## 01;05;09

## Влияние дисперсии полей орторомбической анизотропии на ширину линии ферромагнитного резонанса в пленках феррит-гранатов

## © А.М. Зюзин, В.В. Радайкин

Мордовский государственный университет им. Н.П. Огарева, 430000 Саранск, Россия

(Поступило в Редакцию 11 марта 1996 г. В окончательной редакции 22 июля 1996 г.)

Проведен учет влияния дисперсии полей анизотропии на ширину линии ФМР в пленках с орторомбической анизотропией. Результаты расчета, проведенного на основе модели линейного изменения полей анизотропии с толщиной и предположения аддитивности различных вкладов в результирующую ширину линии, хорошо согласуются с результатами эксперимента.

Ширина линии ферромагнитного резонанса в магнитных пленках зависит от многих факторов. Кроме релаксационных механизмов на ширину линии влияет, например, изменение равновесной ориентации намагниченности [1], происходящее в процессе регистрации линии поглощения. Уширение может происходить из-за наличия дефектов (пор, дислокаций) как в металлических пленках, так и в пленках ферродиэлектриков [2]. Механизм, связанный с магнитоупругим вкладом в поле анизотропии и приводящий к уширению линии резонанса в поликристаллических пленках, исследован в [3]. В работах [4,5] изучены особенности уширения, связанного с угловой дисперсией анизотропии. При таком типе дисперсии максимумы на угловой зависимости резонансного поля наблюдаются при промежуточных, между "трудным" и "легким", направлениях постоянного магнитного поля.

При исследованиях эпитаксиальных пленок ферритгранатов состава (YBiTmGd)<sub>3</sub>(FeGa)<sub>5</sub>O<sub>12</sub>, выращенных на подложках из неодим-галлиевого граната с ориентацией (110), была обнаружена угловая зависимость ширины линии резонансов, показанная на рис. 1, *а*. На этом же рисунке показана угловая зависимость резонансного поля  $H_p(\varphi_H)$ . Угол  $\varphi_H$  между полем **H** и осью трудного намагничивания изменялся в плоскости пленки. Отметим, что пленки были выращены в режиме линейного снижения температуры роста и обладали орторомбической анизотропией. Поля орторомбической анизотропии

$$H_{ku} = rac{2K_u}{M} - 4\pi M_s$$
и  $H_{kr} = rac{2K_r}{M}$ 

составляли 1098 и 1411 Э соответственно. В приведенных выражениях  $K_u$  и  $K_r$  — константы наведенных ростом одноосной и ромбической (описывающей анизотропию в плоскости пленки) компонент анизотропии [6–8]. Толщина исходных пленок была равна 2.5 мкм, намагниченность насыщения  $4\pi M_s = 713$  Гс, гиромагнитное отношение  $\gamma = 1.39 \cdot 10^7$  Э<sup>-1</sup>·с<sup>-1</sup>. Последнее определялось по резонансным полям при ориентациях постоянного поля **H** вдоль "трудного" и "легкого" направлений в плоскости пленки и по нормали к ней [6]. Измерения

параметров ферромагнитного резонанса производились на частоте 9.34 ГГц. Как следует из рис. 1, *a*, ширина линии сильно изменяется в интервале углов от 0 до 180°. Особенность наблюдаемой зависимости  $2\Delta H(\varphi_H)$ состоит в том, что максимумы  $2\Delta H$  наблюдаются при ориентациях **H** вдоль "трудного" и "легкого" направлений, а минимумы — при промежуточных. Такое поведение  $2\Delta H$  не удается объяснить выше перечисленными механизмами уширения.

Результаты экспериментов по послойному стравливанию показали, что при уменьшении толщины пленки происходит уменьшение амплитуды изменения ширины линии на угловой зависимости  $2\Delta H(\varphi_H)$  (рис. 1, *б*, *в*). Также уменьшается интервал изменения резонансного поля. Из этого следует, что наблюдаемую зависимость  $2\Delta H(\varphi_H)$  нельзя объяснить и возможной анизотропией параметра затухания.

