06;12

Дефектообразование в фосфиде галлия, выращенном в присутствии кислорода

© А.В. Сказочкин¹, Г.Г. Бондаренко², Ю.К. Крутоголов¹, В.И. Майор¹, Ю.И. Кунакин¹, А.А. Матяш¹

¹Научно-исследовательский институт материалов электронной техники, 248650 Калуга, Россия ²Московский государственный институт электроники и математики, Москва, Россия

(Поступило в Редакцию 20 февраля 1996 г.)

Методом релаксационной спектроскопии глубоких уровней изучено влияние введения кислорода в газовую фазу на образование дефектов в эпитаксимальных слоях GaP. Обсуждены экстремальные зависимости концентрации носителей заряда и ловушки для электронов с энергией $E_c - 0.24$ эВ от потока кислорода.

Введение

Наряду с кремнием и углеродом кислород является одной из основных неконтролируемых примесей в фосфиде галлия [1]. Его присутствие в эпитаксиальных слоях не всегда желательно. Например, нахождение кислорода в светодиодах зеленого цвета свечения из GaP изменяет чистоту цвета излучения из-за наличия в спектре "красного" пика, связанного с рекомбинацией на Zn-O комплексах. Источниками загрязнений при газофазной эпитаксии обычно служат кварц, окисные поверхностные пленки на исходных компонентах соединения, кислород, растворенный в металлах, и т. д. Содержание кислорода в GaP может достигать 2 · 10¹⁸ см⁻³, хотя максимальная концентрация электрически активного кислорода не превышает $2-3 \cdot 10^{17} \,\mathrm{cm}^{-3}$ [1]. Предполагается, что его основная масса присутствует в виде электрически неактивных предвыделений окислов галлия Ga₂O₃ [2].

Находясь в подрешетке фосфора, кислород образует глубокий донорный уровень с энергией ионизации $E_c - 0.89$ эВ [3]. Кислород может создавать и комплексы с участием собственных дефектов решетки и других примесей, например Si [1], Cd, Mg, C [4], а также влиять на концентрацию самих точечных дефектов в растущих слоях. Образование глубоких центров безызлучательной рекомбинации в таком случае не исследовано. Предложенные в работах [5–7] модели глубоких центров в GaP позволяют использовать метод релаксационной спектроскопии глубоких уровней (РСГУ) для анализа происходящих в таком случае процессов дефектообразования в структурах фосфида галлия.

Образцы и методика измерений

Эпитаксиальные слои GaP были выращены в системе PH₃-HCl-Ga-H₂-HCl на подложках из монокристаллического GaP:Те с концентрацией электронов $n = 1 \cdot 10^{17}$ см⁻³ и ориентации (100). Буферный слой GaP:Те толщиной 10 мкм наращивался на подложке, при этом использовался дополнительный источник GaP:Те. Легирование кислородом осуществлялось из

газовой фазы. Общая толщина слоев равнялась 25 мкм. Измерения методами РСГУ и C-V были выполнены на диодах с p-n-переходом диаметром 400 мкм, p-слой создавался диффузией Zn на глубину 5 мкм. Концентрация дырок на поверхности p-слоя была $6-9 \cdot 10^{18}$ см⁻³. Меза-диоды формировали методом стандартной фотолитографии с травлением структур на глубину залегания p-n-перехода. Омический контакт создавался к p-слою гальваническим осаждением Au–Zn с последующим вжиганием при $T = 500^{\circ}$ С в атмосфере водорода. После шлифовки обратной стороны на ней создавался омический контакт искровым распылением олова.

Изменение концентрации кислорода в слоях определялось на спектрах фотолюминесценции по изменению интенсивности пика "красной" полосы (~ 1.77 эВ), связанной с наличием Zn–O пар. Возбуждение осуществлялось HeCd лазером мощностью 10 мВт и длиной волны 441.6 нм.

Измерение спектров РСГУ проводили на спектрометре, описанном в [8], чувствительностью $\Delta C/C_0 = 10^{-6}$. Регистрация, накопление и обработка данных РСГУ осуществлялись благодаря компьютеру и программам, подробно описанным в [6,9]. Спектры измеряли, используя криостат при измерении в диапазоне 80–400 К с погрешностью ± 0.2 К в определении температуры, и нагревательное устройство при измерении в диапазоне 300–573 К с погрешностью ± 1 К.

