Когерентное неупругое отражение электронов от неупорядоченных сред с резкой границей

© Б.Н. Либенсон

Оптическое общество им. Д.С. Рождественского, 199034 Санкт-Петербург, Россия

E-mail: libenson@peterlink.ru

(Поступила в Редакцию 20 декабря 2005 г. В окончательной редакции 6 апреля 2006 г.)

Рассматривается явление слабой локализации электронов, неупруго рассеивающихся в неупорядоченной среде с резкой границей. Неупругое столкновение электрона представляет собой однократное возбуждение объемного плазмона. Когерентность является следствием интерференции электронных волн, связанных с двумя возможными реализациями процесса, в котором электрон возбуждает объемный плазмон и испытывает упругое рассеяние на большой угол на хаотически расположенных силовых центрах. Резкость границы означает, что среднестатистический размер и глубина профиля микрошероховатостей поверхности много меньше длины затухания волнового поля быстрых электронов в среде. Такое же условие касается размера хвостов электронной плотности среды в вакууме. На основе изложенной теории предлагается исследовать интенсивность генерации объемных плазмонов путем измерения отношения токов электронов неупруго, и упруго отраженных от поверхности неупорядоченной среды. Измерение заключается в определении зависимости отношения этих токов от трех углов: полярного угла падения налетающего электрона, полярного угла его вылета из среды и азимутального угла, образованного проекциями на плоскость поверхности векторов v скорости падающего и v' вылетающего электронов. Теоретически обоснованы оптимальные условия для наблюдения этой специфической азимутально-угловой зависимости, когда оба столкновения электрона происходят в приповерхностной области.

PACS: 72.15.Rn, 71.45.Gm, 34.80.-i

1. Введение

Когерентное отражение электронов от неупорядоченых сред должно отчетливо проявляться в случае, когда энергии налетающих электронов на 2–3 порядка выше энергий электронов среды. Наблюдение такого когерентного явления может быть самое непосредственное. Когерентные эффекты у неупруго отраженных высокоэнергетичных электронов могут составлять 20–30% от величины некогерентной части измеряемой интенсивности генерации объемного плазмона.

Наблюдение и анализ особенностей отражения электронов "промежуточных" энергий (от сотен до нескольких тысяч eV) описаны в работах [1,2]. В [3] содержится решение проблемы слабой локализации частиц и волн в полубесконечных неупорядоченных системах с хаотически распределенными центрами упругого рассеяния. В частности, из приведенного там решения определен угловой спектр упругого отражения. Этот спектр зависит от величины полного сечения рассеяния, которое определяется как упругим, так и неупругим рассеянием электрона. Неупругие столкновения конкурируют с упругим рассеянием, уменьшая интенсивность когерентного отражения в упругом канале рассеяния.

Энергия неупруго отраженных электронов отличается от энергии падающих частиц на величину энергетической потери при неупругом столкновении. Существует традиционное представление о том, что неупругие взаимодействия подавляют когерентные эффекты. Явление слабой локализации частиц, испытывающих неупругое рассеяние, считается маловероятным [4]. Теоретические исследования [5-8] показали, что традиционные представления в этом вопросе являются ошибочными. Явление слабой локализации в неупругом канале рассеяния электронов существует и обладает рядом особенностей, отличающих это явление от слабой локализации в упругом канале рассеяния. Прежде всего заметим, что слабая локализация в упругом канале рассеяния электрона описывается поправкой второго приближения по взаимодействию быстрого электрона с силовыми центрами, в то время как для описания слабой локализации в неупругом канале рассеяния достаточно первого приближения. Вследствие такой разницы в характере взаимодействия быстрого электрона с силовыми центрами усиление или подавление интенсивности генерации плазмона проявляется в гораздо более широком угловом диапазоне, примыкающем к углу рассеяния л, по сравнению с угловым диапазоном слабой локализации в упругом канале. В работах [4,7] показано, что характер угловой структуры когерентного неупругого рассеяния электрона в объеме среды может быть исследован двумя методами: качественно, исходя из анализа законов сохранения импульса и энергии, или количественно, исходя из непосредственного расчета сечения. Результаты исследования слабой локализации в безграничной среде нельзя применить к задаче неупругого отражения из-за существенного влияния границы на структуру электронных волн и электрических полей плазменных возбуждений. Наличие резкой границы усложняет рассмотрение всего явления локализации, поскольку при средних энергиях

падающих электронов акт их упругого столкновения с рассеянием назад происходит вблизи от поверхности.

При наличии границы вакуум-среда акт неупругого рассеяния быстрого электрона становится не столь простым, как в безграничном объеме. Влияние поверхности несущественно, например, по отношению к атомным переходам, но по отношению к длинноволновым коллективным возбуждениям электронной плазмы такое влияние не мало. В работе [9] рассмотрено явление слабой локализации электронов в канале возбуждения поверхностного плазмона. Однако в этой работе исследован случай среды с сильным поглощением, при котором акт неупругого рассеяния электрона на поверхностном плазмоне имеет место лишь в вакуумной области. Несмотря на разницу в энергиях объемного и поверхностного плазмонов их электромагнитные поля образуют связанную между собой структуру. Поэтому структура электрического поля объемного плазмона в присутствии поверхности отлична от таковой в безграничной среде.

