Энергетические и электронные свойства неуглеродных нанотрубок на основе диоксида кремния

© Л.А. Чернозатонский, П.Б. Сорокин*, А.С. Фёдоров*

Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, 119991 Москва, Россия * Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: cherno@sky.chph.ras.ru

(Поступила в Редакцию 20 декабря 2005 г.)

Методом функционала локальной электронной плотности были исследованы геометрические, энергетические и электронные характеристики новых неуглеродных нанотрубок (HT) на основе диоксида кремния. Произведена классификация HT в зависимости от способа свертки SiO₂-листа. Показано, что наиболее энергетически выгодной из рассмотренного набора различных по симметрии трубок является HT с индексами (6,0). Рассчитаны плотности электронных состояний HT и показано, что все HT являются диэлектриками с большей запрещенной зоной, которая варьируется в широких пределах в зависимости от степени продольной деформации трубки.

Работа выполнена в рамках проекта РФФИ (№ 05-02-17443) и DFG (№ 436 RUS 113/785).

PACS: 61.46.Fg, 73.63.Fg, 77.84.-s

1. Введение

С момента обнаружения Ииджимой в 1991 г. структуры углеродных нанотрубок (УНТ) внимание к ним до сих пор не ослабевает благодаря их уникальным электронным и физическим свойствам [1]. Впоследствии был синтезирован ряд неуглеродных нанотрубок (НТ) из раличных атомов: (Mo,W)S₂, BN и др. [2]. Теоретические предсказания существования НТ новых составов, например диборидных ((Mg,Be,Zr)B₂) [3], оксидных (BeO) [4], открывают новые возможности для их применения в электронных, оптических и электромеханических приборах.

Структуры на основе диоксида кремния в связи с их интересными электронными и оптическими свойствами всегда привлекали серьезное внимание. Наиболее известными кристаллическими формами этого соединения является α -кварц, широко применяемый в современной электронике.

В последнее время появилось достаточно много работ, описывающих гипотетические кластеры [5–8], цеолиты [9] на основе двуокиси кремния. Также существует много экспериментальных работ, посвященных получению псевдокристаллических и аморфных HT [10–12], нанопроволок на основе SiO_x (x = 1-2) [13]. Однако геометрическая структура HT SiO₂ до сих пор неясна. В недавних работах [14,15] обращено внимание на возможность существования нового класса энергетически устойчивых HT из одного слоя диоксида кремния с квадратной решеткой. Однако в [14] расчет производился довольно грубыми полуэмпирическими методами, а в [15] рассматривалась структура только очень тонких HT. В настоящей работе методом *ab initio* исследуются геометрические, энергетические и электронные характеристики широкого набора однослойных HT SiO_2 , а также рассматриваются возможные их приложения в качестве защитного покрытия однослойных УНТ.

2. Классификация нанотрубок

Подобно дихалькогенидным трубкам [2] однослойные HT SiO₂ образуются из трех цилиндров: атомы кислорода O(o) лежат на внешнем, а атомы O(i) на внутреннем цилиндре по отношению к "среднему" цилиндру с атомами кремния [14]. Так же как и гексагональные НТ [1-3], рассматриваемые НТ можно сконструировать путем гипотетической свертки плоской структуры, но уже на основе не гексагональной, а квадратной решетки (рис. 1) атомов кислорода, тетраэдрически расположенных вокруг атомов кремния. Таким образом, НТ SiO₂ легко описать в терминах двух числовых индексов (n, m) развернутой двумерной квадратной решетки: $\mathbf{C} = n\mathbf{a}_1 + m\mathbf{a}_2$, где длина хирального вектора С равна периметру цилиндрического слоя из атомов. Однако следует заметить, что существует несколько различий в классификации НТ SiO2 и гексагональных НТ.

1) НТ с индексами (n, 0) и (0, n) были названы не зигзагообразными, как в случае гексагональных НТ, а линейными (рис. 2, a) в связи с их геометрическим построением. Данные трубки являются единственными не обладающими винтовой осью симметрии.

2) По той же причине трубки (n, n) следует называть зигзагообразными (рис. 2, b и 3,a).

