Влияние размерных факторов на характер фазовых превращений легких актиноидов

© Э.Э. Лин

Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, Саров, Нижегородская обл., Россия

E-mail: root@gdd.vniief.ru

(Поступила в Редакцию 18 марта 2009 г. В окончательной редакции 6 мая 2009 г.)

Превращения кристаллических фаз легких актиноидов рассматриваются как процессы образования и роста наночастиц. Влияние размерных факторов на характер мартенситных переходов и обратных фазовых превращений исследуется на примере плутония.

Работа выполнена при поддержке научной школы № НШ-1307.2008.1.

1. Введение

Поведение легких актиноидов, например плутония, в условиях внешних воздействий и внутреннего самооблучения во многом определяется их фазовой стабильностью и характером полиморфных превращений кристаллических фаз при наличии фононных эффектов, обусловленных сильным сближением атомов (см., например, [1]). В работах [1-8] экспериментальным путем исследуются мартенситный переход легированного галлием плутония из дельта-фазы (б-Ри) в альфа штрих-фазу (*a*'-Pu) при охлаждении до температур $T \approx 100 \,\mathrm{K}$ и обратный переход в δ -Ри при последующем нагреве до T = 370-600 K, изучается влияние размеров кристаллических зерен б-Ри, концентрации примесей галлия, а также термического циклирования и отжига на характер этих переходов, рассматриваются как диффузионный, так и бездиффузионый механизмы фазовых превращений.

Возникает вопрос о степени соответствия (или несоответствия) установленных эмпирических закономерностей превращений δ -Ри $\rightarrow \alpha'$ -Ри $\rightarrow \delta$ -Ри общеизвестной концепции [9,10] размытых мартенситных переходов, протекащих в твердых телах по бездиффузионному механизму. Данная теория включает в себя как термодинамический, так и кинетический аспекты проблемы и устанавливает влияние размерных эффектов на параметры мартенсита. Значительное влияние на предмартенситное состояние, а также на синергетику мартенситных структур оказывают процессы, протекающие в мезоскопических пространственных масштабах от $\sim 10^{-9}$ до $\sim 10^{-4}$ m. В свете сказанного представляется целесообразным определить размерные и временные характеристики полиморфных превращений плутония в широком диапазоне температур, т.е. рассчитать рост размеров поликристаллов соответствующих фаз во времени при охлаждении и последующем нагреве.

2. Кластерная модель

В соответствии с феноменологическими представлениями [11–13] будем рассматривать полиморфные превращения кристаллических фаз на мезоскопическом уровне как эволюцию нанокластеров в результате их фононных возбуждений и колебательных взаимодействий, приводящих к взаимной компенсации свободных электронных связей "крайних" атомов соприкасающихся объектов и к объединению этих объектов в более крупные частицы. Поскольку α' -фаза Ри отличается от α -фазы наличием относительно малого ($\sim 1-2\%$) количества примесных атомов Ga, а параметры кристаллической решетки этих фаз близки (см., например, [1]), в дальнейшем для простоты будем рассматривать "чистые" переходы $\delta \rightarrow \alpha \rightarrow \delta$.

Процесс роста рассматриваемых объектов описывается с помощью понятия о волне плотности распределения $\varphi(a, t)$ компактных кластеров с выраженными коллективными квантовыми свойствами (в данном случае возбуждениями квазичастиц—фононов), распространяющейся в пространстве эффективных размеров *а* в сторону их увеличения со временем *t*. Качественные оценки основаны на выражении для уширения волнового пакета — соотношении неопределенностей для координаты и импульса в пространстве *a* [12,13]. Это позволяет получить приближенные законы роста среднего размера частиц во времени.

Рассмотрим вначале превращение δ -Ри $\rightarrow \alpha$ -Ри. Будем полагать, что при уменьшении температуры образца на дефектах структуры гранецентрированной кубической решетки происходит образование зародышей моноклинной решетки α -фазы — нанокластеров из восьми атомов с единственной кристаллографически возможной взаимной ориентацией, описанной в [1]. В результате случайных взаимодействий между зародышами сначала образуются малые частицы с определенным в [11] размером $\langle a \rangle_{min}$, несущие элементы кристаллической структуры: в системе появляется ближний порядок. Эти малые

частицы продолжают взаимодействовать с зародышами и между собой, в результате чего происходит их рост. В процессе этого роста в кристаллической структуре частиц появляется квазидальний порядок.