При описании электрон-плазмонного взаимодействия достаточно учитывать механизмы возбуждения объемного плазмона, не исчезающие в отсутствии пространственной дисперсии диэлектрической проницаемости. Для отделения спектра коллективных и парных возбуждений достаточно ввести вектор коротковолновой "отсечки".

Помимо поглощения в среде быстрый электрон при переходе через границу испытывает преломление, которое существенно только при скользящих углах. Если же полярные углы падения и вылета далеки от скользящих, а энергия электрона составляет несколько keV, электронным преломлением на границе можно пренебречь.

Очевидно, что для частицы, испытывающей отражение и находящейся в среде лишь конечное время, число актов рассеяния также конечно. Это условие используется во многих работах, посвященных рассеянию волн и частиц в полуограниченных средах. Так, в [6] показано, что упругие многократные столкновения не разрушают слабую локализацию. Конечность числа актов рассеяния быстрой частицы при отражении подтверждена и в работе [10], в которой исследована слабая локализация в сильно поглощающей среде. Многократность упругих столкновений необходимо учитывать, если акт неупругого рассеяния быстрого электрона происходит с большой передачей импульса. Если же неупругое рассеяние электрона малоугловое и упругое рассеяние изотропно, транспорт в среде на 80% состоит всего лишь из двух актов рассеяния: неупругого и упругого столкновения с рассеянием на большой угол. Упругое двукратное рассеяние будет влиять на величину отражения назад не более чем на 20% [11]. Упругое отражение электронов с энергией в тысячи электронвольт характеризуется значением коэффициента отражения, много меньшим единицы. Это обстоятельство позволяет учитывать лишь упругие однократные столкновения на большие углы вместо многократных. Наличие поверхности упрощает

наше исследование, поскольку в каждом сценарии процесса рассеяния число упругих рассеяний на большой угол может быть сведено всего лишь к одному.

2. Формулировка задачи исследования

Ослабление пучка падающих частиц в среде с поглощением начинается от границы и тем больше, чем меньше косинус полярного угла между нормалью к поверхности и направлением скорости частицы. Соответственно ток как упругого, так и неупругого отражения частиц будет пропорционален фактору

$$-\left(rac{1}{\cos(lpha_i)}+rac{1}{\cos(lpha_f)}
ight)\sigma_{el}ig(|\mathbf{k}-\mathbf{Q}-\mathbf{k}'|ig),$$

где σ_{el} — сечение упругого электронного рассеяния на большой угол $\chi = \widehat{\mathbf{k}, \mathbf{k}'}, \mathbf{Q}$ — волновой вектор плазмона, причем

$$\frac{Q}{|\mathbf{k}-\mathbf{k}'|}\approx\frac{\hbar\omega}{E}\ll1,$$

 α_i и α_f — полярные углы падения и вылета, отсчитываемые от внутренней и внешней нормали к поверхности соответственно. Отношение токов неупруго отраженных и упруго отраженных электронов

$$I = \left(\frac{dJ_0(E - \hbar\omega_p)}{d\Omega'} + \frac{dj_{1 \rightleftharpoons 2}(E - \hbar\omega_p)}{d\Omega'}\right) \left/ \frac{dJ_{el}(E)}{d\Omega'}\right)$$

не будет содержать приведенную выше маскирующую угловую зависимость, так что практически вся оставшаяся угловая зависимость будет определяться только неупругим рассеянием. В приведенной формуле под J₀ понимается часть тока неупругого отражения, не содержащая интерференцию упругого и неупругого столкновений быстрого электрона, а под $J_{1 \rightleftharpoons 2}$ понимается интерференционная часть тока неупруго отраженных электронов. $d\Omega'$ — элемент телесного угла в направлении вылета электрона из среды. Если пренебречь интерференцией упругого и неупругого столкновений быстрого электрона, т.е. ограничиться только первым слагаемым в приведенной выше формуле, угловая зависимость отношения токов $I = I_0$ будет содержать только полярные углы падения и вылета. Такой результат вписывается в традиционные представления экспериментаторов, измеряющих интенсивность объемной плазменной потери в опытах "на отражение" от неупорядоченной среды. Учет интерференции столкновений, т.е. второго слагаемого в выражении для величины I, вносит радикальное изменение в характер угловой зависимости отношения токов І. Помимо зависимости от полярных углов падения и вылета электрона из среды, интерференционная часть отношения токов $I_{1 \rightleftharpoons 2}$ будет содержать зависимость от азимутального угла между проекциями на плоскость поверхности скоростей падающего и вылетающего электронов. Такая специфическая азимутально-угловая зависимость величины $I_{1 \rightleftharpoons 2}(\phi_p)$ есть проявление слабой локализации.

Цель настоящего теоретического исследования заключается в определении азимутально-угловой специфики отношения тока неупруго отраженных с потерей энергии $\hbar\omega_p$ электронов к току упругого отражения, а также в определении оптимальных условий для регистрации такой зависимости в опытах "на отражение" от неупорядоченной среды с резкой границей.