Экспериментальные результаты и обсуждение

На рис. 1 показана зависимость концентрации свободных носителей $n = N_d - N_a$, измеренной C-V-методом, от величины потока кислорода. В эпитаксиальных слоях GaP основной фоновой примесью является кремний [7,10], появляющийся в результате реакции водорода с кварцевой оснасткой [1]. Амфотерный Si в газофазном GaP, занимая преимущественно место галлия, является донором с энергией ионизации $E_c - 0.082$ эB, обусловливая *n*-тип проводимости преднамеренно нелегированных

Рис. 1. Зависимость концентрации свободных носителей от потока кислорода.

слоев [7]. Атомы Si могут также находиться в подрешетке фосфора, являясь акцептором с E_v + 0.202 эВ. Вопрос о степени самокомпенсации кремения в GaP не исследован, но предполагая, что он ведет себя так же, как в GaAs, можно ожидать Si_P/Si_{Ga} = 0.1–0.3 [11].

Наблюдаемое на рис. 1 снижение концентрации свободных электронов при начальном увеличении потока кислорода связано с уменьшением концентрации фонового Si в растущих эпитаксиальных слоях [1]. Дальнейшее увеличение потока кислорода приводит к некоторому увеличению $N_d - N_a$ (образец 263-7), что, вероятно, связано с увеличением концентрации собственно дефектов решетки и донорных состояний, связанных с кислородом и дающих свободные электроны.

Спектры глубоких уровней основных и неосновных носителей, измеренные на образце 263-4, показаны на рис. 2 и 3. Глубина залегания уровней в запрещенной зоне и сечения захвата основных и неосновных носителей были получены из зависимости $\ln(tT^2)$ для этих центров от обратной температуры 1/T, где t — величина, обратная скорости эмиссии носителей с глубокого уровня. Каждая кривая Аррениуса содержала не менее 20 точек. Данные по концентрации, энергии активации термической эмиссии E_a и соответствующие сечения захвата глубоких центров σ^{∞} представлены в таблице вместе с данными других работ. Для сохранения принятых в работах [6,7] индексов уровней нумерация электронных ловушек начата с центра $E_c - 0.24$ эВ.

Ловушка для электронов *T*6 появляется при легировании GaP теллуром [12,13]. Теллур присутствует в наших структурах как фоновая примесь, оставшаяся в реакторе после наращивания буферного слоя. Небольшое увеличение концентрации *T*6 по мере легирования слоев GaP кислородом, вероятно, связано с улучшением вхождения теллура в подрешетку фосфора из-за увеличения концентрации собственных дефектов, в частности V_P.

В работах [6,14] экспериментально установлено, что центр T1 связан с вакансиями фосфора V_P. В работе [15] показано, что ловушка Т1 может содержать и атом фонового Si, т.е. центр T1 представляет собой комплекс Si_{Ga}-V_P. Исходя из такой модели дефекта T1 попытаемся объяснить изменения концентрации этого центра по мере увеличивания потока кислорода при росте слоев GaP. В образце 263-3 концентрация фонового SiGa много больше рассчитанной концентрации $V_{\rm P}~([V_{\rm P}]~\sim~10^{16}\,{\rm cm}^{-3})$ (см., например, работы [7,15]). В этом случае изменение концентрации комплекса Т1 будет зависеть от изменения меньшей по концентрации компоненты комплекса, т.е. V_P. При подаче кислорода концентрация SiGa падает, но растет концентрация структурных дефектов, в том числе V_P, что приводит к увеличению концентрации Т1 в образце 263-4. При

Рис. 2. РСГУ спектр электронных ловушек образца 263-4, снятый на диоде с p-n-переходом. Напряжение обратного смещения $U_0 = -5$ В, длительность импульса заполнения 0.5 мс, времена выборок $t_1 = 1$ мс, $t_2 = 5$ мс.

Рис. 3. РСГУ спектр дырочных ловушек образца 263-4, снятый на диоде с p-n-переходом. Напряжение обратного смещения $U_0 = -5$ В, напряжение $U_1 = +3$ В и длительность импульса заполнения 0.5 мс, $t_1 = 1$ мс, $t_2 = 5$ мс.