3) НТ с индексами (n, m) и (m, n) обладают разной геометрией из-за различного расположения внешних и внутренних атомов кислорода по отношению к атомам кремния, находящимся на "среднем" цилиндре.

3. Метод расчета

Все расчеты проводились с использованием программы VASP (Vienna *ab initio* Simulation Package) [16–18]. Данная программа для расчетов из первых принципов использует метод псевдопотенциала Вандербильта [19], разложение по базису плоских волн в рамках формализма функционала локальной плотности [20,21]. В процессе оптимизации геометрии было использовано девять *k*-точек в зоне Брюллюэна вдоль оси НТ. Для генерации *k*-точек использовался метод Мокхоста–Пака [22]. Оптимизация геометрии проводилась до тех пор, пока

Рис. 1. Схема развернутой прямоугольной решетки нанотрубки SiO₂. Темные кружки — атомы кремния, светлые атомы кислорода. **Т** — вектор трансляций, **С** — хиральный вектор. C = (5, 2), T = (-2, 5). Атомы кислорода, расположенные вдоль единичного вектора **a**₁, выходят из слоя атомов Si "на нас", а расположенные вдоль вектора **a**₂ — "от нас".

Рис. 2. Сравнение геометрической формы углеродных (слева) и SiO₂-нанотрубок (справа). *а* — (6.0), *b* — (3,3).

Рис. 3. Примеры структур зигзагообразной SiO₂-нанотрубки (4,4) (*a*) и линейной SiO₂-нанотрубки (8,0) (*b*).

силы, действующие на каждый атом, не становились меньше $0.05 \text{ eV}/\text{\AA}$.

Перед расчетом исследуемых НТ был проведен расчет кристалла кварца, показавший, что геометрические характеристики структур SiO₂ могут быть предсказаны с хорошей точностью — до сотой доли ангстрема (ср. с экспериментальными данными [23]: для α -кварца $a_{calc} = 4.913$ Å, $a_{exp} = 4.914$ Å, $c_{calc} = 5.4049$ Å, $c_{exp} = 5.4054$ Å). Однако ширина запрещенной зоны оказалась занижена ($E_{calc} = 5.9$ eV, $E_{exp} = 8.9$ eV [24]). Этот недостаток метода локальной плотности хорошо известен. Таким образом, можно лишь качественно обсуждать ширину запрещенной зоны НТ SiO₂. Для расчета кластера углеродной трубки, покрытого кластером SiO₂, был применен полуэмпирический метод PM3 (Parametric Model 3) пакета GAMESS [25].

4. Геометрические характеристики

В настоящей работе был рассчитан ряд линейных (n, 0) (n = 3, 4, 5, 6, 8, 10, 12, 15, 18) и зигзагообразных (n, n) (n = 3, 4) HT. В качестве примеров структуры HT SiO₂ на рис. 2 показаны трубки (6,0) и (3,3), а на рис. 3 — трубки (8,0) и (4,4).

Расчет геометрических характеристик дал следующие результаты.

Разность радиусов R слоя кремния и внутреннего слоя кислорода O(i) (так же как и радиусов внешнего слоя кислорода O(o) и слоя кремния) стремится к разности соответствующих атомных слоев в плоской структуре (рис. 4).

Длины связей вдоль и поперек оси НТ различаются и также стремятся к значению в плоской структуре (табл. 1). Поскольку атом кремния находится в тетраэдрическом окружении, наиболее стабильная структура будет иметь углы, наиболее близкие к идеальному тетраэдру (рис. 5 и табл. 2).