3. Общий формализм

Волновая функция быстрого электрона во втором приближении по взаимодействию с электронами среды и хаотически распределенными примесями имеет вид

$$\Psi_{2}(\mathbf{k}, \mathbf{r}) = \iint d\mathbf{r}_{1} d\mathbf{r}_{2} \Psi_{0}(\mathbf{k}, \mathbf{r}_{2})$$

$$\times \left[T_{e}(\mathbf{r}_{2}, i \rightarrow f) G(\mathbf{r}_{1}, \mathbf{r}_{2}) U_{bs}(\mathbf{r}_{1}) G(\mathbf{r}, \mathbf{r}_{1}) + T_{e}(\mathbf{r}_{1}, i \rightarrow f) G(\mathbf{r}_{1}, \mathbf{r}_{2}) U_{bs}(\mathbf{r}_{2}) G(\mathbf{r}, \mathbf{r}_{1}) \right]; (1)$$

здесь волновая функция нулевого приближения в среде имеет вид

$$\Psi_0(\mathbf{k}, \mathbf{r}) = \exp(i\mathbf{k}\mathbf{r} - \varkappa_k z), \qquad (2)$$

 $\varkappa_k = \varkappa_0/(\mathbf{n}_k \mathbf{n}_z)$ — затухание электронного волнового поля для начального угла падения $\alpha_i = \arccos(\mathbf{n}_k \mathbf{n}_z), \mathbf{k}$ — волновой вектор быстрого электрона, $T_e(\mathbf{r}, i \rightarrow f)$ — амплитуда неупругого рассеяния быстрого электрона с возбуждением электронов среды из начального состояния *i* в конечное состояние *f*. $U_{bs}(r)$ — потенциал упругого рассеяния быстрого электрона на силовых центрах.

$$G(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{(2\pi)^3} \int d\mathbf{k}_1 \frac{\exp[i\mathbf{k}_1(\mathbf{r}_1 - \mathbf{r}_2)]}{E - E_{k1} - \epsilon_{if} + i\Gamma}$$
(3)

— функция Грина системы быстрый электрон + среда,
 E — энергия начального состояния быстрого электрона,
 Γ — мнимая часть энергии, определяющая затухание
 электронного волнового поля в среде. Величина

$$\Gamma = \frac{\hbar^2 \varkappa_0 k}{m} = \frac{2\pi \hbar^2 n_0}{m} \operatorname{Im} f(\chi = 0)$$
(4)

пропорциональна концентрации рассеивателей (атомов) в среде n_0 и мнимой части амплитуды электронного рассеяния на нулевой угол.

Наша задача состоит в вычислении фактора I, представляющего собой отношение величины тока электронов, отраженных с потерей энергии $\hbar \omega_p$, к величине тока упруго отраженных электронов.

Величина тока упруго отраженных электронов в единице телесного угла $d\Omega' = d\alpha_f \sin(\alpha_f) d\phi_f$ в направлении вектора **k**' имеет в первом приближении по взаимодействию с силовыми центрами очевидное выражение

$$\frac{dJ_{el}}{d\Omega'} = \frac{\pi n m^2 v'}{(2\pi)^3 \hbar^4 \varkappa_0 (1 + \cos \alpha_f / \cos \alpha_i)} |u_{bs}(\mathbf{k}_{a\rho}, k_{az})|^2$$

$$= -k_z - k_z')|^2. \tag{5}$$

Для расчета тока неупруго отраженных электронов воспользуемся известным из квантовой механики выражением

$$\mathbf{J} = \frac{i\hbar}{2m} \int d\boldsymbol{\rho} \left[\Psi_2(\mathbf{k}, \mathbf{r}) \nabla \Psi_2^*(\mathbf{k}, \mathbf{r}) - \Psi_2^*(\mathbf{k}, \mathbf{r}) \nabla \Psi_2(\mathbf{k}, \mathbf{r}) \right]_{z=0},$$
(6)

в котором будет присутствовать восемь слагаемых в соответствии с формулой (1). При расчете тока неупругого отражения следует иметь в виду, что

$$\sum_{f} T_{e}(\mathbf{r}, i \to f) T_{e}^{*}(\mathbf{r}', i \to f) = \frac{1}{\pi (2\pi)^{2}}$$
$$\times \int d\omega \int d\mathbf{q} \exp[i\mathbf{q}(\boldsymbol{\rho} - \boldsymbol{\rho}')] \operatorname{Im} D(\mathbf{q}, \omega, z, z'), \quad (7)$$

а также

Ì

$$\frac{\overline{U_{bs}(\mathbf{r})U_{bs}^{*}(\mathbf{r}')}\Big|_{rd}}{\times \int d\mathbf{k}_{a}|u_{bs}(\mathbf{k}_{a})|^{2}\exp\left[i\mathbf{k}_{a}(\mathbf{r}-\mathbf{r}')\right], \quad (8)$$

причем формула (8) получена путем усреднения упругого рассеяния по хаотическому распределению силовых центров. В формуле (7) функция $D(\mathbf{q}, \omega, z, z')$ определяет электрическое поле возбуждений электронов среды. В формулах (5), (8) n — концентрация хаотически распределенных примесей, не совпадающая с концентрацией n_0 .