№ образца	263-3	263-4	263-6	263-7				
Поток О2, отн. ед.	0	0.11	0.5	1.0	E_a , эВ	σ^{∞} , см 2	E_a , эВ	Ссылка
Дефект	Концентрация (×10 ¹³ см ⁻³)							
<i>T</i> 6	6.2	7.7	8.4	9.0	0.16 ± 0.02	$1\!-\!8\cdot 10^{-16}$	0.16	[12]
T1	5.9	45.2	8.9	7.2	0.24 ± 0.01	$1 - 4 \cdot 10^{-15}$	0.24	[14]
<i>T</i> 2	*	2.6	3.3	3.4	0.28 ± 0.02	$2 - 10 \cdot 10^{-16}$	0.28	[20]
Т3	*	0.3	1.8	2.1	0.63 ± 0.02	$8 - 30 \cdot 10^{-16}$	0.65	[16]
T4	*	0.3	1.9	2.9	0.79 ± 0.02	$3 - 15 \cdot 10^{-15}$	0.79	[5]
Τ5	*	2.1	90.4	200	0.98 ± 0.02	$2 - 10 \cdot 10^{-17}$	0.97	[5]
H1	24.1	21.0	42.8	47.4	0.15 ± 0.01	$4 - 20 \cdot 10^{-17}$	0.16	[19]
H2	*	1.7	1.9	1.9	0.40 ± 0.02	$1\!-\!5\cdot 10^{-16}$	0.40	[19]
H3	*	3.6	4.2	5.2	0.64 ± 0.02	$3 - 15 \cdot 10^{-15}$	0.64	[20]
H4	4.4	14.2	35.0	80.1	0.75 ± 0.01	$8 - 30 \cdot 10^{-15}$	0.75	[21]
Н5	*	8.7	9.3	13.6	0.93 ± 0.01	$5{-}20\cdot10^{-16}$	0.95	[22]
H6	12.3	*	*	*	1.21 ± 0.02	$1\!-\!10\cdot 10^{-17}$	1.22	[7]

Параметры и концентрация глубоких центров в слоях GaP, выращенных при различном потоке кислорода

 Π р и м е ч а н и е. Обозначение электронных ловушек начинается с T, а дырочных — с H, отсчет E_a производится от краев соответствующих зон. Звездочка обозначает, что концентрация ниже уровня обнаружения.

дальнейшем увеличении потока кислорода концентрация Si_{Ga} продолжает резко уменьшаться, а $[V_P]$ расти, что приводит для образцов 263-6 и 263-7 к соотношению $[Si] \ll [V_P]$. В таком случае изменение концентрации дефекта *T*1 будет зависеть от изменения концентрации Si и соответственно уменьшаться (рис. 4).

Глубокий центр *T*2 фиксировался во многих работах [5,6,14]. Экспериментальные данные, которые могут служить основанием модели этой ловушки, отсутствуют.

Рис. 4. Зависимости концентрации ловушек *T*1 и *H*4 от потока кислорода.

Параметры ловушки T3, по-видимому, те же, что у ловушки E5 [16], которая впервые была обнаружена при облучении кристаллов GaP потоком электронов. По мнению авторов работы [16], ловушки E5 обусловлены вакансиями фосфора. Глубокий центр T4 фиксировался в образцах, выращенных при повышенных температурах или после облучения электронами [5]. Авторы работы [5] считают этот глубокий центр подобным центру EL2 в GaAs и соответственно имеющим структуру $P_{\text{Ga}}V_{\text{Ga}}V_{\text{P}}$. Увеличение почти на порядок концентрации дефектов T3 и T4 в образце 263-7 по сравнению с образцом 263-4 свидетельствует о возрастании концентрации собственных дефектов при увеличении потока кислорода.

Как предполагают авторы работ [5,17], дефект T5 является сложным комплексом, содержащим помимо атома кислорода еще и вакансии галлия и фосфора. Концентрация центра T5 в образце 263-7 оказалась больше $0.1 \cdot (N_d - N_a)$ и для ее определения мы применили емкостную методику, предложенную в работе [18]. Этот метод позволяет измерить концентрацию дефектов N_T в случае, когда концентрация N_T сравнима с $N_d - N_a$.

Ловушки для дырок H1 и H2 регистрировались в работе [19], а H3 — в работе [20]. Природа этих дефектов неизвестна.

Глубокий центр H4 определяет безызлучательную рекомбинацию в качественном GaP, выращенном методами газовой и жидкостной эпитаксии [21,22]. Модель этого дефекта предложена в работах [7,15] в виде $V_PV_{Ga}Ga_PV_P$. Концентрация H4 возрастает по мере увеличения потока кислорода, что свидетельствует о возрастании при этом концентрации собственных дефектов.

