parallel} = 0$).

показана часть $\nu_s(K)$ в области частот 380–420 сm⁻¹. В этом диапазоне до 412 cm⁻¹ проявляются ППФП 2-го типа, существование которых ограничено условиями $\varepsilon_x(\nu) < 0$ и $\varepsilon_z(\nu) > K_x^2$ [7]. Точками показаны экспериментальные данные для частот ППФП 2-го типа, которые согласуются с ν_{a} расчетом; $\nu_s(K)$ поляритонов 1-го типа ($\varepsilon_x(\nu) < 0$ и $\varepsilon_z(\nu) < 0$) начинаются с частоты 412 сm⁻¹, экспериментальная зависимость $\nu_s(K)$ (кривая 1) непрерывна. Мы смоделировали на ЭВМ спектры поляритонов 1-го и 2-го типов в точках, близких к частоте $412 \,\mathrm{cm}^{-1}$ ("точка остановки") [8]. Расчет спектров проведен для ориентации К || C, xy || C на частотах $\nu_{sp2} = 411 \,\mathrm{cm}^{-1}$ и $\nu_{sp1} = 413 \,\mathrm{cm}^{-1}$ при величине зазора d = 72 и $49\,\mu{\rm m}$ при коэффициенте затухания поперечных оптических фононов $\gamma_{ph} = 11 \,\mathrm{cm}^{-1}$ [5]. Значения $K_{sp2} = Kc/\omega_{\mathrm{T}\parallel} = 1.10415$ и $K_{sp1} = Kc/\omega_{ ext{tl}} = 1.11054$. Оба спектра имеют одинаковую интенсивность в минимуме одинаковую его ширину $\Gamma_p = 12 \,\mathrm{cm}^{-1}$. Спектры практически перекрываются, что свидетельствует о том, что при частоте излучения 412 cm⁻¹ при наличии затухания генерируются одновременно поверхностные поляритоны 1-го и 2-го типов.

Экспериментальный спектр с минимумом на частоте 408 сm⁻¹ имеет $\Gamma_p = 32 \text{ cm}^{-1}$, что соответствует коэффициенту затухания ППФП $\Gamma_{sp} = 4 \text{ cm}^{-1}$. Граничные частоты определяются при помощи выражения (2). Кривая 2 на рис. 1 соответствует $\nu_s(K)$ ориентации $K \perp C$, $xy \perp C$. Она начинается на частоте 412 сm⁻¹ и при $Kc/\omega_{\text{т}\parallel} \rightarrow \infty$ стремится к частоте $\nu_{pf}^+ = 548 \text{ cm}^{-1}$. Поляритоны 2-го типа могут проявляться лишь при $\varepsilon_{\perp} < 0$ и $\varepsilon_{\parallel} > K_x^2$ (3). В случае ZnO диапазон существования поляритонов 2-го типа ограничен частотами 380–412 сm⁻¹ (рис. 1, *a*). Они проявляются при ориентации образца $K \parallel C$ и $xy \parallel C$.

Дисперсионные кривые $\nu_s(K)$ начинаются на частотах $u = 0, \ \nu = \nu_{\text{T}\perp} \ (\varepsilon_{\perp} = 00) \ \text{i} \ \nu = \Omega_{\parallel}^+, \ \nu = \Omega_{\parallel}^ (\varepsilon_{\parallel} = 1)$, совпадающих с прямой $\omega = Kc$. Особый интерес представляют дисперсионные зависимости $\nu_{s}(K)$ поляритонов 3-го типа, проявляющиеся лишь в анизотропных кристаллах при концентрациях носителей зарядов выше определенной граничной. Область существования $\nu_s(K)$ поляритонов 3-го типа ограничена прямой $\varepsilon_{\parallel}~=~1,~$ а также прямыми $\omega~=~Kc$ и $arepsilon_{\perp} = 0.$ Если $u_{\perp}^- >
u_{\mathrm{T}\parallel}$, то $u_s(K)$ существует при всех $K > \Omega_{\parallel}^{-}/c$. Так как $\Omega_{\parallel}^{-} \ge 301.1 \,\mathrm{cm}^{-1}$, то поляритоны 3-го типа начинают проявляться при $\nu_{p\perp} \ge 550 \,\mathrm{cm}^{-1}$. Условия существования поляритонов 3-го типа ZnO 550 cm $^{-1} \leq \nu_{p\perp} < 1077.3$ cm $^{-1}$. На рис. 4 показана $\nu_s(K)$ поляритонов 3-го типа (образец ZC1M) при $\nu_{p\perp} = 605 \,\mathrm{cm}^{-1}$. В этом случае $\nu_{\parallel}^- = 306.5 \,\mathrm{cm}^{-1}$, $Kc/\omega_{\rm T||} = 1.632 \ (\varepsilon_{\perp} = 0).$