Подстановка первого слагаемого формулы (1) в формулу (6) позволяет рассчитать компоненту тока неупругого отражения, представляющую собой вклад процесса с такой последовательностью столкновений, когда сначала быстрый электрон генерирует объемный плазмон, а затем упруго рассеивается на примесях. В результате для отношения этой компоненты величины тока неупругого отражения к величине тока упругого отражения получим следующее выражение:

$$\begin{split} \mathbf{y}_{1} &= \frac{dJ_{1}}{d\Omega'} \Big/ \frac{dJ_{el}}{d\Omega'} = \frac{m^{2}}{4\pi^{3}\hbar^{4}k^{2}\cos(\alpha_{i})^{2}} \\ &\times \int d\omega \int d\mathbf{q} \int_{0}^{\infty} dz_{1} \int_{0}^{\infty} dz_{1} \operatorname{Im} D(\mathbf{q}, \omega, z, z_{1}') \\ &\times \exp\left[i \frac{(\omega + \mathbf{q}\mathbf{v}_{\rho})(z_{1} - z_{1}')}{v_{z}}\right] \\ &\times \left\{\theta(z_{1} - z_{1}')\exp\left[-2(\varkappa_{k} + \varkappa_{k'})z_{1}\right] \\ &+ \theta(z_{1}' - z_{1})\exp\left[-2(\varkappa_{k} + \varkappa_{k'})z_{1}'\right]\right\}. \end{split}$$

В этой формуле v_z , \mathbf{v}_{ρ} — проекции скорости быстрого электрона.

Подстановка второго слагаемого из (1) в (6) проводит к выражению для компоненты величины тока неупругого отражения $dJ_2/d\Omega'$, описывающей противоположную последовательность столкновений быстрого электрона: сначала упругое рассеяние на примесях, затем генерация объемного плазмона. Отношение величин токов $I_2 = \frac{dJ_2}{d\Omega'} / \frac{dJ_{el}}{d\Omega'}$ будет отличаться от (9) только лишь заменой $\alpha_i \to \alpha_f$, $\mathbf{v}_{\rho} \to \mathbf{v}'_{\rho}$, $v_z \to v'_z$. В формуле (9) функция Im $D(q, \omega, z, z')$, соответству-

ющая спектру генерации объемного плазмона, имеет вид

Im
$$D(q, \omega, z, z') = \frac{2\pi e^2 \hbar \theta(q_c - q)}{q} \operatorname{Im} \frac{1}{\varepsilon(\omega)}$$

 $\times \left[\exp(-q|z - z'|) - \exp[-q(z + z')] \right].$ (10)

Формула (9) записана без строгого учета пространственной дисперсии диэлектрической проницаемости $\varepsilon(\omega, \mathbf{Q})$. Простейший необходимый учет такой зависимости требует введения ограничения на волновой вектор $q < q_c$. Здесь q_c — волновой вектор коротковолновой "отсечки" плазменных колебаний, отделяющий спектр объемного плазмона от спектра парных возбуждений. Второе слагаемое в квадратных скобках в (10) определяет подавление генерации объемного плазмона из-за наличия поверхности.

Выполним все вычисления в выражении (9) для величины I_1 и аналогичные для I_2 . Интеграл по спектру объемного плазмона легко находим, имея в виду, что Im $\frac{1}{\varepsilon(\omega)} = \frac{\pi \omega_p \delta(\omega - \omega_p)}{2}$. Далее рассчитаем интегралы по координатам плазмона и наконец представим сумму $I_0 = I_1 + I_2$, определяющую относительную интенсивность неупругого отражения без учета интерференции двух актов рассеяния быстрого электрона

$$I_{0} = \frac{e^{2}\omega_{p}}{4\pi\hbar(\varkappa_{i} + \varkappa_{f})} \int d\mathbf{q} \frac{\theta(q_{c} - q)[q + 2(\varkappa_{i} + \varkappa_{f})]}{(q + \varkappa_{i} + \varkappa_{f})} \\ \times \left\{ \frac{1}{[q + 2(\varkappa_{i} + \varkappa_{f})]^{2}v_{z}^{2} + (\omega + \mathbf{q}\mathbf{v}_{\rho})^{2}} + \frac{1}{[q + 2(\varkappa_{i} + \varkappa_{f})]^{2}v_{z}^{'2} + (\omega + \mathbf{q}\mathbf{v}_{\rho}')^{2}} \right\},$$
(11)

здесь $\varkappa_i = \varkappa_0 \sec(\alpha_i), \ \varkappa_f = \varkappa_0 \sec(\alpha_f)$. Величина I_0 содержит зависимость от углов падения и вылета. Такая угловая зависимость обусловлена влиянием поверхности на структуру электрического поля объемного плазмона (10). Если в формуле (11) обратить в нуль величину затухания волнового поля \varkappa_0 под знаком интеграла, оставив ее ненулевой в знаменателе предынтегрального множителя, то скомбинированное таким образом выражение для I_0 не будет зависеть от полярных углов падения и вылета. Величина $I_0 = \lambda_c / \lambda_{pl}$ будет представлять собой отношение интенсивностей неупругого и упругого отражения в безграничной среде. Именно к такому результату приводит классическое описание транспорта в расчете отраженного тока электронов, потерявших энергию $\hbar \omega_p$. $\lambda_{pl} = \frac{\omega_B \omega}{\hbar \omega_p \log(q_c v / \omega_p)}$ есть длина пробега быстрого электрона по отношению к возбуждению объемного плазмона, $\lambda_c = 1/(2\varkappa_0)$ есть длина когерентности быстрого электрона в среде. Простое описание кинетики столкновений в рамках длин пробегов игнорирует влияние поверхностного канала генерации на объемный канал, а также не учитывает возможность наложения столкновений друг на друга. Подобное описание электронного транспорта характерно для работ [12,13] и многих других работ, в которых в качестве параметров кинетики используются различные длины пробега. Результаты этих работ не могут претендовать на достоверность, поскольку в них исключается возможность интерференции столкновений.

