04;10

К вопросу о расчете силы взаимодействия между релятивистским электронным пучком и омическим плазменным каналом

© Е.К. Колесников, А.С. Мануйлов

Санкт-Петербургский государственный университет Научно-исследовательский институт математики и механики им.В.И.Смирнова, 198904 Санкт-Петербург, Россия

(Поступило в Редакцию 12 февраля 1996 г.)

В случае полной зарядовой компенсации получена формула для расчета силы взаимодействия между релятивистским электронным пучком и предварительно созданным омическим плазменным каналом при произвольных отклонениях оси канала от оси пучка. Показано, что для радиальных профилей проводимости с пиком на оси канала указанная сила является расталкивающей.

Новые области применения релятивистских электронных пучков (РЭП) делают актуальным дальнейшее исследование динамики транспортировки РЭП в газоплазменных средах [1-17]. Особый интерес в комплексе проблем, связанных с транспортировкой РЭП, представляет изучение условий стабильной проводки пучка по омическим плазменным каналам. В частности, в работах [9-12,14,16] рассмотрены некоторые ситуации, когда имеет место стабилизирующее влияние плазменных каналов на распространение РЭП. В работе [8] в электростатическом приближении рассчитана притягивающая к каналу трекинг-сила в условиях низкой проводимости омического канала. Кроме того, в [10,11,14,16] рассмотрены каналы, в которых основная часть обратного плазменного тока находится вне пучка, что при боковых отклонениях РЭП приводит к ослаблению шланговых колебаний [2,3]. В работе [9] были представлены результаты численной имитации пучково-плазменного взаимодействия при транспортировке РЭП по омическим плазменным каналам с учетом наработки проводимости в результате ударной и лавинной ионизации канального газа. Было показано, что в головной части пучка имеет место электростатический трекинг (т.е. притяжение к омическому каналу), тогда как в основной части пучка ("теле" РЭП) наблюдается выталкивание РЭП из канала. Очевидно, что последний эффект обусловлен увеличением проводимости за счет ударной и лавинной ионизации канального газа и соответствующим ростом вблизи оси канала дестабилизирующего обратного плазменного тока. Однако из результатов [9] невозможно судить о величине указанной силы взаимодействия между пучком и омическим каналом.

В настоящей работе получена формула дла расчета силы пучково-канального взаимодействия в условиях полной нейтрализации пространственного заряда РЭП для произвольных значений амплитуды отклонения оси канала от оси пучка.

Рассмотрим параксиальный моноэнергетический аксиально-симметричный РЭП с произвольным радиальным профилем плотности тока $J_b(r)$, распространяющийся в газоплазменной среде по предварительно созданному омическому каналу (с радиальным профилем проводимости $\sigma_{ch}(r)$) вдоль оси z цилиндрической системы координат (r, θ, z) . Ограничимся далее случаем высокой проводимости канала, когда выполнено условие полной нейтрализации пространственного заряда РЭП $(4\pi\sigma_{ch}(0)R_b/c \gg 1, R_b$ — характерный радиус пучка, c — скорость света). Для расчета силы взаимодействия пучка с предварительно созданным каналом предположим, что канал сместился от оси пучка на произвольное расстояние Y_{ch} . Тогда, используя закон Био-Савара– Лапласа, получим силу, действующую со стороны плазменного канала на один электрон пучка,

$$F_1 = \frac{ec}{I_b} \int_0^\infty dr \, 2\pi r \, J_b(r) \int_r^\infty d\rho \rho \int_0^{2\pi} d\theta \cos \theta \frac{2J_p(|\boldsymbol{\rho} - \mathbf{Y}_{ch}|)}{\rho c^2},\tag{1}$$

где $J_p(r)$ — радиальный профиль плотности обратного плазменного тока, текущего в канале; I_b — полный ток пучка; e — заряд электрона.

После интегрирования по частям с учетом закона Ома для J_p имеем

$$F_1 = \frac{2e}{cI_b} \int_0^\infty dr \, I_b(r) \int_0^{2\pi} d\theta \cos \theta E_z(\Psi) \sigma_{ch}(\Psi), \qquad (2)$$

где

$$I_b(r) = 2\pi \int_0^r d\rho \rho J_b(\rho)$$
(3)

— ток пучка внутри трубки радиуса $r, E_z - z$ — компонента коллективного электрического поля системы плазмапучок,

$$\Psi^2 = r^2 + Y_{ch}^2 - 2rY_{ch}\cos\theta.$$
 (4)

Как показано в [17], аксиальное электрическое поле E_z слабо зависит от Ψ , поэтому вынесем E_z за пределы интегралов по r и θ . Кроме того, сила, действующая на единицу длины пучка со стороны канала, F_{dt} связана с силой F_1 очевидным образом

$$F_{dt} = \frac{F_1}{\gamma mc^2},\tag{5}$$

где
 γ — релятивистский фактор частиц пучка,
 m — масса электрона.

