04;12

Области существования режимов с аномально высокой скоростью генерации плазмы в сеточных ключевых элементах

© Н.И. Алексеев, В.Б. Каплан, А.М. Марциновский, И.И. Столяров

Физико-технический институт им. А.Ф.Иоффе РАН, 194021 Санкт-Петербург. Россия

(Поступило в Редакцию 27 декабря 1995 г.)

Приводятся результаты систематического исследования условий, при которых наблюдается аномально высокая скорость генерации плазмы в анодной области кнудсеновской низковольтной дуги в плазменных сеточных ключевых элементах. Явление развивается при условии заметного превышения концентрации плазмы в области катод-сетка над концентрацией в анодной области в широком диапазоне токов и коммутируемых напряжений и имеет разко выраженный порог возникновения по давлению в районе $\sim 2 \cdot 10^{-2}$ Тор. Полученные результаты анализируются с точки зрения возможных механизмов аномальной генерации — столкновительной нерезонансной диффузии электронов в пространстве скоростей, приводящей к обогащению функции распределения быстрыми частицами, и коллапса ленгмюровских волн в зазоре при большой энергии пучка, возникающего при перемыкании витков сетки гасящим импульсом и запирании тока.

Введение

Плазменные ключевые элементы с полным сеточным управлением тока (ПКЭ) — это газонаполненные цезиевые (или цезий-бариевые) триоды, работающие в режиме кнудсеновской низковольтной дуги (межэлектродные расстояния ~ 1 мм, давление паров Сs $P_{\rm Cs} \sim 0.5-2 \cdot 10^{-2}$ Top) [1,2]. В таких ПКЭ подача на сетку отрицательного импульса напряжения V_g^- с крутым фронтом (~ 0.1 мкс) и амплитудой порядка десятков V вызывает гашение разряда и прерывание тока при концентрациях плазмы до $10^{13}-10^{14}$ см⁻³ и токах до ~ 10 А/см². Явление аномального негашения (AH) заключается в том, что в определенных режимах разряда увеличение $|V_g^-|$, обычно способствующее гашению, начинает действовать в обратную сторону (с чем и связано название явления).

Как известно [1], при подаче на сетку ПКЭ отрицательного импульса с крутым фронтом на фронте импульса происходят расширение приэлектродных слоев у витков сетки, уменьшение ее электрической прозрачности и соответственно уменьшение проходящего анодного тока I на величину ΔI (называемое далее начальным запиранием) по сравнению с исходным I_0 (рис. 1, δ). При уменьшении анодного тока коммутируемое напряжение E_a (которое обычно много больше падения напряжения на ключе V_a^0 в проводящем состоянии) (рис. 1, *a*) перераспределяется между прибором и анодной нагрузкой R_a : $E_a = V_a + I \cdot R_a$. Избыточное напряжение падает в плоскости сетки и формирует электронный пучок с током $I_{\text{res}} = I_0 - \Delta I$ (рис. 1, δ , кривая 2) и энергией порядка Е_a, который вызывает быстрый рост концентрации плазмы в области анод-сетка за счет разогрева электронов плазмы плазменными колебаниями, возбуждаемыми пучком [3,4]. Если при заданной величине импульса начальное запирание тока столь велико, что скорость генерации ионов в анодной области недостаточна для восстановления токопрохождения в ячейках сетки, ток прерывается и разряд гаснет; в противном случае он восстанавливается. Характерное время восстановления тока составляет 1 мкс — порядка времени диффузии связанного электрона в возбужденном атоме цезия по спектру при ступенчатой ионизации.