Известно, что эффекты атомной релаксации ведут к гофрированию цилиндрической поверхности ВN [26],

n, m	<i>R</i> , Å			Ρ . Ρ . Å	D D Å	Длина связи Si–O, Å		Длина связи Si–Si, Å	
	O(i)	Si	O(o)	$\mathbf{x}_{Si} - \mathbf{x}_{O(i)}, \mathbf{x}$	$\kappa_{O(o)} - \kappa_{Si}, A$	Параллельно	Перпендикулярно	Параллельно	Перпендикулярно
(3,0)	1.31	1.50	2.24	0.18	0.74	1.65	1.63	2.82	3.00
(4,0)	1.88	2.26	3.12	0.38	0.86	1.65	1.62	2.81	3.19
(5,0)	2.13	2.61	3.42	0.48	0.82	1.65	1.61	2.81	3.22
(6,0)	2.61	3.20	4.06	0.59	0.86	1.65	1.61	2.81	3.20
(8,0)	3.44	4.12	4.98	0.68	0.86	1.65	1.62	2.83	3.15
(10,0)	4.24	4.99	5.85	0.75	0.86	1.65	1.62	2.82	3.08
(12,0)	5.16	5.91	6.78	0.75	0.87	1.66	1.63	2.84	3.06
(15,0)	6.41	7.18	8.05	0.77	0.87	1.65	1.63	2.83	3.01
(18,0)	7.82	8.61	9.48	0.78	0.87	1.66	1.63	2.84	2.98
(3,3)	1.59	2.02	2.92	0.44	0.90	1.68	1.64	2.65	2.64
(4,4)	2.03	2.64	3.51	0.61	0.88	1.68	1.63	2.67	2.68
(0,10)	3.85	4.56	5.33	0.71	0.78	1.64	1.72	2.95	3.27
Плоская структура				0.87	0.87	1.65	1.63	2.78	2.79

Таблица 1. Основные геометрические характеристики различных HT SiO₂

Примечание. Для длин связей указано направление (параллельно или перпендикулярно) относительно оси HT SiO₂.

Рис. 4. Зависимость разности радиусов слоя кремния и внутреннего слоя кислорода от радиуса слоя кремния для ряда линейных SiO₂-нанотрубок.

Рис. 5. Разложение атомов в SiO₂-нанотрубке (n, 0). Атомы кремния находятся на "среднем" НТ-цилиндре, атомы кислорода O₁ и O'₁ — на внешнем, а O₂ и O'₂ — на внутреннем цилиндре.

что приводит в свою очередь к энергетически более выгодной их конфигурации. Для HT SiO₂ также проявляется эффект энергетически выгодной конфигурации, поскольку фрагмент слоя SiO₂ (в отличие от графитового) имеет оптимальную форму "седла", а не плоскости [14].

Таблица 2. Углы между соответствующими атомами в различных HT SiO₂ (обозначения, принятые в таблице, соответствуют рис. 5)

10 100		۸°				
<i>n</i> , <i>m</i>	$O_1 - Si - O_1'$	$O_2 - Si - O_2^\prime$	$O_1 - Si - O_2'$	Δ,		
(3,0)	118.132	106.959	107.314	8.66	2.51	2.16
(4,0)	116.88	109.79	107.77	7.41	0.31	1.71
(5,0)	117.24	109.27	107.38	7.77	0.20	2.09
(6,0)	117.20	108.74	107.89	7.73	0.73	1.58
(8,0)	117.54	108.45	107.77	8.07	1.02	1.70
(10,0)	117.31	108.98	107.78	7.84	0.49	1.69
(12,0)	117.81	109.99	107.14	8.34	0.51	2.33
(15,0)	117.39	111.11	107.09	7.92	1.64	2.38
(18,0)	118.14	110.61	106.99	8.67	1.13	2.49
(3,3)	132.96	123.05	102.32	23.49	13.58	7.15
(4,4)	129.97	118.63	105.52	20.49	9.16	3.95
(0,10)	128.07	143.66	39.69	18.60	34.19	69.78
Плоская						
структура	116.29	116.25	105.68	6.82	6.78	3.79

5. Энергетические характеристики

Был проведен расчет зависимости энергии ряда линейных HT SiO₂ от радиуса слоя кремния. Из рис. 6 видно, что наиболее энергетически выгодной является HT SiO₂ (6,0). Данный факт связан с тем, что геометрическая конфигурация тетраэдрического окру-

Рис. 6. Зависимость энергии на молекулу SiO₂ линейных нанотрубок от радиуса слоя атомов кремния.

