06;11;12

Влияние термообработки на электрофизические свойства тонких пленок диселенида меди и индия

(C) М.-Р.А. Магомедов, Дж.Х. Амирханова, Ш.М. Исмаилов, П.П. Хохлачев, Р.З. Зубайруев

Институт физики Дагестанского научного центра РАН, 367003 Махачкала, Дагестан

(Поступило в Редакцию 7 декабря 1994 г.)

Исследованы структурные, электрические, оптические и теплофизические свойства тонких поликристаллических пленок перспективного для изготовления солнечных элементов тройного полупроводника CuInSe₂. Тонкие пленки получены термическим испарением порошков CuInSe₂ и Se из двух автономных источников и осаждением в замкнутой ячейке (квазиравновесное осаждение) в высоком вакууме. Проанализировано влияние отжига на воздухе на параметры тонких пленок и динамику изменения свойств пленок от длительности отжига. Приведены температурные зависимости электропроводности, подвижности, теплопроводности тонких пленок CuInSe₂, спектральная зависимость фототока короткого замыкания фоточувствительной структуры Au-CuInSe₂-Au.

Исследование методов получения, электрофизических, теплофизических и оптических свойств тройных алмазоподобных полупроводников $CuInC_2^{VI}$ (где C–S, Se, Te) представляет интерес в связи с практическим применением тонких пленок этих материалов для создания преобразователей солнечной энергии в электрическую [1,2]. Уникальное сочетание физических свойств с относительно низкой стоимостью материала позволяет широко использовать тонкие пленки этих полупроводников в дешевых, легких и гибких фотопреобразователях большой площади [3].

Однако до сих пор не решена проблема получения тонких пленок CuInC^{VI} с большой фоточувствительностью. Для решения этой задачи мы применили усовершенствованный метод испарения порошков тройного полупроводника и халькогенидов S, Se, Te из двух автономных источников и разработанный нами метод осаждения в замкнутой ячейке в высоком вакууме.

По своим технологическим и электрофизическим свойствам наиболее преспективным для создания пленочных фотопреобразователей является полупроводник CuInSe₂.

В настоящей работе приведены результаты исследований электрических, теплофизических и оптических свойств тонких поликристаллических пленок, полученных термическим испарением в высоком вакууме порошков CuInSe₂ и Se из двух автономных источников и осаждением в замкнутой ячейке.

Способ и параметры полученных пленок CuInSe₂ из двух автономных источников описаны нами в работе [4]. Этим методом были получены поликристаллические слои стехиометрического состава толщиной 0.2–5 мкм на подложках из стекла, слюды, ситалла и молибдена, *n*- и *p*-типа проводимости. Определены оптимальные температуры подложки и испарителя, механические и кристаллографические свойства этих слоев на различных подложках, режимы термообработки в вакууме, на воздухе и в парах селена.

Одной из причин нестехиометричности поликристаллических пленок CuInSe₂ является дефицит легколетучей компоненты Se и процентное соотношение содержания Cu и In в составе пленок. При относительно низких температурах подложки ($T_{\rm под} < 250^{\circ}$ C) слои получаются *p*-типа проводимости, но с отклонением от стехиометрии и в составе слоев наблюдаются включения соединений Se с Cu и In и окислы этих металлов. При высоких температурах подложки ($T_{\rm под} > 500^{\circ}$ C) происходит реиспарение селена с поверхности образующейся пленки и слои получаются *n*-типа проводимости и тоже с отклонением от стехиометрии. Приведенные противоречия характерны для всех способов получения тонких пленок CuInSe₂, описанных в литературе.

Разработанный нами метод осаждения тонких пленок сложных полупроводников в замкнутом объеме позволяет избежать указанные противоречия, так как дает возможность управлять давлением паров легколетучей компоненты в зоне роста слоя, следовательно, управлять содержанием этой компоненты в составе растущего слоя. Этот метод выгодно отличается простотой, экономичностью и хорошей воспроизводимостью параметров пленок.