Было обнаружено, что при токах $I_0 \geqslant 1 \, \mathrm{A/cm^2}$ и давлениях $P_{\rm Cs} \ge 1.2 \cdot 10^{-2}$ Тор на вольт-амперной характеристике разряда ВАХ появляется область, где увеличение амплитуды сеточного импульса свыше необходимой для гашения величины $-V_g^q$, может, начиная с некоторого уровня $|V_g^a| > |V_g^q|$, приводить к прекращению гашения. При этом восстановление тока происходит за очень короткое время — порядка самого времени запирания (0.1 мкс) и сопровождается, как показали зондовые измерения, необычайно большим и быстрым ростом концентрации плазмы в анодной области (с 10¹² до $10^{13} - 10^{14} \,\mathrm{cm}^{-3}$ за ~ 0.5 мкс), что естественно рассматривать как причину восстановления токопрохождения [3,4]. Причем с ростом $-V_g^-$ ионизация увеличивается не постепенно, а скачком при совсем небольшом увеличении импульса, что указывает на пороговый характер "включения" механизма, ее обусловливающего. В [4] был предложен механизм, обеспечивающий нужный порядок скорости ионизации — обогащение ФРЭ быстрыми электронами за счет нерезонансной диффузии по энергии плазменных электронов на ленгмюровских плазмонах. Такой эффект должен наблюдаться, когда мощность, затрачиваемая пучком на возбуждение колебаний, и плотность энергии в них достаточно велики (≥ 20 Вт), что обычно выполняется при АН. Быстрое запирание тока при наличии в анодной цепи даже небольшой паразитной индуктивности приводит к большому выбросу анодного напряжения, соизмеримому или даже превосходящему Еа, что сообщает пучку дополнительную энергию.

Целью настоящей работы являлось детальное исследование области существования АН в зависимости от

Рис. 1. Изменение во времени анодного напряжения (I-3) при подаче на сетку импульса V_g^- (I'-3') для точки *I* ВАХ на рис. 2, *a* (a): $|V_g^-| = 15.1$ (*I*), 19.3 (*2*), 24 B (*3*), $P_{Cs} = 2.87 \cdot 10^{-2}$ Тор; соответствующее изменение тока (для кривой 4 $|V_g^-| = 30$ B) (*b*), кинетика тока для точки *2* на ВАХ *A* (рис. 2, *a*) (*b*): $|V_g^-| = 15.1$ (*I*), 22 (*2*), 29 (*3*), 35 (*4*), 41 (5), 52 B (*b*).

параметров (давление, ток, положение рабочей точки на ВАХ, коммутируемое напряжение и т.д.) и внешних условий разряда на характер перехода к АН, не проведенное ранее (в первых работах все внимание было сосредоточено на измерении параметров плазмы при АН и объяснении наблюдавшихся скоростей генерации ионов). Помимо необходимости исследования феноменологии явления из чисто практических соображений АН определяет по существу верхний предел рабочих давлений ПКЭ) такие исследования представляли дополнительный физический интерес.

Дело в том, что помимо диффузии в пространстве энергий на плазмонах существует и другой возможный путь генерации быстрых электронов в плазме при большой плотности энергии плазменных колебаний — модуляционная неустойчивость и коллапс ленгмюровских волн [5–7], приводящие к появлению быстрых частиц. Однако, как показали предшествующие измерения [3,4], снятие зондовых характеристик и вычисление по ним функции распределения электронов ФРЭ непосредственно в момент запирания и восстановления анодного тока при АН недостаточно надежны. Поэтому зависимости АН от внешних параметров важны для получения косвенных данных в пользу того или иного механизма.

Методика измерений

Исследования были проведены на приборе, аналогичном использовавшемуся ранее для изучения ПКЭ [1]. Рабочими поверхностями являлись торцы молибденовых цилиндров диаметром 1 см, катод (с косвенным подогревом) покрывался слоем платины (~ 2 мкм) для увеличения эмиссии. Сетка из молибденовой фольги толщиной 20 мкм и квадратными ячейками 100×100 мкм с шириной перемычек 30 мкм располагалась на расстоянии 1.5 мм от катода и 1 мм от анода. Измерительная схема была традиционной при исследовании ПКЭ [1]. Анодное напряжение в виде прямоугольного импульса длительностью 200–300 мкс, частотой ~ 100 Гц и амплитудой до 100 В подавалось на анод через регулируемую (0–200 Ом) малоиндуктивную (~ 0.05 мкГн) нагрузку примерно за 1 мкс перед подачей на сетку поджигающего разряд положительного импульса напряжения ($|V_g^+| \sim 5-20$ В, $\tau(V_g^+) \sim 10$ мкс). После поджига разряда и установления стационарного состояния (100–200 мкс) на сетку подавался гасящий отрицательный импульс напряжения ($0 \leq |V_g^-| \leq 60$ В, $\tau(V_g^-) \sim 20$ мкс). Сеточные импульсы подавались через импульсный трансформатор.