В соответствии с законом [12] $\langle a \rangle \propto t^{2/5}$ роста частиц, образующихся по диффузионному механизму в результате захвата зародышей с колебательным спектром многоатомной молекулы, и при ограничении времени роста, задаваемом кинетикой упорядочения [14] при фазовых превращениях, можно получить следующее выражение для ограничения среднего размера частиц α -фазы:

$$\langle a_{\alpha} \rangle_{\lim} \approx \left(\frac{25k_B \theta_{D\alpha} a_0^3}{16AMm_u \exp \frac{E_v - E_0}{2k_B T}} \right)^{1/5} \left(\frac{l}{c_{\delta}} \exp \frac{E_v - E_0}{k_B T} \right)^{2/5}.$$
(1)

Здесь А — атомный вес, М — число атомов в зародыше, *m_u* — атомная единица массы, *a*₀ — размер зародыша, $\theta_{D\alpha}$ — дебаевский параметр α -фазы, E_0 — энергия зародыша в окружающей среде, Е_v — энергия зародыша внутри частицы, определяемая ее колебательным спектром, k_B — постоянная Больцмана, c_δ — эффективная скорость звука в среде исходного образца, l характерный размер "макроскопической" структуры, например размер зерна в гомогенизированном образце. Температура T_0 начала мартенситного перехода определяется из условия, что средний размер частицы α-фазы становится равным характерному продольному размеру двойника l_{long} . Температура T_* окончания мартенситного перехода определяется из условия, что средний размер частицы а-фазы становится равным критическому размеру $\langle a \rangle_*$ [11], когда в системе появляется квазидальний порядок:

$$\begin{aligned} \langle a_{\alpha} \rangle_{\lim} &= \langle a \rangle_* \\ &\approx (18/25)(4\pi/3)^{1/3} \exp\left((E_v - E_0)/2k_B T_*\right). \end{aligned}$$
(2)

Рассмотрим теперь обратное превращение $\alpha \rightarrow \delta$ при нагревании образца, охлажденного до "критической" температуры T_* . В этом случае небольшая частица α -Ри, окруженная матрицей из δ -Ри, испытывает перестройку своего колебательного спектра в спектр окружающей среды в результате взаимодействий атомов на поверхностях раздела фаз. Этот процесс распространяется внутрь частицы и приводит к перестройке ее колебательного спектра в объеме — происходит полиморфное превращение. Следуя методу [13], можно получить следующий закон роста области обратного превращения при нагревании во всем объеме:

$$\langle a_{\delta} \rangle \approx \left(\frac{3k_B T D(x)}{2Am_u} \right)^{1/2} t,$$
 (3)

где D(x) — табулированная функция Дебая с $x = \theta_D/T$.

По мере увеличения размера области обратного превращения, представляющей собой δ -фазу, восстановленную из α -фазы по механизму, описываемому формулой (3), может присходдить захват кластеров из исходной матрицы δ -фазы в зоне ее "стыка" с мартенситной частицей α -фазы и с областью восстановленной δ -фазы. Кроме того, может происходить захват кластеров из частицы α -фазы. Внутренняя энергия кластеров может соответствовать как промежуточному состоянию между двумя кристаллическими фазами (двухатомные и многоатомные молекулы), так и спектру колебаний атомов в твердом теле. Закон роста области обратного превращения в случае зародышей — многоатомных молекул — имеет следующий вид:

$$\langle a_{\delta} \rangle \approx \left[\frac{75k_B \theta_{0\delta} (1 - A_{\delta} T) a_0^3}{16\pi A M m_u \exp\left((E_{v\delta} - E_{0i})/2k_B T\right)} \right]^{1/5} t^{2/5}, \quad (4)$$