4. Интерференция упругого и неупругого столкновений быстрого электрона

Выражение для волновой функции (1) представляет собой сумму двух слагаемых, отличающихся друг от друга порядком столкновений быстрого электрона. Обозначим эти два слагаемых следующим образом:

$$\Psi_2(\mathbf{k}, \mathbf{r}) = \Psi_a(\mathbf{k}, \mathbf{r}) + \Psi_b(\mathbf{k}, \mathbf{r}).$$
(12)

Интерференции столкновений отвечает ток неупругого отражения

$$\mathbf{J}_{1 \leftrightarrows 2} = \frac{i\hbar}{2m} \int d\boldsymbol{\rho} \Big[\Psi_a(\mathbf{k}, \mathbf{r}) \nabla \Psi_b^*(\mathbf{k}, \mathbf{r}) - \Psi_a^*(\mathbf{k}, \mathbf{r}) \nabla \Psi_b(\mathbf{k}, \mathbf{r}) + \Psi_b(\mathbf{k}, \mathbf{r}) \nabla \Psi_a^*(\mathbf{k}, \mathbf{r}) - \Psi_b^*(\mathbf{k}, \mathbf{r}) \nabla \Psi_a(\mathbf{k}, \mathbf{r}) \Big] \Big|_{z=0}.$$
 (13)

Выполнив необходимые вычисления с использованием формул (1), (7) и (8), получим выражение для отношения интерференционного тока неупругого отражения к току упругого отражения (5)

$$I_{1 \rightrightarrows 2} = \frac{d\mathbf{J}_{1 \rightrightarrows 2}}{d\Omega'} \Big/ \frac{d\mathbf{J}_{el}}{d\Omega'} = \frac{m^2(\varkappa_i + \varkappa_f)}{\pi^3 \hbar^4 k^2 \cos(\alpha_i) \cos(\alpha_f)}$$

$$\times \operatorname{Re} \int d\omega \int d\mathbf{q} \int_0^\infty dz'_1 \int_0^\infty dz_2$$

$$\times \frac{\operatorname{Im} D(q, \omega, z'_1, z_2)}{2(\varkappa_i + \varkappa_f) + i \left[\omega\left(\frac{1}{v_z} + \frac{1}{v'_z}\right) + \mathbf{q}\left(\frac{\mathbf{v}_{\rho}}{v_z} + \frac{\mathbf{v}'_{\rho}}{v'_z}\right)\right]}$$

$$\times \left\{ \theta(z_2 - z'_1) \exp\left[-2(\varkappa_i + \varkappa_f)z_2 - i \frac{(\omega + \mathbf{q}\mathbf{v}'_{\rho})(z_2 - z'_1)}{v'_z}\right] + \theta(z'_1 - z_2) \right\}$$

$$\times \exp\left[-2(\varkappa_i + \varkappa_f)z'_1 - i \frac{(\omega + \mathbf{q}\mathbf{v}'_{\rho})(z'_1 - z_2)}{v_z}\right] \right\}. \quad (14)$$

В результате вычисления интегралов по спектру и координатам плазмона получим выражение для фактора $I_{1 \rightleftharpoons 2} = \frac{d\mathbf{J}_{1 \rightleftharpoons 2}}{d\Omega'} / \frac{d\mathbf{J}_{el}}{d\Omega'}$

$$I_{1\neq2} = \frac{\hbar\omega_p}{4\pi a_B E \cos(\alpha_i) \cos(\alpha_f)} \operatorname{Re} \int d\mathbf{q} \frac{\theta(q_c - q)}{(q + \varkappa_i + \varkappa_f)} \\ \times \frac{1}{\left\{ 2(\varkappa_i + \varkappa_f) + i \left[\omega_p \left(\frac{1}{v_z} + \frac{1}{v'_z} \right) + \mathbf{q} \left(\frac{\mathbf{v}_p}{v_z} + \frac{\mathbf{v}'_p}{v'_z} \right) \right] \right\}} \\ \times \left[\frac{1}{q + 2(\varkappa_i + \varkappa_f) + i \frac{(\omega_p + \mathbf{q}\mathbf{v}_p)}{v_z}} \right] \\ + \frac{1}{q + 2(\varkappa_i + \varkappa_f) + i \frac{(\omega_p + \mathbf{q}\mathbf{v}'_p)}{v'_z}} \right].$$
(15)

Полное выражение для расчета интенсивности неупругого отражения быстрого электрона от неупорядоченной среды с резкой границей приведенов в Приложении. Чтобы его получить, нужно сложить (11) и (15). Полученная при этом сумма *I* зависит от шести параметров, три из которых представляют собой углы: α_i , α_f падения и вылета и ϕ_p — азимутальный угол между векторами \mathbf{v}_ρ и \mathbf{v}'_ρ , а остальные: $b = \frac{x_0 v}{\omega_p}$, $p = \frac{q_c v}{\omega_p}$, $g = \frac{e^2}{\hbar v}$.

