05;07;12

Наблюдение процесса намагничивания массивного ферромагнетика с помощью нейтронной радиографии с рефракционным контрастом

© К.М. Подурец, Р.Р. Чистяков, С.Ш. Шильштейн Российский научный центр "Курчатовский институт" 123182 Москва, Россия (Поступило в Редакцию 18 декабря 1995 г.)

Прямое наблюдение внутренней доменной структуры в процессе намагничивания ферромагнетика проводилось на примере нитевидных кристаллов железа и монокристаллических пластин кремнистого железа с использованием метода порошковых фигур и магнитооптического эффекта Керра [1-3]. В обоих случаях основные домены представляют собой слои, прорастающие сквозь весь кристалл, а замыкающие домены имеют клиновидную форму и из самой картины легко определяются направления намагниченности доменов. Поэтому по изменению картины можно судить о перестройке объемной доменной структуры в процессе намагничивания. При приложении поля вдоль основных доменов те из них, которые исходно намагничены по полю, росли за счет доменов с обратной намагниченностью и замыкающих доменов. Вблизи острых углов (например, на торцах нитевидных кристаллов) замыкающие домены с поперечной намагниченностью сохранялись в полях до 6 кГс, хотя обычно считается, что процессы намагничивания завершаются значительно раньше. С помощью оптических методов, выявляющих домены только на поверхности, изучать процессы намагничивания массивного ферромагнетика невозможно. В работах [1,4] было показано, что метод нейтронной радиографии с рефракционным контрастом позволяет наблюдать как отдельные доменные границы в объеме массивного ферромагнетика, так и области неоднородного магнитного поля. Это делает реальной задачу прямого наблюдения процесса намагничивания в массивном ферромагнетике. В предыдущих работах с помощью нейтронрефракционных методов была выявлена картина расположения доменных границ в объеме цилиндрических кристаллов кремнистого железа [4-6]. Цель данной работы — наблюдение процессов намагничивания в таких кристаллах с использованием нейтронной радиографии с рефракционным контрастом.

В нейтронной радиографии с рефракционным контрастом изображение объекта формируется нейтронами, прошедшими через объект без преломления, поэтому границы доменов, на которых происходит преломление нейтронов [7]; оказываются на радиограммах темными [3]. Отделение непреломленного пучка от преломленных осуществляется с помощью двухкристального спектрометра при высоком угловом разрешении [8]. Образец помещается между кристалломмонохроматором и кристаллом-анализатором, а кассета с конвертором (фольга из гадолиния) и рентгеновской пленкой — после анализатора (рис. 1). Пространственное разрешение в такой схеме определяется расходимостью пучка и расстоянием образец–пленка, и при расстоянии в 6 см оно составляло в описанных ниже экспериментах 0.3 мм. Размер пучка был равен 20×30 мм, он определялся размерами кристаллов германия, использованных в качестве монохроматора и анализатора, и брэгговским углом при отражении (111) и длине волны 0.15 нм. Экспозиция составляла 10 ч.

В качестве образцов использовались цилиндрические монокристаллы Fe–Si (3% вес.) с осью [001] и диаметром 13 мм, выращенные в ФИЧСАН (Прага) методом бестигельной зонной плавки. Цилиндры помещали в постоянный магнит (рис. 1), так что горизонтально расположенный образец просвечивался препендикулярно его оси. Эксперимент в поле 1.5 кГс проводили на образце 1 длиной 22 мм, в полях 3.5–8 кГс — на образце 2 длиной 9 мм при изменении величины зазора в магните.

В исходном состоянии внутренняя часть ицилиндров построена из слоев, перпендикулярных его оси и состоящих из доменов, векторы намагниченности которых [100] и [010] лежат в этих слоях (рис. 2, a), а наружная часть цилиндра построена из доменов, намагниченных вдоль оси цилинда (рис. 2, δ) [6]. В соответствии с этим при использованной геометрии эксперимента на радиограмме выявляются границы между слоями и граница между внутренней и приповерхностной областями с разными направлениями намагниченности (рис. 3, a). В поле 1.5 кГс (рис. 3, δ) происходит уменьшение диаметра слоистой области и уменьшение толщины самих слоев.

Рис. 1. Схема эксперимента. *1,2* — кристаллы монохроматор и анализатор; *3* — кассета с пленкой; *4* — образец; *5* — постоянный магнит.

[001]

Рис. 2. Схема доменной структуры цилиндрического кристалла Fe–Si. *а* — замыкание магнитного потока в слоях, *б* — между слоями.