где E_{0i} — энергия захватываемого объекта, зависящая от количества атомов в кластере, индекс *i* обозначает фазу, $E_{v\delta}$ — энергия захваченного объекта внутри области обратного превращения, определяемая колебательным спектром твердотельной частицы. Здесь учтено, что в результате размягчения упругости происходит уменьшение дебаевского параметра по линейному закону [15] $\theta_{Di} = \theta_{0i}(1 - A_iT), \ \theta_{0i}$ — дебаевский параметр при T = 0. В случае захвата зародышей непосредственно из α -фазы, когда их колебательный спектр $E_{v\alpha}$ соответствует спектру колебаний твердого тела, выражение для среднего размера частиц δ -фазы запишется следующим образом:

$$\langle a_{\delta} \rangle \approx \left[\frac{75k_B a_0^3 \theta_{0\delta} (1 - A_{\delta} T)}{16\pi A M m_u \exp\left((E_{v\delta} - E_{v\alpha})/2k_B T \right)} \right]^{1/5} t^{2/5}.$$
(5)

Время роста в формулах (3)–(5) определяется из условия полного обратного превращения $\alpha \to \delta$.

В случае зародышей — димеров той или иной фазы — получаем из формулы (4), исходя из условия экстремума $\langle a \rangle'(T) = 0$, выражения для определения температур T_i , при которых размер частиц достигает максимума в плоскости ($\langle a \rangle$, T)($\langle a \rangle''(T) < 0$),

$$T_i = \frac{1}{2} \left(\frac{\vartheta_{vi}}{A_\delta} \right)^{1/2}.$$
 (6)

Здесь ϑ_{vi} — характеристическая температура колебаний атомов. В случае димеров δ -фазы величина T_i соответствует температуре $T_s = (\vartheta_{v\delta}/4A_{\delta})^{1/2}$ "начала" обратного превращения $\alpha \to \delta$, в случае димеров α -фазы температуре $T_f = (\vartheta_{v\alpha}/4A_{\delta})^{1/2}$ завершения обратного превращения $\alpha \to \delta$. Зная критическую температуру T_* окончания мартенситного превращения и температуру T_s начала обратного превращения при нагревании, можно определить температурный "гистерезис" $T_s - T_*$.

Размер зерна <i>l</i> , µm	Начало перехода $\delta ightarrow lpha$ $T_0, { m K}$	Окончание перехода $\delta ightarrow lpha$ $T_*, { m K}$	Начало обратного перехода <i>T</i> s, K	Окончание обратного перехода <i>T_f</i> , К	Температурный гистерезис $T_s - T_*, \mathbf{K}$
17	155	98	289	368	191
	(128)	(118)	(273)	(360)	(155)
30	168	95	289	368	194
	(148)	(118)	(300)	(390)	(182)

Характеристические температуры $\delta \to \alpha \to \delta$ -превращений плутония

П р и м е ч а н и е. В скобках приводятся экспериментальные данные [2].

В случае зародышей с колебательным спектром твердого тела особыми точками кривой (5) в плоскости ($\langle a \rangle, T$) являются те, в которых $1 - A_{\delta}T = \exp\left((E_{v\delta} - E_{v\alpha})/2k_BT\right)$, т.е. упругие колебания атомов уравновешиваются размягчением упругости. При более высоких температурах размягчение упругости становится преобладающим фактором и обратное превращение "затормаживается". Отсюда получаем следующее выражение для величины T_M , соответствующей уменьшению темпа роста среднего размера с температурой для данного числа M атомов в зародыше — кластере с колебательным спектром твердого тела:

$$T_M = \left(\frac{3M}{2} \frac{\theta_{0\alpha}^2 - \theta_{0\delta}^2}{20A_\delta}\right)^{1/3}.$$
 (7)

Отсюда видно, что существует дискретный спектр характеристических температур T_M , каждая из которых соответствует своему числу M. Этот дискретный спектр определяет ступенчатый характер роста частицы при нагревании в результате захвата кластеров с различным числом атомов.

При длительном отжиге образцов после каждого цикла охлаждение—нагрев происходит коалесценция частиц, испытавших обратный переход $\alpha \to \delta$, и гомогенизация среды. Следуя методу [13], получаем, что при точечном соприкосновении частиц рост среднего размера гомогенизированной области описывается следующей формулой:

$$\langle a \rangle \approx \left(\frac{12N_c k_B T}{a_c A m_u n}\right)^{1/4} t^{1/2}.$$
 (8)

Здесь N_c — число атомов в кристаллической ячейке, a_c — характерный размер ячейки, n — концентрация атомов.