Для измерения анодного и сеточного токов между землей и катодом и землей и сеточным трансформатором включались безыиндуктивные шунты (десятые Ом). Измеряемые величины (токи и напряжения) регистрировались стробируемым интегратором (разрешение 40 нс) или с экрана осциллографа.

Результаты эксперимента

а) Влияние исходного проводящего состояния разряда (положения рабочей точки на ВАХ). Эта зависимость была исследована первой, так как именно вдоль ВАХ параметры плазмы меняются наиболее существенным образом [8,9], что, как оказалось, существенно меняет характер перехода к АН.

В нижней точке вертикального участка ВАХ (рис. 2, *a*, кривая *A*) аномального негашения обычно нет; оно начинается с некоторого критического уровня тока (на ВАХ на рис. 2, *a* он находится несколько ниже точки *I*). В этом случае при увеличении амплитуды сеточного импульса гашение есть в некотором диапазоне $|V_g^q| < |V_g^-| < |V_g^a|$ (кривые 2, 2' на рис. 1, *a*, *б*), при $|V_g^q| > |V_g^-|$ имеем "обычное" негашение при недостаточной величине импульса (кривые *I*, *I'*). Однако при возрастании $|V_g^-| > |V_g^a|$ ток после начального запирания начинает быстро восстанавливаться (кривые *3*, *3'* на рис. 1, *a*, *б*). При еще большем $|V_g^-|$ гашение появляется снова (кривая *4* на рис. 1, *б*).

Подобное поведение можно объяснить на основе представлений, разработанных в [3]. Использовавшийся нами генератор сеточных импульсов обеспечивал крутизну фронта импульса ~ 0.1 мкс независимо от амплитуды V_g^- . Поэтому при увеличении $|V_g^-|$ скорость уменьшения электрической прозрачности сетки увеличивалась и вместе с ней скорость спада тока dI/dt, индуктивный выброс напряжения на аноде $L_a \cdot dI/dt$ (где L_a — паразитная индуктивность анодной цепи), мощность пучка электронов и плотность энергии возбуждаемых колебаний. Если она оказывается достаточной для включения механизма быстрой генерации ионов, то начинается АН, даже если

Рис. 2. a — области аномального негашения на ВАХ разряда ($P_{Cs} = 2.87 \cdot 10^{-2}$ Top): A — ВАХ I (V_a) (ток показан слева на левой оси ординат); B — зависимость локального минимума кривых первоначального запирания ($\Delta I/I$)^{min} (рис. 2, δ) (справа на левой оси ординат) от точки ВАХ; C — амплитуда импульса $|V_g^q|$, отвечающая переходу в режим гашения (\bullet); D — аномального негашения (\circ); значения $|V_g^q|$, $|V_g^a|$ даны на правой оси ординат, $E_a = 15$ В; δ — зависимость первоначального запирания тока ($\Delta I/I_0$) от $|V_g^-|$ для точек I-6 на ВАХ A (рис. 2, a).

при меньших амплитудах имело место полное запирание тока и гашение.¹

При увеличении анодного тока вдоль ВАХ (точка 2 на рис. 2, a) гашение исчезает и АН проявляется с ростом

¹ Конечно, при полном запирании тока пучку всегда передается вся энергия, запасенная в индуктивности L_a при протекании тока, но при более быстром спаде тока уменьшается время передачи.

Рис. 3. a — зависимости ($\Delta I/I_0$)^{min} (1), V_g^q (2), V_g^a (3) от E_a ; ВАХ соответствует рис. 2, a (A); δ — зависимости ($\Delta I/I_0$)^{min} (L_a) для разных E_a (B): I — 5.4, 2 — 24, 3 — 49. $P_{Cs} = 2.6 \cdot 10^{-2}$ Top; $V_a = 22$ B; $j_c^e = 1.25$ A/cm².