Ловушка *H*5 была зарегистрирована в работах [7,21]. Авторы [21] связывают ее с никелем. Глубокий центр *H*6 был зафиксирован в работе [7]. Как и в данной работе, дефект *H*6 был обнаружен в образце с большим содержанием Si. Возможно, что Si_P входит в состав *H*6.

Таким образом, по мере увеличения потока кислорода наблюдается увеличение концентрации глубоких центров, связанных с собственными дефектами, что свидетельствует о возрастании концентрации последних. Вероятнее всего, введение кислорода в реактор влияет на концентрацию дефектов косвенно. Известно, что наряду с вхождением атома кислорода в замещающее положение введение О2 в проточную систему с использованием газа-носителя водорода приводит к образованию H₂O. С одной стороны, молекулы Н2О могут блокировать доставку ростообразующих компонентов, что и приводит к увеличению концентрации собственных дефектов и соответствующих глубоких центров. С другой стороны, кислород, взаимодействуя с исходными для роста и реакторными материалами, в частности Si, может приводить к попаданию в растущий слой GaP различных включений, что в конечном счете также приводит к увеличению концентрации глубоких центров.

Список литературы

- [1] *Мастеров В.Ф., Саморуков Б.Е. //* ФТП. 1978. Т. 12. Вып. 4. С. 625–652.
- [2] *Kovalchik M., Jordan A.S., Read M.H.* // J. Electrochem. Soc. 1972. Vol. 119. N 6. P. 756–759.
- [3] Dean P.J. // Physika. 1983. Vol. 117-118. Pt. 1. P. 140-145.
- [4] Берг А., Дин П. Светодиоды. М.: Мир, 1979. 686 с.
- [5] Кольцов Г.И., Юрчук С.Ю., Алешин В.Д., Кунакин Ю.И. // ФТП. 1990. Т. 24. Вып. 5. С. 782–787.
- [6] Skazochkin A.V., Krutogolov Yu.K., Kunakin Yu.I. // Semicond. Sci. Technol. 1995. Vol. 10. P. 634–638.
- [7] Skazochkin A.V., Krutogolov Yu.K., Bondarenko G.G. // J. Adv. Mater. 1995. N 6. P. 380–387.
- [8] Шакиров У.А., Журавлев О.Р., Ремеев А.Ш. и др. // ПТЭ. 1987. № 5. С. 250.
- [9] Su Z., Farmer J.W. // J. Appl. Phys. 1990. Vol. 68. N 8. P. 4068–4070.
- [10] Stringfellow G.B., Hall H.T., Burmeister R.A. // J. Appl. Phys. 1975. Vol. 46. N 7. P. 3006–3011.
- [11] Фистуль В.И. Амфотерные примеси в полупроводниках.
 М.: Металлургия, 1992. 240 с.
- [12] Calleja E., Munoz E., Jimenez B. et al. // J. Appl. Phys. 1985. Vol. 57. N 12. P. 5295–5301.
- Skazochkin A.V., Krutogolov Yu.K., Bondarenko G.G. et al. // III Russian-Chinese Symp. 1995. P. 110.
- [14] Kaminski P., Strupinski W., Roszkiewicz K. // J. Cryst. Growth. 1991. Vol. 108. P. 699–709.
- [15] Skazochkin A.V., Krutogolov Yu.K., Bondarenko G.G. // III Russian-Chinese Symp. 1995. P. 111.
- [16] Krispin P., Maege J. // Phys. St. Sol. (a) 1984. Vol. 84. N 2. P. 573–583.
- [17] Masse G., Lawrence M.F., Lacroix J.M. // J. Phys. Chem. Sol. 1988. Vol. 49. N 11. P. 1349–1353.
- [18] Boddaert X., Deresmes D., Stievenard D. et al. // J. Appl. Phys. 1989. Vol. 65. N 12. P. 5228–5230.
- [19] Matyas M.Jr. // Phys. St. Sol. (a). 1986. Vol. 97. N 1. P. 297– 305.
- [20] Tell B., Kuijpers F.P.J. // J. Appl. Phys. 1978. Vol. 49. N 12. P. 5938–5943.

- [21] Hamilton B., Peaker A.R., Wight D.R. // J. Appl. Phys. 1979. Vol. 50. N 10. P. 6373–6385.
- [22] Peaker A.R., Hamilton B. Deep Centers in Semiconductors / Ed. by S.T. Pantelides. New York, 1986. Ch. 5.