3. Результаты расчетов, сравнение с экспериментами

Расчеты проводились с учетом данных [1,15] и зависимости [16] дебаевского параметра малой частицы кубической формы от размера. На основании этой зависимости было принято, что характеристические температуры колебаний атомов в зародышах приблизительно равны дебаевскому параметру. Оценки, проведенные по методу [11,12], показывают, что время образования восьмиатомного зародыша α -фазы из димеров δ -фазы Ри составляет $\tau_{\alpha} \sim 10^{-12}$ s, а минимальный размер и время образования частицы с ближним порядком расположения атомов в кристаллической решетке α -фазы плутония равны $\langle a \rangle_{\min} \sim 2 \cdot 10^{-9}$ m, $t_{\min} \sim 1.9 \cdot 10^{-10}$ s. Оцененные параметры определяют предмартенситное состояние, описанное в [1].

Предельные размеры и времена образования мартенситных частиц, оцененные по формуле (1) при $l = 10-30 \,\mu\text{m}$, составляют $\langle a_{\alpha} \rangle_{\text{lim}} = \langle a_{\alpha} \rangle_* \approx 4-11 \,\mu\text{m}$, $\tau \approx 1 - 20$ s. Данные характеристики по порядку величины соответствуют экспериментальным величинам, полученным в упомянутых выше работах с помощью методов электронной микроскопии и дилатометрии. Расчеты по формулам (3)-(5) показывают, что времена обратного превращения при нагреве значительно меньше времен мартенситного перехода и находятся в диапазоне от $\sim 10^{-8}$ до 2 s. В таблице приведены расчетные и экспериментальные значения характеристических температур $\delta \rightarrow \alpha \rightarrow \delta$ превращений плутония при двух фиксированных размерах гомогенизированных зерен. Можно видеть, что расхождение расчетных и экспериментальных данных составляет 2-24%.

Установленное соответствие позволяет оценить наименьший размер зерна исходной матрицы из δ -фазы l_{\min} , при котором еще возможно мартенситное превращение в α-фазу. Полагая, что минимально возможный размер мартенситной частицы равен характерному размеру двойника α -фазы $l_{\text{long}} \approx 1 \, \mu \text{m}$ [1], получаем из формулы (1) $l_{\min} \approx 2.2 \, \mu m$. Поскольку в соответствии с формулами (1), (2) $\langle a_{\alpha} \rangle_{\lim} \approx 0.45l$, размер зерна, меньший, чем $l_{\rm min} \approx 2.2\,\mu{\rm m}$, может быть достигнут в результате термического циклирования, т.е. при последовательных циклах: охлаждение до перехода в α -фазу \rightarrow нагрев до восстановления δ-фазы — последующее охлаждение до перехода в а-фазу и т.д. При этом в каждом последующем цикле размер мартенситной частицы становится меньше, чем в предыдущем. Это соответствует экспериментальным данным [5–7], относящимся к стабилизации δ-Ри при термическом циклировании, т.е. к уменьшению объема мартенсита на каждом последующем цикле вплоть до прекращения перехода $\delta \rightarrow \alpha'$.

ператур, при которых происходит уменьшение темпа роста среднего размера частицы при числах атомов в зародыше M от 6 до 9, $T_M = 318$, 335, 350, 364 K, соответствует экспериментальному интервалу температур 328-360 K, в котором наблюдаются "ступеньки" на дилатометрических кривых для относительного удлинения образцов и соответствующие им пульсации на кривых для скорости удлинения образцов в опытах [3,4].

Оценки по формуле (8) показывают, что при T = 600 K за время 30 min размер области гомогенизации достигает величины около 2 cm. Это соответствует данным [7], касающимся дестабилизации δ -Ри при длительном отжиге после каждого цикла охлаждение—нагрев, т. е. протеканию мартенситного перехода при последующем охлаждении в прежнем объеме.

4. Обсуждение результатов

Как и теория размытых мартенситных переходов, протекающих по бездиффузионному механизму [9,10], предлагаемая модель перехода δ -Pu $\rightarrow \alpha$ -Pu как диффузионного образования кристаллических частиц показывает, что с уменьшение температуры T_0 начала мартенситного перехода, а при $l < l_{\min}$ мартенситное превращение "блокируется". Имеет место соответствие расчетных и экспериментальных данных, относящихся к влиянию размерных факторов на характер фазовых превращений при охлаждении образцов плутония до умеренно низких температур 370–600 К.