5. Анализ результатов

Подынтегральное выражение в формулах (15) и (П.1) содержит условие интерференционного резонанса

$$\omega_p \left(\frac{1}{v_z} + \frac{1}{v_z'} \right) + \mathbf{q} \left(\frac{\mathbf{v}_\rho}{v_z} + \frac{\mathbf{v}_\rho'}{v_z'} \right) = 0, \quad (16)$$

суть которого состоит в равенстве фаз у перпендикулярных границе компонент электронных волн

$$\exp\left[i\frac{(\omega_p + \mathbf{q}\mathbf{v}_p)(z - z')}{v_z}\right] \ \mathbf{u} \ \exp\left[-i\frac{(\omega_p + \mathbf{q}\mathbf{v}_p')(z - z')}{v_z'}\right]$$

формирующих амплитуды процессов с разной последовательностью столкновений. После интегрирования формулы (16) по углу между векторами **q** и $\mathbf{v}_{\rho}/v_z + \mathbf{v}'_{\rho}/v'_z$ получим, что интерференционный резонанс возможен в диапазоне волновых векторов $\frac{\omega_p(1/v_z + 1/v'_z)}{|\mathbf{v}_{\rho}/v_z + \mathbf{v}'_{\rho}/v'_z|} \leq q \leq q_c$. Раскрывая последнее неравенство относително азимутального угла ϕ_p , найдем диапазон углов, в котором интерференционная поправка положительная и соот-

ветствует условиям выполнения законов сохранения в каждом акте столкновения

$$-\frac{\tan^{2}(\alpha_{i}) + \tan^{2}(\alpha_{f})}{2\tan(\alpha_{i})\tan(\alpha_{f})} + \frac{\omega_{p}^{2}}{q_{c}^{2}v^{2}} \frac{\left[\sec(\alpha_{i}) + \sec(\alpha_{f})\right]^{2}}{2\tan(\alpha_{i})\tan(\alpha_{f})} \leq \cos(\phi_{p}) \leq 1. \quad (17)$$

Вообще говоря, знак интерференционной поправки определяется знаком выражения *Y*, представляющего собой числитель подынтегральной функции в формуле (15)

$$Y = 4(\varkappa_{i} + \varkappa_{f}) \left[q + 2(\varkappa_{i} + \varkappa_{f}) \right]$$

$$\times \left\{ \left[q + 2(\varkappa_{i} + \varkappa_{f}) \right]^{2} - \frac{(\omega_{p} + \mathbf{q}\mathbf{v}_{\rho})(\omega_{p} + \mathbf{q}\mathbf{v}_{\rho}')}{v_{z}v_{z}'} \right\}$$

$$- \left[\omega_{p} \left(\frac{1}{v_{z}} + \frac{1}{v_{z}'} \right) + \mathbf{q} \left(\frac{\mathbf{v}_{\rho}}{v_{z}} + \frac{\mathbf{v}_{\rho}'}{v_{z}'} \right) \right]^{2}$$

$$\times \left\{ q \left[q + 2(\varkappa_{i} + \varkappa_{f}) \right] + \frac{(\omega_{p} + \mathbf{q}\mathbf{v}_{\rho})(\omega_{p} + \mathbf{q}\mathbf{v}_{\rho}')}{v_{z}v_{z}'} \right\}. \quad (18)$$

Величина У положительна и максимальна, когда $(\omega_p + \mathbf{qv}_{\rho})/v_z = -(\omega_p + \mathbf{qv}'_{\rho})/v'_z$, т.е. при выполнении условия интерференционного резонанса. Величина У принимает минимальное значение, когда $(\omega_p + \mathbf{q}\mathbf{v}_\rho)/v_z = (\omega_p + \mathbf{q}\mathbf{v}'_\rho)/v'_z$, т.е. когда противоположны фазы перпендикулярных границе компонент электронных волн, формирующих амплитуды двух сценариев процесса рассеяния. Это минимальное значение У может быть положительным только при больших величинах затухания электронного волнового поля \varkappa_0 . При небольших значениях затухания $b = \varkappa_0 v / \omega_p$ знак интерференционной поправки в этом предельном случае фазового соотношения будет отрицательный. Смена знака интерференционной поправки (либо скачкообразная особенность с максимумом и последующим резким спадом) происходит около значения азимутального угла

$$egin{split} \phi_{p0} \simeq rccosigg\{ &-rac{ anu^2(lpha_i)+ anu^2(lpha_f)}{2 anu(lpha_i) anu(lpha_f)} \ &+rac{\omega_p^2}{q_c^2v^2} \,rac{igg[ext{sec}(lpha_i)+ ext{sec}(lpha_f)igg]^2}{2 anu(lpha_i) anu(lpha_f)}igg\}, \end{split}$$

при этом при азимутальных углах $0 < \phi_p < \phi_{p0}$ интерференционная поправка положительная, а в диапазоне углов $\phi_{p0} < \phi_p < \pi$ интерференционная поправка скачкообразно уменьшается и может принимать отрицательные значения, т.е. интерференция амлпитуд двух сценариев процесса рассеяния может иметь характер гашения интенсивности генерации объемного плазмона.