Рис. 7. "Квадратные" (*a*) и "треугольные" (*b*) SiO₂-нано-трубки.

жения атомов кремния в этой структуре наиболее близка к идеальной, малонапряженной. Расчет зигзагообразных HT SiO₂ (3,3) и (4,4) показал, что данные структуры являются энергетически менее выгодными (E = -22.42 и -22.55 eV/SiO₂ соответственно), чем линейные HT (n, 0) близкого диаметра: E = -23.43 eV/SiO₂ для трубки (10,0). Кроме того, был проведен расчет для трубки (0,10), показавший, что данная HT также имеет меньшую по абсолютному значению энергию (E = -21.58 eV/SiO₂), чем соответствующая ей HT (10,0). Таким образом, можно заключить, что в процессе синтеза, вероятнее всего, будут расти HT линейного типа (n, 0).

Кроме описанных выше структур были рассмотрены виды HT SiO₂ из десяти "линий" атомов кремния и кислорода "квадратного" (рис. 7, a) и "треугольного" (рис. 7, b) поперечного сечения, которые первоначально имели значения энергии –21.6 и –21.8 eV/SiO₂ соответственно. В результате оптимизации по энергии эти структуры приняли стандартную "круглую" форму HT (10,0). Несмотря на такой результат, можно предположить, что подобные "некруглые" структуры могут образовываться в пучках HT SiO₂ благодаря большей гибкости Si–O–Si-связи.

Электронная структура и ее зависимость от деформации нанотрубки

Расчет показал, что все рассмотренные трубки на основе диоксида кремния являются диэлектриками с широкой запрещенной энергетической зоной. С увеличением радиуса трубки ширина ее запрещенной зоны

Рис. 8. Плотности электронных состояний линейных (*a*) и зигзагообразных (*b*) нанотрубок.

Рис. 9. Зависимость от степени деформации SiO₂-нанотрубок разности угла O_1 -Si- O'_1 и угла 109.471° между атомами О в тераэдре SiO₄ (*a*) и ширины запрещенной зоны (*b*).

стремится к соответствующему значению для плоской структуры. На рис. 8, *a* и *b* представлены плотности электронных состояний линейных и зигзагообразных трубок соответственно. Видно, что ширина запрещенной зоны линейных трубок уменьшается, а зигзагообразных трубок увеличивается с ростом поперечного размера HT.

Как известно [27], в НТ на основе нитрида бора происходит изменение ширины запрещенной зоны при их деформации. Мы решили проверить этот эффект, исследовав изменение электронной структуры самой энергетически устойчивой НТ SiO₂ (6,0). На рис. 9, а и b приведены рассчитанные нами графики зависимости разности Δα максимального угла между атомами O-Si-O и соответствующего угла в кварце, а также ширины запрещенной зоны от степени деформации $\varepsilon = \frac{l_0 - l}{l_2} \cdot 100\%$ для HT SiO₂ (6,0), где l_0 и l — длины начальной недеформированной и деформированной элементарной ячейки выбранной трубки соответственно. Видно сильное изменение щели в электронном спектре данной HT SiO₂, причем в точке, где угол O-Si-O при сжатии НТ равен углу между теми же атомами в кварце $(\Delta \alpha = 0)$, т.е. в наиболее близкой к структуре кварца конфигурации атомов в НТ, ширина запрещенной зоны максимальна. Таким образом, и для HT SiO₂ должен наблюдаться эффект изменения электронных свойств при их деформации.