Для объяснения угловых зависимостей  $2\Delta H$  мы исходили из предположения о наличии неоднородности одновременно как  $H_{ku}$ , так и  $H_{kr}$  по толщине пленки, что связано с нестационарностью кинетики ее роста. Дисперсия  $H_{ku}$  и  $H_{kr}$  должна приводить к появлению дополнительного вклада в ширину линии. В случае достаточно больших значений параметра затухания  $\alpha$ линию поглощения в неоднородной пленке можно рассматривать как суперпозицию линий от отдельных слоев. Поэтому результирующая ширина линии рассчитывалась в предположении аддитивности собственной ширины линии  $2\Delta H_e$  и вклада, обусловленного дисперсией полей анизотропии  $2\Delta H_d$ . Последний можно рассчитать, пользуясь его представлением в виде

$$2\Delta H_d = 2\left(\frac{\partial H_{res}}{\partial H_{kr}}\Delta H_{kr} + \frac{\partial H_{res}}{\partial H_{ku}}\Delta H_{ku}\right),\qquad(1)$$

где  $\Delta H_{kr}$  и  $\Delta H_{ku}$  — дисперсии соответствующих полей анизотропии.

Однако выражение для  $2\Delta H_d$  в таком представлении получается весьма громоздким. Поэтому вклад  $2\Delta H_d$  при данном значении угла  $\varphi_H$  определялся как разность максимального и минимального полей на семействе резонансных кривых, построенных для заданных интервалов значений  $H_{ku}$  и  $H_{kr}$ .



**Рис. 1.** Угловые зависимости  $2\Delta H$  и  $H_p$ . a — исходная пленка  $(h_1 = 2.5 \text{ мкм}); \delta, s$  — после первого  $(h_2 = 1.76 \text{ мкм})$  и второго  $(h_3 = 1.0 \text{ мкм})$  этапов травления. Кружки и квадратики — эксперимент, сплошные линии — расчет, штриховая — расчет с учетом дисперсии лишь  $H_{kr}$ .

Анализ проводился на основе модели линейного изменения  $H_{ku}$  и  $H_{kr}$  по толщине пленки (рис. 2). Это соответствует равновероятному распределению магнитных моментов пленки по полям  $H_{ku}$  и  $H_{kr}$  на интервалах изменения этих полей. Резонансные кривые рассчитывались с помощью метода эффективных размагничивающих факторов [9]. Плотность энергии анизотропии магнитной пленки с учетом энергии размагничивающего поля записывалась в виде

$$U_a = K_u \left( 1 - \frac{M_{z'}^2}{M^2} \right) + K_r \frac{M_{y'}^2}{M^2} + 2\pi M_{z'}^2, \qquad (2)$$

где  $M_{z'}$  и  $M_{y'}$  — компоненты намагиченности в системе координат, оси z' и y' которой совпадают с осями анизотропии пленки.

Значения компонент тензора эффективных размагничивающих факторов находили путем сопоставления выражений для эффективного поля [9]

$$\mathbf{H}_{a}^{ef} = -\frac{\partial U}{\partial \mathbf{M}} \quad \mathbf{u} \quad \mathbf{H}_{a}^{ef} = -N^{ef}\mathbf{M}.$$
 (3)

Сначала были определены компоненты тензора (*N*<sup>*ef*</sup>)' в вышеупомянутой системе координат. Они имеют следующий вид:

$${}^{\leftrightarrow ef}_{(N)}{}' = \begin{pmatrix} 0 & 0 & 0\\ 0 & \frac{2K_r}{M^2} & 0\\ 0 & 0 & -\frac{2K_u}{M^2} + 4\pi \end{pmatrix}.$$
(4)