 $|-V_g^-|$ в резком изменении времени восстановления тока при неполном начальном запирании $\Delta I/I_0 < 1$ уменьшается с 0.5–1 до 0.1–0.05 мкс (рис. 1, *в*, кривые *I*–6). В этом случае после появления АН рост зависимости относительного начального запирания $\Delta I/I_0(|V_g^-|)$ замедляется, а затем $\Delta I/I_0$ падает до некоторого минимального значения ($\Delta I/I_0$)^{min}, после чего в значительном диапазоне $|V_g^-| \Delta I/I_0$ медленно нарастает (рис. 2, *б*, кривая 2).

При дальнейшем движении рабочей точки по ВАХ в сторону бо́льших анодных токов и напряжений такой характер зависимости $\Delta I/I_0$ от $|V_g^-|$ сохраняется (кривые 3, 4 на рис. 2, δ); уровень начального запирания, при котором $\Delta I/I_0$ начинает падать, и $(\Delta I/I_0)^{\min}$ уменьшаются. При некотором напряжении V_a зависимость $(\Delta I/I_0)^{\min}$ от V_a , представляемая кривой *B* на рис. 2, *a*, достигает минимума $(\Delta I/I_0)^{\min}$ и затем снова возрастает.²

Далее с ростом V_a диапазон V_g^- , где начальное запирание меняется медленно, сокращается и вырождается в перегиб (кривые 4, 5 на рис. 2, δ). При этом при больших $|V_g^-|$ снова может достигаться полное запирание тока и гашение восстанавливается. При еще бо́льших V_a АН исчезает совсем (кривая 6). Диаграмма С–D на рис. 2, a (ось ординат, где откладывается $|V_g^-|$, находится справа) иллюстрирует области гашения и негашения по ВАХ.

Таким образом, на ВАХ существует участок, обычно сразу за точкой перегиба, где процессы, приводящие к аномальному негашению, развиваются быстрее всего, а их воздействие на токопрохождение максимально и соответствует минимальному начальному запиранию $(\Delta I/I_0)^{\min}$ (или максимальному значению остаточного тока $(I_{\rm res}/I_0)^{\max}$. Как известно [8], этот участок примерно соответствует максимальной концентрации плазмы n_1 в области катод–сетка, близкой к предельной степени ионизации, и практически минимальной n_2 в области сетка– анод, т.е. режимам с максимальной разницей $n_1 - n_2$, $T_{e1} - T_{e2}$ (T_e — электронная температура) и максимальной величиной отрицательного (тормозящего электроны катодной области) скачка потенциала в плоскости сетки.

б) В лияние величины коммутируемое напряжение ($E_a \ge 20-30$ В) является основным фактором, вызывающим появление АН, поскольку для эффективной генерации ионов энергия электронного пучка, вносимая в анодную область, должна быть достаточно большой. Проведенные исследования показали, что, хотя АН действительно легче возникает при больших E_a , оно может наблюдаться при любых коммутируемых напряжениях — вплоть до 3–4 В. В этом случае энергия пучка обусловлена практически целиком индуктивным выбросом анодного напряжения V_a^{abn} может быть совсем небольшим — до 15–20 В.

С увеличением E_a относительная роль индуктивного выброса уменьшается и условия перехода к АН облегчаются. АН наступает при меньших амплитудах $|V_g^a|$, а уровень минимального начального запирания уменьшается (рис. 3, *a*). При $E_a \ge 20-30$ В АН может начинаться при таких небольших $-V_g^-$, что индуктивный выброс непосредственно перед появлением АН не наблюдается, он меньше E_a и маскируется ростом анодного напряжения за счет перераспределения напряжения между разрядным промежутком и нагрузкой. Энергия пучка

² Сдвиг начальной части кривых $\Delta I/I_0(-V_g^-)$, соответствующий "обычному" начальному запиранию, обусловлен ростом сначала концентрации плазмы в катодной области и скачка потенциала в плоскости сетки, затем — ростом концентрации в анодной области [8, Ч. II].

Рис. 4. Зависимость $(I_{\rm res}/I_0)^{\rm max}$ от точки ВАХ (напряжения на приборе) при разных токах эмиссии катода; $E_a = 15$ В: $a - P_{\rm Cs} = 2.90 \cdot 10^{-2}$ Тор; j_c^e (А/см²): I - 1.6, 2 - 1.3, 3 - 0.95, 4 - 0.8, 5 - 0.52, 6 - 0.3; $6 - P_{\rm Cs} = 2.55 \cdot 10^{-2}$ Тор; j_c^e (А/см²): I - 1.62, 2 - 1.05, 3 - 1.0, 4 - 0.7, 5 - 0.41.