Что касается влияния легирования плутония галлием, то анализ приведенной в [1] фотографии матрицы из δ -Ри при концентрации Ga около 1.6 at.% показывает, что примесные частицы расположены на расстояниях от 5 до 75 μ m друг от друга, а характерное расстояние между ними составляет $l \approx 40 \,\mu$ m. Из формулы (1) находим, что при данном характерном размере исходной матрицы температура начала мартенситного перехода равна $T_0 = 178$ К. Эксперимнетальная величина [2] при концентрации Ga 1.7 at.% равна 163 К. Можно видеть, что расхождение расчетной и опытной величин T_0 составляет около 9%. С увеличением концентрации галлия происходит уменьшение эффективного размера исходной матрицы. В данной модели это должно приводить к уменьшению T_0 , что и наблюдалось в опытах [2].

Достигнутое соответствие расчетных и экспериментальных данных дает основание для применения модели при описании поведения других легких актиноидов с сильным сближением атомов [1] (Pa, U, Np).

5. Заключение

Предложенная кластерная модель полиморфных превращений плутония как процессов образования и роста кристаллических наноструктур позволяет описывать влияние размерных факторов на характер переходов δ -фазы в α -фазу при охлаждении образцов до температур около 100 K и на характер обратных превращений при нагревании до температур 370–600 K.

Список литературы

- З.С. Хеккер. В кн.: Плутоний. Фундаментальные проблемы / Пер. с англ. под ред. Б.А. Надыкто, Л.Ф. Тимофеевой. РФЯЦ-ВНИИЭФ, Саров (2003). Т. 2. С. 292.
- [2] S.S. Hecker, D.R. Harbur, T.G. Zocco. Progr. Mater. Sci. 49, 429 (2004).
- [3] S. Kitching, P.G. Planterose, D.C. Gill. In: Plutonium futures — the science /Ed. G.D. Jarvinen. American Institute of Physics (2003). P. 79.
- [4] D.S. Schwartz, J.N. Mitchell, D.V. Pete, M. Ramos. J. Met. 55, 9, 28 (2003).
- [5] K.J. Blobaum, C.R. Krenn, M.A. Wall, T.B. Massalski, A.J. Schwartz. Acta Mater. 54, 4001 (2006).
- [6] J.T. Orme, M.E. Faters, B.J. Ward. In: Plutonium and other actinides 1975 / Eds H. Blank, R. Linder, North-Holland Publ. Company, Amsterdam (1975). P. 761.
- [7] J.N. Mitchell, S.S. Hecker, F.J. Freibert. In: Fundamental plutonium properties. VIII Int. Workshop. Snezhinsk, Russia (2008). P. 5.
- [8] P.E.A. Turchi, L. Kaufman, Zi-Kui Liu. In: Plutonium futures — the science 2006. A Topical Conf. on Plutonium and Actinides. Acilomar, Pacific Grove, California (2006). P. 57.
- [9] Г.А. Малыгин. УФН 171, 2, 187 (2001).
- [10] Г.А. Малыгин. ФТТ 50, 8, 1480 (2008).
- [11] Э.Э. Лин. Хим. физика 18, 11, 91 (1999).
- [12] Э.Э. Лин. ФТТ 42, 10, 1893 (2000).
- [13] Э.Э. Лин. Письма в ЖТФ 35, 9, 61 (2009).
- [14] Х.Г. Ван Бюрен. Дефекты в кристаллах. ИЛ, М. (1962). С. 303.
- [15] Э.С. Лоусон, Б. Мартинез, Д.А. Робертс, Д.У. Ричардсон, мл., Б.И. Беннет. Плутоний. Фундаментальные проблемы / Пер. с англ. под ред. Б.А. Надыкто, Л.Ф. Тимофеевой. РФЯЦ-ВНИИЭФ, Саров (2003). Т. 1. С. 193.
- [16] И.Д. Морохов, В.П. Петинов, Л.П. Трусов, В.Ф. Петрунин. УФН 133, 4, 653 (1981).