Выражения для компонент  $N^{ef}$  в системе координат, где ось *z* совпадает с намагниченностью, находили с помощью формул преобразования компонент тензора при переходе от одной системы координат к другой [10]. Резонансное соотношение для случая, когда **H** лежит в плоскости пленки с ориентацией (110), имеет вид

$$\left(\frac{\omega}{\gamma}\right)^2 = \left[H\cos(\varphi_H - \varphi_M) + H_{kr}\cos 2\varphi_M\right] \\ \times \left[H\cos(\varphi_H - \varphi_M) - H_{ku} + 4\pi M - H_{kr}\sin^2\varphi_M\right].$$
(5)

Здесь  $\varphi_M$  — угол между **М** и "трудной" осью, значение которого находили из условия равновесной ориентации намагниченности. Как показал анализ экспериментальных угловых зависимостей резонансного поля, константа кубической анизотропии  $K_1$  в исследованных пленках была примерно на порядок меньше, чем  $K_u$  и  $K_r$ . Поэтому при расчетах  $2\Delta H(\varphi_H)$  кубической анизотропией пренебрегали.



**Рис. 2.** Распределение полей одноосной  $H_{ku}$  и ромбической  $H_{kr}$  компонент анизотропии по толщине пленки. Точки пересечения с вертикальными штриховыми линиями определяют значения  $H_{ku}$  и  $H_{kr}$  на поверхности: a — исходной пленки;  $\delta$ , s — после первого и второго этапов травления соответственно.

Журнал технической физики, 1997, том 67, № 8



**Рис. 3.** Семейство резонансных кривых, рассчитанных для значений  $H_{ku}$  и  $H_{kr}$ , соответствующих различным слоям исходной пленки.

Семейство резонансных кривых для исходной пленки с соответствующими интервалами изменений  $H_{ku}$  и  $H_{kr}$  приведено на рис. 3. Как следует из расчетов, величины разброса резонансных полей при  $\varphi_H = 0$  и 90° примерно равны между собой. Минимум наблюдается при углах  $\varphi_H$ , между **H** и трудной осью, близких к 30°.

По мере уменьшения толщины пленки путем послойного стравливания происходит уменьшение интервалов изменения полей анизотропии  $H_{ku}$  и  $H_{kr}$  (рис. 2). В связи с этим должен уменьшаться вклад в  $2\Delta H$ , обусловленный данным фактором. Проведенные эксперименты и результаты расчетов подтверждают этот вывод. Как следует из рис. 1, *б*, *в*, при уменьшении толщины *h* до 1.76 и 1.0 мкм амплитуда изменения  $2\Delta H$  на угловой зависимости существенно уменьшается. Изменение минимальных значений  $2\Delta H$  при этом не превышают погрешности измерений. Это объясняется тем, что минимум вклада  $2\Delta H_d$  весьма незначителен и, следовательно, минимальное значение  $2\Delta H$  определяется в основном лишь собственной шириной линии.

При уменьшении *h* наблюдалось уменьшение максимального и увеличение минимального резонансных полей на угловой зависимости  $H_p(\varphi_H)$ . Это свидетельствует о том, что увеличение абсолютных значений  $H_{ku}$ и  $H_{kr}$  происходит от подложки к свободной поверхности пленки, а не наоборот. Расчетные зависимости  $H_p(\varphi_H)$ (рис. 1) получали исходя из средних для данной толщины значений  $H_{ku}$  и  $H_{kr}$ . Видно, что имеет место достаточно хорошее соответствие теоретических и экспериментальных зависимостей как  $2\Delta H(\varphi_H)$ , так и  $H_p(\varphi_H)$ .

Некоторое различие между ними может быть связано с отклонением от линейного распределения магнитных моментов образца на заданных интервалах изменения  $H_{ku}$  и  $H_{kr}$ , а также эффектами обменного и дипольного сужения неоднородно уширенной линии.