Тогда имеем

$$F_{dt} \simeq -\frac{2}{\pi} \frac{I_b}{I_A} \frac{f_m}{R_b^2} \int_0^\infty dr \, \tilde{I}_b(r) \int_0^{2\pi} d\theta \cos \theta \tilde{\sigma}_{ch}(\Psi), \quad (6)$$

где $I_A = \gamma mc^3/e$ — предельный ток Альфвена,

$$f_m = -\frac{\sigma_{ch}(0)E_z}{(I_b/\pi R_b^2)} \tag{7}$$

— коэффициент токовой нейтрализации на оси канала, $\tilde{\sigma}_{ch} = \sigma_{ch}/\sigma_{ch}(0), \ \tilde{I}_b(r) = I_b(r)/I_b.$

Применим полученную формулу (6) для расчета силы взаимодействия между пучком и омическим каналом в линейном случае, когда $Y_{ch}/R_b \ll 1$ и РЭП имеет беннетовский радиальный профиль плотности тока пучка, а проводимость омического канала имеет вид типа "ступенька"

$$\sigma(r) = \begin{cases} \sigma_{ch}^{0}, & r \leq R_{ch}, \\ \sigma_{p}, & r > R_{ch}. \end{cases}$$
(8)

В этом случае разложим зависимость σ от Ψ в ряд Тейлора до членов первого порядка малости по Y_{ch} . Тогда имеем

$$\sigma(\Psi) = \sigma(r) - Y_{ch} \cos \theta \, \frac{\partial \sigma}{\partial r}.$$
 (9)

Подставляя (9) в (6), окончательно получим

$$F_{dt} = -\frac{2}{\pi R_b} \frac{I_b}{I_A} \frac{Y}{R_b} (f_m - f_{mp}) \frac{R_{ch}^2}{(R_b^2 + R_{ch}^2)},$$
 (10)

где $f_m = -\sigma_{ch}^0 E_z / I_b^*, f_{mp} = -\sigma_p E_z / I_b^*, I_b^* = I_b / (\pi R_b^2).$ Учитывая, что $E_z \approx \text{const}$ и $f_m, f_{mp} > 0$, получим, что

F_{dt} является трекинг-силой (притягивающей к каналу), если $\sigma_p > \sigma_{ch}^0$, и детрекинг-силой (отталкивающей от канала), если $\sigma_p < \sigma_{ch}^0$. В первом случае ($\sigma_p > \sigma_{ch}^0$) основной обратный ток течет вне пучка (при $r > R_{ch}$ и, следовательно, при отклонениях РЭП от оси канала будет отталкивать его к исходному положению, что соответствует результатам работ [14,16]. Во второй ситуации основная часть обратного плазменного тока течет в пределах самого пучка и омического канала. При боковом отклонении центра масс РЭП от оси канала будет происходить выталкивание пучка из области наибольшей проводимости. Здесь необходимо отметить, что в данной работе система координат и вектор смещения Y_{ch} выбраны таким образом, что трекинг-сила должна быть положительна, а детрекинг-сила — отрицательна. В иной ситуации, когда смещается сам пучок относительно неподвижного плазменного канала, трекинг-сила становится отрицательной.

Получим далее формулу для расчета силы пучковоканального взаимодействия E_{dt} в нелинейном случае, когда $Y_{ch} \ge R_b$. Для этого предположим, что пучок

Зависимость $(-F_{dt} \cdot F_0)$ от смещения оси канала \tilde{Y}_{ch} $(F_0 = 10^{-2} [1/cm])$ для разных значений η . η : l = 0.5, 2 = 1, 3 = 2.