Осаждением в замкнутом объеме (квазиравновесном осаждением) были получены поликристаллические пленки CuInSe₂ стехиометрического состава на подложках из стекла, слюды, ситалла и молибдена. Пленки получались толщиной 0.5–10 мкм. При постоянном режиме осаждения толщина пленки зависела от времени напыления. Слои были *p*-типа проводимости с относительно невысоким удельным сопротивлением, отличались чистой поверхностью и четко ограненными кристаллитами и имели линейные размеры 0.2–0.5 мкм.

Рис. 1. Топография образцов, полученных за один цикл напыления. 1 — слой CuInSe₂, 2 — электроды; а — конфигурация образцов для исследования оптических свойств; δ , ϵ — электрофизических свойств; ϵ — структура Au-CuInSe₂.

За один цикл напыления получались образцы разной конфигурации, позволяющие сделать комплексные электрофизические и оптические исследования, проследить динамику изменения параметров пленок в процессе термоотжига и легирования на абсолютно идентичных образцах (рис. 1).

Для стабилизации механических и электрофизических свойств пленки отжигались на воздухе при температурах 473-673 К в течении 20, 40, 60 мин. Для исследования электрофизических свойств сразу после осаждения, в некоторых случаях после отжига на слои CuInSe₂ наносились омические контакты из золота. На слои золота наносились точечные контакты из индия для пайки тонких медных проводников. Контакты из золота и индия наносились термическим испарением материала в высоком вакууме.

Механические, электронно-микроскопические и электронографические исследования показали, что в процессе отжига увеличивается механическая прочность пленок, улучшается адгезия, уменьшается количество аморфных включений на поверхности слоев, кристаллиты укрупняются и достигают размеров 0.4–0.8 мкм.

Известно, что электрофизические, оптические и теплофизические свойства тонких пленок полупроводников существенно зависят от метода получения, режима осаждения, легирования и последующей термообработки. Для выяснения связи свойств слоев CuInSe₂ от предыстории образцов были исследованы вольт-амперные характеристики (BAX), температурная зависимость холловской подвижности μ_x , электропроводность σ , теплопроводность \varkappa и оптические свойства пленок, полученных разными методами, nи *р*-типа проводимости, свеженапыленных и подвергнутых отжигу.

В табл. 1 и 2 приведены электрофизические параметры тонких пленок CuInSe₂, полученных испарением из двух автономных источников и испарением в замкнутой ячейке.

Из большого количества образцов для исследований выбирались слои, у которых ширина запрещенной зоны E_g , определенная из данных оптического поглощения, близки к значению E_g в монокристаллических объемных образцах.

На рис. 2, *а* приведены типичные ВАХ тонких поликристаллических пленок *n*-типа проводимости, полученных испарением порошков CuInSe₂ и Se из двух источников, на рис. 2, δ — пленок *p*-типа проводимости, полученных в замкнутом объеме.

Анализ ВАХ и динамика их изменения в зависимости от времени последовательного отжига (20, 40, 60 мин) показывает, что в процессе отжига проводимость пленок резко увеличивается, стабилизируются электрические параметры. Эти изменения ВАХ связаны с уменьшением механических напряжений на границе раздела подложка-пленка и с гомогенизацией слоев CuInSe₂. Увеличение проводимости связано, по нашему мнению, с восполнением дефицита селена в слоях атомами кислорода.

Рис. 2. Вольт-амперные характеристики пленок CuInSe₂. Тип проводимости пленки: a - n, $\delta - p$; время отжига, мин: 1 - 0, 2 - 20, 3 - 40, 4 - 60.