в этом случае обеспечивается в основном источником анодного напряжения.

В согласии с приведенными соображениями разным оказалось и влияние индуктивности анодной цепи на АН при больших и малых E_a : с ростом E_a оно заметно уменьшается (рис. 3, δ).

в) В лияние тока и давления. Наиболее удобными параметрами при исследовании этих зависимостей также оказались $(I_{res}/I_0)^{max}$ и $(\Delta I/I_0)^{min}$, "интегрально" характеризующие интенсивность процессов, приводящих к АН. Типичная зависимость $(I_{res}/I_0)^{max}$ от анодного напряжения по ВАХ приведена на рис. 4 для различных токов эмиссии катода j_c^e при постоянном давлении цезия. Как видно, влияние тока оказывается достаточно сложным.

В области больших токов (кривые 3–6 на рис. 4, a и 3–5 на рис. 4, δ) увеличение эмиссии стимулирует АН и оно начинается раньше на вертикальном участке ВАХ, а максимум на зависимости ($I_{\rm res}/I_0$)^{max} (V_a) растет.

Сама точка максимума смещается к перегибу ВАХ. При этом крутизна спада остаточного тока с ростом V_a увеличивается, так что интервал анодных напряжений, на котором условия возникновения АН меняются от максимально благоприятных до полного исчезновения, может составлять всего 0.2-0.3 В. По-видимому, это связано со скачкообразным ростом концентрации плазмы n₂ в анодной области, который может иметь место при увеличении анодного напряжения V_a в развитом разряде [9]. Действительно, с ростом n_2 условия возбуждения колебаний ухудшаются из-за роста декремента кулоновского столкновительного (электрон-ионного) затухания (согласно [9], при $P_{\rm Cs} = 1.5 \cdot 10^{-2}$ Тор, что соответствует концентрации газа $N_{\rm Cs} \cong 2 \cdot 10^{14} \, {\rm cm}^{-3}$ и температуре T_e = 0.5 эВ, вклады рассеяния на ионах и атомах сравниваются при $n \sim 3 \cdot 10^{12} \, {\rm cm}^{-3}$).

При бо́льших анодных напряжениях может иметь место гашение разряда при достаточно большом начальном запирании тока, но для этого необходимы большие амплитуды V_g^- , так как концентрации плазмы в этом случае приближаются к 10^{14} см⁻³ [8].

В области меньших токов эмиссии $(j_c^e \leq 1 \text{ A/cm}^2 \text{ наблюдается обратная картина — остаточный ток увеличивается с уменьшением <math>j_c^e$, причем максимум смещается в противоположную сторону — к большим V_a . При этом, как видно из рис. 4, в области перегиба ВАХ при малых $j_c^e \leq 0.5 \text{ A/cm}^2$ АН полностью отсутствует. Так как в предыдущих работах основное внимание уделялось именно этой области как практически наиболее интересной для ПКЭ, был сделан неправильный вывод об исчезновении АН при малых токах даже в случае больших $P_{\rm Cs}$.

Смещение максимума остаточного тока в сторону больших V_a с уменьшением эмиссии катода объяснимо: при меньших j_c^e переход к режимам с полностью ионизованной плазмой в катодной области происходит при все больших анодных напряжениях [8]. Действительно, если перестроить зависимости остаточного тока от мощности $I_0 \cdot V_a$, выделяющейся в разряде в проводящем состоянии, все максимумы оказываются соответствующими примерно одной и той же мощности $\sim 2 - -4$ Вт/см². Однако

Рис. 5. Зависимость критического выброса V_a^{abn} от точки ВАХ при разных токах: $P_{Cs} = 2.6 \cdot 10^{-2}$ Top: $E_a = 15.5$ B; j_c^e (A/см²): I = 0.36, 2 = 0.75, 3 = 1.07.