Поляритоны 3-го типа образца *ZC1M* существуют в диапазоне частот 306.5–318.4 сm⁻¹. Дисперсионные зависимости $\nu_s(K)$ на рис. 5 получены для ZnO при $K \perp C$, $xy \perp C$ и $\nu_0 > \nu_1$ ($\nu_{\perp} > \nu_{r\parallel}$), когда граничная частота $\nu_3 = 390$ сm⁻¹. При $\nu_{\perp} > \nu_{r\parallel}$ поляритоны существуют при $Kc/\omega_{r\parallel} \rightarrow \infty$, при этом условия их существования на частотах от Ω_{\parallel}^- до $\nu_{r\parallel}$ аналогичный поляритонам 2-го типа, а в диапазоне от $\nu_{r\parallel}$ до ν_{\perp}^- проявляются поляритоны 1-го типа. Низкочастотные $\nu_s^-(K)$ поляритонов начинаются на частотах $\nu > 0$, когда $K_x^2 > 1$. При увеличении концентрации носителей зарядов $\nu_s(K)$ изменятся от 0.54 до 9.5 сm⁻¹.

Таким образом, в работе проведены исследования поверхностных плазмон-фононных поляритонов первого и второго типов в легированных анизотропных монокристаллах окиси цинка при разных ориентациях волнового вектора относительно поверхности и оптической оси кристалла. Показано, что при повышении концентрации электронов больше $2 \cdot 10^{18}$ сm⁻³ в ZnO при $K \perp C$ и $xy \perp C$ формируется новая дисперсионная зависимость поляритонов 3-го типа. Определены условия существования поляритонов нового типа. Рассчитаны их дисперсионные зависимости и спектр.

Список литературы

- [1] Венгер Е.Ф., Пасечник Ю.А., Снитко О.В. и др. // Письма в ЖТФ. 1979. Т. 5. Вып. 18. С. 1128–1131.
- [2] Буршта И.Й., Пасечник Ю.А., Снитко О.В. // ЖТФ. 1987.
 Т. 57. Вып. 3. С. 423–429.
- [3] Гуревич Л.Э., Тарханян Р.Г. // ФТТ. 1975. Т. 17. Вып. 7. С. 1944–1949.
- [4] Пасечник Ю.А., Венгер Е.Ф. // Поверхность. Физика, химия, механика. 1982. Вып. 8. С. 63–71.
- [5] Мельничук А.В., Мельничук Л.Ю., Пасечник Ю.А. // ФТТ. 1994. Т. 36. Вып. 9. С. 2624–2633.
- [6] Кузьмина И.П., Никитенко В.А. Окись цинка. Получение и оптические свойства. М.: Наука, 1984. 166 с.
- [7] Брыксин В.В., Мирлин Д.Н., Решина И.И. Поверхностные колебания в анизотропных кристаллах // ФТТ. 1973. Т. 15. Вып. 4. С. 1118–1123.
- [8] Falge H.J., Otto A. // Phys. St. Sol. (b). 1973. Vol. 56. N 2. P. 523–534.