Форма образца	Номер образца	<i>R</i> , кОм 5–12	σ , $\mathrm{Om}^{-1} \cdot \mathrm{m}^{-1}$	$\mu_x, rac{\mathrm{cM}^2}{\mathrm{B}\cdot\mathrm{c}}$	Тип прово- димости	$n,$ cm $^{-3}$	Толщина слоя $lpha,$ мкм
	33(1)	$3.2\cdot 10^3$	5.42	_	n	$2.45\cdot 10^{18}$	1.35
_₹₹	33(2)	18.68	61.06	1.56	n	$1.72\cdot 10^{18}$	
	33(3)	9.57	142.91	5.17	n	$8.46\cdot 10^{18}$	
	33(4)	1.34	122.18	9.03	n	$2.99\cdot 10^{18}$	
	35(1) 35(2) 35(3)	$3.48 \cdot 10^3 \\ 5.94 \\ 158 1$	$9.87 \cdot 10^{-1}$ 568.66 42.88	- 16.38 2.91	n n	- 2.77 \cdot 10 ¹⁸ 9 19 \cdot 10 ¹⁷	2
	00 (0)	100.1	12.00	2.01	P	0.10 10	
	35(1)	$222 \cdot 10^3$	$1.035 \cdot 10^{-2}$	-	n	_	2
	35(2)	$400 \cdot 10^{3}$	$4.5 \cdot 10^{-3}$	—	p	- 10	
	35(3)	2.41	730	12.15	n	$3.81 \cdot 10^{18}$	
	35(4)	2.08	796.4	8.46	n	$4.90 \cdot 10^{18}$	
	$37(1) \\ 37(2)$	$3.13\cdot 10^6$ 48.76	$1.68\cdot 10^{-3}\ 115.69$	_ 7.74	$n \\ n$	- 1.60 · 10 ¹⁸	1.3
	37(3)	$52.43 \cdot 10^{3}$	$5.52 \cdot 10^{-1}$	_	p	_	
	37(1)	$1.05 \cdot 10^{6}$	$3.19 \cdot 10^{-3}$	_	n.	_	1.3
	37(2)	12.15	194.25	6.13	$\frac{n}{p}$	$1.97 \cdot 10^{18}$	1.0
	37(3)	8.26	298.82	7.42	p	$2.52 \cdot 10^{18}$	
	37(4)	1.86	1300.9	18.55	\hat{n}	$4.38\cdot10^{18}$	

Таблица 1.

П р и м е ч а н и е. В табл. 1 и 2 цифры в скобках означают. 1 — без отжига, 2-4 — отжиг 20, 40, 60 мин соответственно.

Некоторые образцы в результате отжига претерпевают инверсию знака проводимости с *n*-типа на *p*-тип, что также связано с восполнением дефицита селена в слоях атомами кислорода. Отжиг при указанном режиме более 60 мин приводит к деградации слоев, проводимость падает, ВАХ становятся нестабильными, что связано, вероятно, с уменьшением атомов селена в слоях в процессе длительного отжига. На рис. З показана температурная зависимость холловской подвижности носителей заряда в пленках CuInSe₂ *n*- и *p*-типа проводимости. Зависимость $\mu_x(T)$ представлена кривыми с максимумами, которые располагаются вблизи комнатной температуры $T \approx 300$ К. Такая зависимость μ_x от T предполагает, что при $T \leq 300$ К преобладает механизм рассеяния носителей тока на ионизированных примесях, при

Рис. 3. Температурная зависимость холловской подвижности носителей заряда тонких пленок CuInSe₂. Тип проводимости пленки: $a - n, \delta - p$.

Рис. 4. Температурная зависимость электропроводности пленок CuInSe₂. 1-3 — пленка *n*-типа, отжиг 20, 40, 60 минут соответственно; 4 — пленка *p*-типа проводимости, без отжига.