и канал имеют беннетовские радиальные профили с различными характерными масштабами R_b и R_{ch} . Тогда после интегрирования по азимутальному углу θ из (6) имеем

$$F_{dt} = -4 \frac{I_b}{I_A} \frac{f_m}{R_b} \int_0^\infty d\rho \, \tilde{I}_b(\rho) \rho$$

$$\times \frac{\tilde{Y}_{ch}}{\eta^2 \left[\left(1 + \frac{\rho^2 + \tilde{Y}_{ch}^2}{\eta^2} \right)^2 - \left(\frac{2\rho \tilde{Y}_{ch}}{\eta^2} \right)^2 \right]^{3/2}}, \quad (11)$$

 $\eta = (R_{ch}/R_b), \ \ \rho = r/R_b, \ \ ilde{Y}_{ch} = Y_{ch}/R_b.$

На рисунке представлены рассчитанные по формуле (11) графики зависимости F_{dt} от \tilde{Y}_{ch} для разных значений ($\eta = 0.5, 1, 2$) при $\xi = 75R_b$ (ξ — расстояние от фронта пучка до рассматриваемого поперечного сечения РЭП). Параметры пучка были взяты следующие: $R_b = 0.5$ см, $I_b = 10$ кА, E = 5 МэВ ($\gamma = 10$). Кроме того, ток пучка имеет закон нарастания

$$I_b(\xi) = I_b \operatorname{th}\left(\frac{\xi}{\xi_r}\right),\tag{12}$$

где $\xi_r = 30R_b$.

Как показывают оценки, при этих условиях для $\sigma_{ch}(0) = 6 \cdot 10^{11}$ 1/с коэффициент токовой нейтрализации $f_m \simeq 0.5$. Из рисунка видно, что в рассматриваемом случае высокой проводимости омического канала (когда имеет место полная зарядовая компенсация) при пике проводимости в центре канала сила F_{dt} является детрекинг-силой. Отметим, что этот результат качественно совпадает с данными численных имитаций работы [9]. Как показывают результаты [10,11,14,16] и формула (10) настоящей работы, для получения трекинг-силы необходимо нарастание проводимости от центра к периферии плазменного канала.

Таким образом, в настоящем исследовании получена формула для нахождения силы пучково-канального взаимодействия в магнитном режиме. Показано, что при радиальных профилях омической проводимости с пиком в центре канала и убыванием к периферии будет иметь место выброс пучка из области, занимаемой каналом, что подтверждается результатами экспериментальной работы [12].

Список литературы

- [1] Lee E.P. // Phys. Fluids. 1976. Vol. 19. N 1. P. 60–69.
- [2] Lee E.P. // Phys. Fluids. 1978. Vol. 21. N 8. P. 1327-1313.
- [3] Uhm H.S., Lampe M. // Phys. Fluids. 1980. Vol. 23. N 8. P. 1574–1585.
- [4] Barletta W.A., Lee E.P., Yu S.S. // Nucl. Fusion. 1981. Vol. 21. N 8. P. 961–972.
- [5] Fernsler R.F., Hubbard R.F., Lampe M. // J. Appl. Phys. 1994. Vol. 75. N 7. P. 3278–3293.
- [6] Надеждин Е.Р., Сорокин Г.А. // Физика плазмы. 1983. Т. 9. № 5. С. 988–991.
- [7] Sharp W.M., Lampe M. // Phys. Fluids. 1980. Vol. 23. N 12.
 P. 2383–2393.
- [8] Lee E.P. // Livermore Lab. Report UCID-19674. 1983. P. 10.
- [9] Hui B., Lampe M. // 5th Intern. Conf. on High Power Particle Beams. San Francisco, 1983. P. 374–377.
- [10] Murphy D.P., Pechacek R.E., Taggart D.P. et al. // Phys. Fluids. B. 1992. Vol. 4. N 10. P. 3407–3417.
- [11] Welch D.R., Bieniosek F.M., Godfrey B.B. // Phys. Rev. Lett. 1990. Vol. 65. N 25. P. 3128–3131.
- [12] Murphy D.P., Raleigh M., Pechacek R.E. et al. // Phys. Fluids. 1987. Vol. 30. N 1. P. 232–238.
- [13] Колесников Е.К., Мануйлов А.С. // ЖТФ. 1990. Т. 60. Вып. 3. С. 40–44.
- [14] Колесников Е.К., Мануйлов А.С. // ЖТФ. 1991. Т. 61. Вып. 12. С. 43–46.
- [15] Колесников Е.К., Мануйлов А.С., Абашкина И.В. // ЖТФ. 1994. Т. 64. Вып. 11. С. 136–139.
- [16] Hubbard R.F., Fernsler R.F., Slinker S.P. et al. // 5th Intern. Conf. on High Power Particle Beams. San Francisco, 1983. P. 370–373.
- [17] Lampe M., Sharp W.M., Hubbard R.F. et al. // Phys. Fluids. 1984. Vol. 27. N 12. P. 2921–2936.