Рис. 1. Азимутально-угловая зависимость степени когерентности $M(\phi)$. Кривые 1–4 отличаются значением параметра степени неупорядоченности. b = 0.1, 0.2, 0.3, 0.4. Углы падения и вылета равны 85 градусам. $E = 400 \text{ eV}, \hbar \omega_p = 15 \text{ eV}.$

Азимутально-угловая зависимость степени когерентности $M(\phi_p) = \frac{I_{1 \rightleftharpoons 2}}{I_0 + I_{1 \rightleftharpoons 2}}$ для различных значений параметра неупорядоченности среды *b* представлена на рис. 1. Чем больше значения параметра *b*, тем более выраженной является угловая особенность зависимости $M(\phi_p)$ и тем большие абсолютные значения имеет интерференционная составляющая интенсивности неупругого отражения.

На рис. 2 приведены зависимости интенсивности неупругого отражения быстрых электронов $I(\phi_p) = I_0 + I_{1 \rightleftharpoons 2}(\phi_p)$ от азимутального угла при фиксированном значении угла вылета α_f и для нескольких значений угла падения α_i . Из четырех кривых выделяется одна, соответствующая равенству углов падения и вылета. Максимум этой кривой приходится на значение $\phi_p = \phi_{p0}$, поскольку только для этой кривой азимутальные углы, прилегающие к π , соответствуют направлению точно назад. Из оставшихся трех кривых две соответствуют условию, при котором вылетающий электрон попадает на границу конуса телесных углов с раствором примерно 10–20 градусов относительно направления точно назад. На этих двух кривых прослеживается максимум при угле $\phi_p = \pi$. Для кривой с $\alpha_i = 20^\circ$ и $\alpha_f = 60^\circ$ зави-

Рис. 2. Зависимость интенсивности неупругого отражения $I(\phi, \alpha_i, \alpha_f)$ от азимутального угла ϕ при фиксированном угле вылета $\alpha_f = 60^\circ$ и четырех значений угла падения $\alpha_i = 20, 40, 60$ и 80° (кривые 1-4). E = 5000 eV.

Рис. 3. Зависимость интенсивности неупругого отражения $I(\alpha_i, \alpha_f, \phi)$ от угла падения быстрого электрона α_i при фиксированном значении угла $\alpha_f = 22.5^\circ$ и для четырех значений азимутального угла $\phi = 150, 160, 170$ и 180° . E = 5000 eV.

Рис. 4. Интенсивность неупругого отражения электрона с потерей энергии $\hbar\omega_p$ в зависимости от азимутального угла. Полярные углы падения и вылета равны. Кривым 1-4 соответствуют углы $\alpha = 20$, 40, 60 и 80°. Расчетные положения угловых максимумов: $\phi_{p0}(\alpha = 20^\circ) = 166.6^\circ$, $\phi_{p0}(\alpha = 40^\circ) = 172.9^\circ$, $\phi_{p0}(\alpha = 60^\circ) = 174.7^\circ$, $\phi_{p0}(\alpha = 80^\circ) = 175.2^\circ$.

симость от угла ϕ_p практически отсутствует, поскольку вылетающий электрон не попадает в конус телесных углов, в котором имеют место особенности интерференции.

При условии интерференционного резонанса (16) отношение подынтегнальных функций когерентной и некогерентной составляющих интенсивности имеет вид

$$\frac{dI_{1 \rightleftharpoons 2}}{dq} \Big/ \frac{dI_0}{dq} = \frac{\left[\cos(\alpha_i) + \cos(\alpha_f)\right]^2}{\cos^2(\alpha_i) + \cos^2(\alpha_f)},\tag{19}$$

причем в зависимости от величины полярных углов может принимать значения от 1 до 2. В частности, отсюда следует, что явление интерференции столкновений наиболее значимо при условии равенства полярных углов падения и вылета. Этот факт четко прослеживается на представленном графике зависимостей $I(\alpha_i)$ при фиксированных значениях углов α_f и ϕ_p (рис. 3). Угол вылета из мишени для всех четырех

кривых одинаковый и составляет 60 градусов относительно внешней нормали к поверхности. Азимутальный угол ϕ_p составляет 150, 160, 170 и 180 градусов соответственно. Интерференционная особенность в угловом распределении интенсивности генерации объемного плазмона находится в достаточно широком диапазоне полярных углов падения (примерно 10 градусов) вокруг значения полярного угла вылета и в диапазоне азимутальных углов (также примерно, 10 градусов), примыкающих к направлению точно назад.

На рис. 4 представлены зависимости интенсивности неупругого отражения с потерей энергии $\hbar \omega_p$ как функции азимутального угла при равенстве полярных углов падения и вылета (для четырех их значений). Из представленных кривых следует, что, хотя с ростом полярных углов величина полной интенсивности падает, в то же время возрастает относительный вклад интерференции по сравнению с вкладом некогерентной части интенсивности. Этот факт выражается в увеличении высоты азимутального максимума при значении $\phi_p = \phi_{p0}$ с ростом полярных углов.