таолица 2.											
Форма образца	Номер образца	<i>R</i> , кОм 5–12	σ , $Om^{-1} \cdot m^{-1}$	$\mu_x, \frac{\mathrm{cm}^2}{\mathrm{B}\cdot\mathrm{c}}$	Тип прово- димости	$n,$ cm $^{-3}$	Толщина слоя $lpha,$ мкм				
ୢ ୲୶ ୢୄ୶	5K (1) 5K (2) 5K (3) 5K (4)	$284.7 \\ 4.84 \\ 3.88 \\ 0.28$	$4.43 \\ 277.1 \\ 374.24 \\ 5645.77$	$ 1.50 \\ 8.64 \\ 10.74 \\ 34.76 $	$p \\ n \\ n \\ n$	$\begin{array}{c} 1.26\cdot 10^{17}\\ 2.00\cdot 10^{18}\\ 2.17\cdot 10^{18}\\ 1.44\cdot 10^{19}\end{array}$	2.5				
	6K(1) 6K(2) 6K(3)	392.13 3.43 17.68	377 264.96 127.13	3.56 9.12 7.48	$egin{array}{c} n \\ p \\ p \end{array}$	$\begin{array}{c} 6.61 \cdot 10^{16} \\ 6.63 \cdot 10^{18} \\ 1.06 \cdot 10^{18} \end{array}$	3.3				
	7K(1) 7K(2) 7K(3)	$130.75 \\ 6.03 \\ 11.53$	$\begin{array}{c} 6.88 \\ 132.24 \\ 166.01 \end{array}$	$1.34 \\ 1.47 \\ 10.92$	$p \ p \ p \ p$	$\begin{array}{c} 2.91 \cdot 10^{17} \\ 5.42 \cdot 10^{18} \\ 9.43 \cdot 10^{18} \end{array}$	4				
	$ \begin{array}{c} 8K(1) \\ 8K(2) \\ 8K(3) \end{array} $	$73.67 \\ 4.99 \\ 6.48$	8.006 223.9 108.0	0.75 7.07 6.68	$p \\ n \\ p$	$\begin{array}{c} 4.52 \cdot 10^{17} \\ 6.39 \cdot 10^{18} \\ 8.91 \cdot 10^{17} \end{array}$	5.5				
┏╧╧╧╧┓	9K(1) 9K(2) 9K(3)	343.5 153.9 133.73	2.66 4.84 5.23		$p \ p \ p \ p$		5.5				
	10K (1) 10K (2) 10K (3)	$108.48 \\ 102.11 \\ 84.58$	$18.27 \\ 20.34 \\ 23.54$	$1.10 \\ 1.46 \\ 1.34$	$p \ p \ p \ p$	$\begin{array}{c} 1.38\cdot 10^{18} \\ 1.16\cdot 10^{18} \\ 8.60\cdot 10^{17} \end{array}$	3				

Таблица 2.

 $T > 300 \,\mathrm{K}$ — рассеяние на колебаниях решетки. Так как толщина пленок намного больше длины свободного пробега электронов ($l \approx 150 \,\mathrm{\AA}$) и дебаевской длины экранирования, то это исключает возможность существования влияния размерного эффекта и поверхностных состояний на подвижность носителей заряда [5].

На кривых зависимости $\ln \sigma$ от $10^3/T$ в пленках CuInSe₂ как *n*-, так и *p*-типа проводимости наблюдается излом в области температур 160–200 К. Ход температурной зависимости электропроводности (рис. 4) в интервале температур 70–300 К характерен для полупроводников с примесным механизмом переноса носителей заряда.

Температурные зависимости теплопроводности объемных образцов (кривые 1-3) и пленок (кривая 4, правая шкала) приведены на рис. 5. Теплопроводность пленок CuInSe₂ измеряли видоизмененным методом Кольрауша [6] с погрешностью до 15%, которая уменьшалась с понижением температуры (в связи с уменьшением тепловых потерь). Малые значения решеточной теплопроводности в пленках обусловлены, повидимому, рассеянием фононов на точечных дефектах и на границах кристаллитов. В объемных образцах $\varkappa \sim T^{-n}$ (где n = 0.8 - 0.9) и \varkappa определяется в основном трехфононными процессами рассеяния. Вычисленные значения решеточной $\varkappa = 5.3 \, \text{Bt/m} \cdot \text{K}$ при 300 K вблизи к данным эксперимента для образца 1 стехиометрического состава. В образце 2 значение $\varkappa = 3.4 \, \text{Bt/m} \cdot \text{K}$, что меньше расчетных значений и связано с дополнительным рассеянием на точечных дефектах [7,8].