Рис. 6. a — зависимость $(\Delta I/I_0)^{\min}$ от V_a по ВАХ при разных давлениях P_{Cs} $(j_c^e = 0.9 \text{ A/cm}^{-2})$: $P_{Cs} \cdot 10^{-2}$ Top: $I = 2.44, 2 = 2.55, 3 = 2.90, 4 = 3.19, 5 = 3.48; \delta$ — зависимость $(\Delta I/I_0)^{\min}$ от P_{Cs} для $j_c^e = 0.9$ (I) и 1.45 A/cm² (2).

причина увеличения остаточного тока для малых j_c^e остается при этом неясной. Тем не менее такой характер зависимости наблюдался при всех исследованных давлениях, причем разный характер для области больших и малых токов имеют зависимости и других параметров, характеризующих АН, например V_a^{abn} (рис. 5).

В отличие от тока нижняя граница области существования АН по давлению паров цезия является очень резкой. На рис. 6, *а* приведена типичная зависимость $(\Delta I/I_0)^{\min}$ по ВАХ при разных давлениях вблизи этой границы. Так как диапазон изменения $P_{\rm Cs}$ относительно невелик, то небольшое изменение эмиссии катода при изменении давления компенсировалось небольшим изменением температуры катода и ВАХ для всех режимов совпадали с точностью 1–2%. Видно, что при уменьшении $P_{\rm Cs}$ всего на 5–7% происходит переход от хорошо развитого АН (кривая 4) к полному его исчезновению. Изменение тока эмиссии катода слабо влияет на границу перехода (рис. 6, δ).

Обсуждение результатов и заключение

Проведенные исследования очертили область существования режимов АН — режимов с аномально высокой скоростью генерации ионов в анодной области после начального запирания тока в ПКЭ. Оказалось, что эта область значительно шире, чем считалось ранее, так что АН может иметь место практически во всех режимах выше порогового давления $\sim 2-2.5 \cdot 10^{-2}$ Тор, которое, по-видимому, слабо зависит от геометрии разрядного промежутка и управляющей сетки. При этом АН распространяется на область малых токов эмиссии катода и малых Е_a, которая ранее считалась свободной от него. Оказалось также, что наиболее характерным для АН являются не режимы его возникновения с полным начальным запиранием тока (преимущественно исследовавшиеся ранее), а режимы, где АН возникает при некотором пороговом начальном запирании тока (в общем случае много меньшем полного) и приводит к резкому уменьшению времени восстановления тока и прекращению дальнейшего роста начального запирания с ростом $|V_e^-|$.

К сожалению, полученные результаты не дали определенных указаний на причину возникновения аномальной генерации и АН и выяснение действительного механизма можно будет сделать только после исследования АН на уровне параметров плазмы. Однако некоторые соображения можно высказать и на основании полученных данных.

Прежде всего режимы возникновения АН при неполном начальном запирании (рис. $1, \delta$) показывают, что процессы, приводящие к восстановлению тока, могут начинаться очень быстро после начала его запирания — менее чем через 100–50 нс. Это приводит к тому, что рост приэлектродных слоев у витков сетки и начального запирания тока прекращается, несмотря на увеличение отрицательного напряжения на ней.

При пороговых импульсах $(V_g^- \cong V_g^a)$, когда процессы, вызывающие АН, еще не слишком интенсивны, отпирание тока может начинаться с задержкой, но раньше, чем при $|V_g^-| < |V_g^a|$ (кривые 2–4 на рис. 1, δ). Но далее при увеличении $|V_g^-|$ всего на несколько V отпирание тока, занимающее тоже ~ 100 нс, начинается сразу же за его запиранием (кривые 5 и 6 на рис. 1, ϵ). Столь малое время до начала отпирание тока ставит под сомнение связь восстановления тока с ростом концентрации при ступенчатой ионизации газа разогретыми электронами плазмы. Как уже отмечалось, ступенчатая ионизация принципиально инерционный процесс, так что рост концентрации задержан на несколько десятых мкс как в эксперименте [8, Ч. II], так и при расчете [9].³ "Перегрев" электронов при большой плотности энергии ленгмюров-

³ Следует отметить, что основной рост концентрации приходится на период, когда ток уже восстановился [3,4], так что генерация ионов происходит в основном за счет энергии, запасенной в связанных электронах.