Таким образом, в этом случае объем части кристалла, намагниченной перпендикулярно полю, действительно уменьшается. Одновременно, по-видимому, растет объем доменов, намагниченных параллельно полю; на это указывает увеличение толщины приповерхностной, неслоистой части цилиндра. В поле 3.5 кГс наблюдается значительное искажение слоистой структуры внутри кристалла (рис. $4, a, \delta$), а в поле 5.5 кГс исходная слоистая доменная структура кристалла полностью разрушается (рис. 4, в). В центральной части цилиндра преломления нейтронов не наблюдается, что указывает на исчезновение доменных границ, т.е. полное намагничивание этой части цилиндра. В то же время на изображениях кристаллов у торцов цилиндра происходит увеличение почернения, эти части кристалла становятся менее "прозрачными". Другими словами, число границ на пути нейтронов возрастает из-за измельчения доменов. В то же время изображения отдельных доменных границ здесь отсутствует, поскольку размеры доменов не выходят за пределы пространственного разрешения. Наконец, в поле 8 кГс преломление нейтронов во всем объеме цилиндра исчезает (рис. 4, c), что указывает на отсутствие внутри него доменных границ, т. е. близость к состоянию полного намагничивания кристалла.

Характер перестройки доменной структуры в поле свидетельствует о преобладании в слабых полях процессов смещения — происходят рост объема доменов, намагниченных вдоль поля, и уменьшение объема доменов с поперечной намагниченностью. Неоднородность намагниченности в поле 5.5 гКс указывает на задержку намагничивания у торцов кристалла, перпендикулярных приложенному полю, что согласуется с данными [2]. При этом центральная часть кристалла намагничена практически до насыщения, а плотность доменных границ у торцов возрастает, т.е. происходит "вытеснение" границ из центральной части кристалла. Общая картина перестройки объемной доменной структуры массивного кристалла аналогична наблюдавшейся ранее на кристаллах со сквозной доменной структурой.

Рис. 3. Радиограммы кристалла Fe–Si (образца 1) без поля (a) и в поле 1.5 кГс (δ).

Рис. 4. Радиограммы кристалла Fe–Si (образца 2) без поля (*a*), в поле 3.5 (*б*), 5.5 (*в*) и 8 кГс (*г*).

Наблюдение неоднородности намагниченности массивных образцов может быть основой исследования процессов намагничивания в изделиях, изготовляемых из поликристаллических материалов, что важно для выявления деталей процессов, определяющих природу потерь в элементах технических устройств. При наблюдении пространственной неоднородности намагниченности высокое пространственное разрешение не столь важно, как при наблюдении отдельных границ. Поэтому можно использовать более крупные объекты и изучать процессы, происходящие в реальных устройствах, например внутри массивных корпусов. В этом случае особенности нейтронного просвечивания, обусловленные наличием у нейтронов магнитного момента в сочетании с высокой проникающей способностью, проявятся в полной мере.

Авторы благодарят В.А. Соменкова за полезные дискуссии и Ю.А. Булановского и А.И. Рогачева за помощь в проведении эксперимента. Работа поддерживается Российским фондом фундаментальных исследований, проект № 95-02-04691-а.

Список литературы

- Podurets K.M., Somenkov V.A., Shilstein S.S. // Physica B. 1989. Vol. 156/157. P. 691–693.
- [2] Wiliams H.J., Bozorth R., Shokley R. // Phys. Rev. 1949.
 P. 155. Пер. в сб. "Физика ферромагнитных областей". М.: ИЛ, 1951. С. 133–179.
- [3] Fowler C.A., Fryer E.M., Treves D. // J. Appl. Phys. 1961. Vol. 32. P. 296S–297S.
- [4] Podurets K.M., Somenkov V.A., Chistyakov R.R., Shilstein S.S. // Physica B. 1989. Vol. 156/157. P. 694–697.
- [5] Елютин Н.О., Бублейник А.О., Соменков В.А., Шильитейн С.Ш. // Письма в ЖЭТФ. 1973. Т. 18. С. 318–320.
- [6] Подурец К.М., Сокольский Д.В., Чистяков Р.Р., Шильштейн С.Ш. // ФТТ. 1991. Т. 33. С. 2954–2961.
- [7] Hughes D.J., Burgy M.T., Heller R.B., Wallace J.W. // Phys. Rev. 1949. Vol. 75. Р. 565. "Физика ферромагнитных областей". М.: ИЛ, 1951. С. 307–315.
- [8] Шильштейн С.Ш., Марухин В.И., Каланов М., Соменков В.А. // ПТЭ, 1971. № 3. С. 70–73.