Зависимость параметра $(\alpha \cdot h\nu)^2$ от энергии фотона $h\nu$ для исследованных образцов CuInSe₂ при 300 K приведена на рис. 6 (1 — для монокристаллов; 2 для тонких пленок, полученных испарением из двух источников). Значения коэффициента поглощения α , рассчитанные по данным коэффициентов отражения и пропускания [9], достигали $10^6 - 10^7 \text{ м}^{-1}$ в области прямых переходов. Ширина запрещенной зоны, определенная по точкам пересечения линейных частей

Рис. 5. Температурная зависимость теплопроводности CuInSe₂.

Рис. 6. Зависимость параметра $(\alpha \cdot h\nu)^2$ от энергии фотона $h\nu$ в CuInSe₂.

зависимости $(\alpha \cdot h\nu)^2$ от $h\nu$ с осью энергии фотонов, составляла 0.98 ± 0.02 и 1.08 ± 0.02 эВ для монокристаллов и пленок соответственно. Такое различие может быть связано с небольшим отклонением состава тонких пленок CuInSe₂ от стехиометрического.

На рис. 6 (кривая 3) приведена спектральная зависимость фототока короткого замыкания тонкопленочной структуры Au-CuInSe₂-Au, конфигурация которой приведена на рис. 1. Тонкие слои CuInSe₂ толщиной 2–10 мкм были получены термическим испарением в замкнутой ячейке в высоком вакууме. Золотые и индиевые электроды также были получены термическим испарением в высоком вакууме. Верхние золотые электроды были полупрозрачными.

Как видно из рисунка, спектр фотоэд
с структуры в длинноволновой области ($h\nu < E_g \approx 1.2\,\mathrm{sB}$)

при 300 К экспоненциальный и характеризуется крутизной $s \approx 22 \, \mathrm{sB}^{-1}$, что типично для фотоактивного поглощения в прямозонном полупроводнике CuInSe₂. При $h\nu \ge 1.2$ эВ наступает спад фотоэдс из-за удаления от фотоактивной области поглощения излучения, спад вызван также поглощением излучения в окисном слое In₂O₃ *п*-типа проводимости, спонтанно возникающем на поверхности тройного полупроводника. Наблюдаемая инфракрасная фотоэдс обычно объясняется внешней фотоэмиссией электронов из металла в полупроводник, однако вследствие существования окисного слоя на поверхности полупроводника вероятность проникновения электронов из металла в полупроводник уменьшается. В этом случае заметную долю в значение фотоэдс вносит другой механизм возникновения фотоэдс, связанный с переходом носителей между поверхностными состояниями на границе раздела In₂O₃ и CuInSe₂ и разрешенными зонами тройного полупроводника.

Список литературы

- Современные проблемы полупроводников фотоэнергетики / Под ред. Т. Коутса, Дж. Минина. Пер. с англ. М., 1988. 307 с.
- [2] Szot I., Priuz U. // Appl. Phys. 1989. N 66. P. 6077–6083.
- [3] Potter R.R., Eberspacher C., Fabick L.B. // Proc. 18th IEEE Potovolt. Spec. Conf. Las Vegas, 1985. Vol. 4. P. 1659.
- [4] Магомедов М.-Р.А., Зобов Е.М., Исмаилов Ш.М. и др // Транспортные явления в полупроводниках в сильных полях. Махачкала, 1991. С. 81–89.
- [5] Абдуллаев М.А., Амирханова Дж.Х., Магомедов М.-Р.А. и др. // Неорган. материалы. Изв. АН СССР. Т. 27. Вып. 5. С. 961–964.
- [6] Пленочные термоэлементы / Под ред. Н.С. Лидоренко. М.: Наука, 1985. 232 с.
- [7] Берман Р. Теплопроводность твердых тел. М.: Мир, 1979. 286 с.
- [8] Магомедов М.-Р.А., Абдуллаев М.А., Амирханова Дж.Х. // ФТП. 1991. Т. 26. Вып. 6. С. 1088–1090.
- Belevich N.N., Lukomskii A.Y., Makovetskaja L.A., Cherniakova A.P. // Phys. St. Sol. (b). 1986. Vol. 133.
 P. K49–K51.