На основании полученных результатов можно сделать следующие выводы:

1) Азимутально-угловая структура интенсивности генерации объемного плазмона в целом характерна для картины углового распределения слабой локализации. Особенность углового распределения расположена вблизи угла $\phi = \phi_{p0} \lesssim \pi$, а угловая ширина этой особенности составляет примерно 10°, что на 2 порядка превышает угловую ширину особенности для традиционной слабой локализации в упругом канале электронного отражения.

 Оптимальное условие наблюдения рассматриваемого явления соответствует равенству полярных углов падения и вылета быстрого электрона.

3) Из сравнения настоящих результатов с результатами работы [14], в которой рассматривалась безграничная неупорядоченная среда, можно утверждать, что наличие поверхности усиливает проявление особенности в угловой структуре эффекта слабой локализации быстрого электрона в неупорядоченной среде в канале генерации объемного плазмона.

4) Постановка эксперимента по идентификации явления слабой локализации в канале объемной потери энергии при отражении быстрых электронов от среды должна содержать регистрацию вылетающих электронов в узком телесном угле, при этом плоскость падения пучка и плоскость вылета не должны совпадать друг с другом, как это обычно принято в абсолютном большинстве публикуемых экспериментов. Зависимость явления слабой локализации от угла между этими плоскостями и должна быть объектом целенаправленного поиска.

Приложение

Выражение для отношения интенсивностей неупругого и упругого отражения тока быстрых электронов от неупорядоченной среды с резкой границей

$$\begin{split} I &= \frac{g}{4\pi b [\sec(\alpha_i) + \sec(\alpha_f)]} \int_0^p dt \frac{t}{t + b [\sec(\alpha_i) + \sec(\alpha_f)]} \\ &\times \int_0^{2\pi} d\psi \bigg\{ \frac{t + 2b [\sec(\alpha_i) + \sec(\alpha_f)]}{\cos^2(\alpha_i) [t + 2b [\sec(\alpha_i) + \sec(\alpha_f)]]^2 + [1 + t \sin(\alpha_i) \cos(\psi)]^2} \\ &+ \frac{t + 2b [\sec(\alpha_i) + \sec(\alpha_f)]}{\cos^2(\alpha_f) [t + 2b [\sec(\alpha_i) + \sec(\alpha_f)]]^2 + [1 + t \sin(\alpha_f) \cos(\psi)]^2} \\ &+ \frac{2}{\cos(\alpha_i) \cos(\alpha_f)} \operatorname{Re} \bigg\langle \bigg[\frac{1}{t + 2b [\sec(\alpha_i) + \sec(\alpha_f)] + i \sec(\alpha_i) [1 + t \sin(\alpha_i) \cos(\psi)]} \\ &+ \frac{1}{t + 2b [\sec(\alpha_i) + \sec(\alpha_f)] + i \sec(\alpha_f) [1 + t \sin(\alpha_f) \cos(\psi + \phi_p)]} \bigg] \\ &\times \frac{b [\sec(\alpha_i) + \sec(\alpha_f)]}{2b [\sec(\alpha_i) + \sec(\alpha_f)] + i [\sec(\alpha_i) + \sec(\alpha_f) + t [\tan(\alpha_i) \cos(\psi) + \tan(\alpha_f) \cos(\psi + \phi_p)]]} \bigg\rangle \bigg\rangle. \end{split}$$

Список литературы

- [1] R. Berkovits, M. Kaveh. Phys. Rev. B 37, 584 (1988).
- [2] R. Berkovits, D. Eliyahu, M. Kaveh. Phys. Rev. B 41, 407 (1990).
- [3] Е.Е. Городничев, С.Л. Дударев, Д.Б. Рогозкин. ЖЭТФ 96, 847 (1989).
- [4] В.В. Румянцев. СОЖ 2, 98 (1999).
- [5] Б.Н. Либенсон, К.Ю. Платонов, В.В. Румянцев. ЖЭТФ 101, 614 (1992).
- [6] V.V. Rumyantsev, V.V. Doubov. Phys. Rev. B 49, 8643 (1994).
- [7] E.V. Orlenko, V.V. Rumyantsev. J. Phys. Condens. Matter 7, 3557 (1995).
- [8] В.В. Румянцев, Е.В. Орленко, Б.Н. Либенсон. ЖЭТФ 111, 1001 (1997).
- [9] Б.Н. Либенсон. ФТТ 45, 22 (2003).
- [10] E. Kanzieper, V. Freilikher. Phys. Rev. B 51, 2759 (1995).
- [11] Е. Канцыпер. ЖЭТФ 103, 1800 (1993).
- [12] В.В. Макаров, В.П. Артемьев, С.И. Игонин, Н.Н. Петров. В сб.: Проблемы физической электроники. Л. (1986). С. 74.
- [13] Ю.Н. Крынько, П.В. Мельник, Н.Г. Находкин. ФТТ 22, 1294 (1980).
- [14] Б.Н. Либенсон. ФТТ 40, 1413 (1998).