Хорошее согласие наблюдалось для расчетных и экспериментальных полярных зависимостей  $2\Delta H(\theta_H)$ , когда угол  $\theta_H$  между **H** и нормалью к пленке изменялся в плоскостях, проходящих через трудное или легкое направления в плоскости пленки и нормаль к ней. Отметим, что учет дисперсии лишь ромбической компоненты поля анизотропии не позволяет получить удовлетворительного соответствия расчетных (штриховая кривая на рис. 1, a) и экспериментальных результатов. При таком расчете  $H_{ku}$  принималось равным среднему на соответствующем интервале его значений.

Проведенные температурные исследования также подтверждают предположение о наличии дисперсии полей анизотропии и ее влиянии на  $2\Delta H$ . На рис. 4, *a*, *б* приведены температурные зависимости  $2\Delta H$  и  $H_p$  для различных ориентаций **H** относительно "трудной" оси. Видно, что имеет место четкая корреляция в поведении  $2\Delta H$  и  $H_p$  для той или иной ориентации. С уменьшением абсолютных значений  $H_{ku}$  и  $H_{kr}$  при возрастании температуры происходит уменьшение величины их дисперсии. Это в свою очередь приводит к уменьшению  $2\Delta H_d$ .

При приближении к температуре Кюри  $T_k$  резонансные поля при различных ориентациях сближаются, что свидетельствует о приближении к нулю значений  $H_{ku}$  и  $H_{kr}$ . При этом  $2\Delta H$  при различных ориентациях также стремится к одному и тому же значению. Минимальное значение  $2\Delta H$  вплоть до температур вблизи  $T_k$  изменятся слабо. При этой ориентации вклад в  $H_p$ , обусловленный полями  $H_{ku}$  и  $H_{kr}$ , минимален. Следовательно, минимальным будет и вклад в  $2\Delta H$ , обусловленный дисперсией этих параметров.



**Рис. 4.** Температурные зависимости  $2\Delta H$  (*a*) и  $H_p$  (*b*). *I*, 2 — поле **H** параллельно "трудной" и "легкой" осям соответственно; 3 — **H** параллельно направлению, при котором  $2\Delta H$  минимальна.

Таким образом можно сделать следующие выводы.

1. Проведен учет влияния дисперсии полей орторомбической анизотропии на ширину линии ФМР.

2. Модель, основанная на изменении одновременно как  $H_{ku}$ , так и  $H_{kr}$  по толщине пленки и предположении аддитивности различных вкладов в ширину линии, позволяет объяснить угловые и температурные зависимости  $2\Delta H$ , а также результаты экспериментов по послойному травлению.

3. Наличие дисперсии  $H_{ku}$  и  $H_{kr}$  в пленках с орторомбической анизотропией приводит к качественно отличной угловой зависимости ширины линии ФМР.

## Список литературы

- [1] Зюзин А.М. // ФТТ. 1989. Т. 31. Вып. 7. С. 109-112.
- [2] Крупичка С. Физика ферритов и родственных им магнитных окислов. М.: Мир, 1976. Т. 2. 504 с.
- [3] Ваньков В.Н., Зюзин А.М., Старостин Ю.В. // Письма в ЖТФ. 1982. Т. 18. Вып. 21. С. 66–70.
- [4] Кирсанов Г.Г., Корнев Ю.В., Семенцов Д.И., Сидоренков В.В. // ФММ. 1986. Т. 61. № 4. С. 750–755.
- [5] Семенцов Д.И., Сидоренков В.В. // ФММ. 1988. Т. 65. № 2. С. 219–223.
- [6] Makino H., Hidaka Y. // Mat. Res. Bull. 1981. Vol. 16. N 8.
  P. 957–966.
- [7] Сабитов Р.М., Вахитов Р.М., Шанина Е.Г. // Микроэлектроника. 1989. Т. 18. № 3. С. 266–273.
- [8] Ваньков В.Н., Зюзин А.М. // ЖТФ. 1992. Т. 62. Вып. 5. С. 119–129.
- [9] Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука, 1973. 591 с.
- [10] Кочин Н.Е. Векторное исчисление и начала тензорного исчисления. М.: Наука, 1965. 426 с.