ских волн (обогащение ФРЭ быстрыми частицами) не снимает иннерционности ступенчатой генерации.

Иная картина должна иметь место, если восстановление тока обусловлено модуляционной неустойчивостью и коллапсом ленгмюровских волн. В этом случае в возникающих областях разреженной плазмы — кавернах генерируются быстрые электроны и ионы [6]. Такие электроны могут вызывать прямую безынерционную ионизацию атомов Cs на границе приэлектродного слоя витков сетки. С другой стороны, быстрые ионы могут успевать подходить к слою за времена порядка 100 нс, если они образовались на расстоянии в десятые мм от него. Если быстрых частиц много, то они сразу должны вызвать отпирание тока и послелующий рост концентрации всего лишь сопутствующий АН эффект. Если же быстрых частиц недостаточно для "мгновенного" отпирания тока, то они все равно могут замедлять рост приэлектродных слоев и способствовать восстановлению тока.

Если восстановление прозрачности ячеек сетки действительно происходит за счет коротковолновой модуляционной неустойчивости типа OTSI [10], то легко объяснить пороговость появления АН в зависимости от амплитуды отрицательного импульса. Необходимый уровень энергии W_e электронов, при котором возникает ОТSI, для размытого пучка с $v_b/v_T \gg (n/n_b)^{1/3}$ оценивается как $W_e/T_e \ge (15j_T/j_e)^{2/5}$ [10] $(j_T = nv_{Te}/4,$ *j_e* — плотность протекающего тока), для узкого — как $W_e/T_e \ge j_T/j_e$ [11]. И в том и в другом случае для типичных условий ПКЭ в режимах с АН ($T_e \sim 0.5$ эВ, $j_e \sim 1$ А/см², $j_T \sim 5$ А/см²) энергия пучка получается не слишком большой — порядка 10-15 эВ, что вполне согласуется с минимальным выбросом анодного напряжения, при котором возникает АН при малых Е_a. Заметим, что из приведенных соображений никак не следует пороговость появления АН с ростом давления. Рост концентрации нейтральных атомов непосредственно только уменьшает длину столкновительного затухания волн и амплитуду раскачиваемых колебаний, т.е. влияет в противоположном направлении. Это позволяет думать, что причина нетривиальна и может быть связана с самыми неожиданными эффектами, например с условиями поглощения и отражения волн на прианодном ленгмюровском слое.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 95-02-05133-а).

Список литературы

- Каплан В.Б., Макаров А.Н., Марциновский А.М. и др. // ЖТФ. 1977. Т. 47. Вып. 2. С. 274–280.
- [2] Каплан В.Б., Марциновский А.М., Мустафаев В.Ф. и др. // ЖТФ. 1979. Т. 49. Вып. 3. С. 527–533.
- [3] Бакит Ф.Г., Костин А.А., Марциновский А.М. и др. // Письма в ЖТФ. 1979. Т. 5. Вып. 8. С. 905–908.

- [4] Бакшт Ф.Г., Богданов А.А., Каплан В.Б. и др. // Физика плазмы. 1981. Т. З. № 5. С. 547–549.
- [5] Арцимович А.А., Сагдеев Р.З. Физика плазмы для физиков.
 М.: Энергоатомиздат, 1973. 227 с.
- 6] Захаров В.Е. // ЖЭТФ. 1972. Т. 62. Вып. 6. С. 1745.
- [7] Cheung P.Y., Wong A.M. // Phys. Fluids. 1985. Vol. 28(5).
 P. 1538.
- [8] Бакшт Ф.Г., Каплан В.Б., Костин А.А. и др. // ЖТФ. 1978. Т. 48. Вып. 11. С. 2279–2296.
- [9] Бакшт Ф.Г., Костин А.А. Математическое моделирование процессов в низковольтном плазменно-пучковом разряде. М.: Энергоатомиздат, 1990. 136 с.
- [10] Галеев А.А., Сагдеев Р.З., Шапиро В.А., Шевченко В.И. // ЖЭТФ. 1977. Т. 72. Вып. 2. С. 508–515.
- [11] Незлин М.В. Динамика пучков в плазме. М.: Энергоатомиздат, 1982. 264 с.