7. Область применения

Вследствие наличия винтовой оси симметрии ($n \neq 0$, $m \neq 0$) HT SiO₂ должны обладать пьезоэлектрическими свойствами аналогично структуре HT состава BN [28] (как это имеет место и для кристалла кварца). Материалы из рассмотренных НТ на основе диоксида кремния можно использовать в качестве пружин и механоэлектрических элементов в микромашинах, строительных блоков для новых наноматериалов, а также как защиту от внешних воздействий для УНТ, поскольку НТ SiO2 с полностью насыщенными связями атомов являются химически неактивными и не проводящими электрический ток. Идея создания подобной защиты не нова. Так, например, ранее был осуществлен синтез HT BN на УНТ [29], а в работе [30] было показано теоретически, что диэлектрическая однослойная HT BN изолирует проводящую углеродную. В последнее время проведено достаточно много экспериментов по покрытию УНТ аморфным слоем SiO₂ [31,32]. Мы провели, используя полуэмпирический метод РМЗ, расчет взаимодействия между НТ SiO₂ и УНТ. Была рассмотрена система кластеров С₂₂₈H₁₂-фрагмент УНТ (6,0) с "одетым" на него фрагментом SiO₂ (12,0) (см. вставку на рис. 10). Проведенная оптимизация геометрии показала, что конечная конфигурация является стабильной и практически не претерпевает изменений по сравнению с исходными состояниями структур. Плотность электронных состояний системы (рис. 10) показывает, что HT SiO₂ не вносит существенного вклада в область, ближайшую к энергии Ферми. Таким образом, влияния электронной структуры HT SiO₂ на проводимость защищаемой УНТ не происходит.

Рис. 10. Плотность электронных состояний (DOS) системы фрагментов УНТ (6,0) и "одетого" на нее фрагмента SiO₂-нанотрубки (12,0) (сплошная линия). DOS УНТ (штриховая линия), DOS SiO₂-нанотрубки (штрихпунктирная линия). На вставке — структура кластеров УНТ (6,0)@SiO₂-HT (12,0).

8. Заключение

В настоящней работе методом функционала локальной электронной плотности были исследованы геметрические, энергетические и электронные характеристики новых неуглеродных НТ на основе квадратной решетки SiO₂. Изучены различные виды НТ, показано, что НТ линейного типа наиболее энергетически выгодные. Наиболее низкоэнергетической является НТ (6,0). Рассчитаны плотности электронных состояний НТ, обнаружено, что все НТ являются диэлектриками с широкой запрещенной зоной. Показано, что ширина запрещенной зоны НТ варьируется в широких пределах в зависимости от степени ее продольной деформации. Изучена возможность защитного покрытия УНТ трубкой SiO₂.

Авторы выражают благодарность Институту компьютерного моделирования СО РАН и Межведомственному суперкомпьютерному центру РАН за предоставление возможности использования кластерных компьютеров, на которых были проведены квантово-химические расчеты.

Список литературы

- J. Charlier, S. Iijima. In: Carbon nanotubes: synthesis, structure, properties, and applications / Eds M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris. Topics in Applied Physics. Springer, Berlin (2001). Vol. 80. P. 81.
- [2] R. Tenne, A.K. Zettl. Ibid. P. 55.
- [3] Л.А. Чернозатонский. Письма в ЖЭТФ 74, 369 (2001).
- [4] П.Б. Сорокин, А.С. Фёдоров, Л.А. Чернозатонский. ФТТ 48, 373 (2006).
- [5] M.A. Zwijnenburg, S.T. Bromley, E. Flikkema, T. Maschmeyer. Chem. Phys. Lett. 385, 389 (2004).
- [6] S.T. Bromley, M.A. Zwijnenburg, Th. Maschmeyer. Phys. Rev. Lett. 90, 035 502 (2003).
- [7] J. Song, M. Choi. Phys. Rev. B 65, 241 302 (2002).
- [8] M.W. Zhao, R.Q. Zhang, S.T. Lee. Phys. Rev. B 70, 205404 (2004).
- [9] M.A. Zwijnenburg, S.T. Bromley, J.C. Jansen, T. Maschmeyer. Chem. Mater. 16, 12 (2004).
- [10] M. Adachi. Colloid Polym. Sci. 281, 370 (2003).
- [11] M. Zhang, E. Ciocan, Y. Bando, K. Wada, L.L. Cheng, P. Pirouz. Appl. Phys. Lett. 80, 491 (2002).
- [12] Y. Li, Y. Bando, D. Goldberg. Adv. Mater. 16, 37 (2004).
- [13] N.I. Kovtyukova, T.E. Mallouk, T.S. Mayer. Adv. Mater. 15, 780 (2003).
- [14] Л.А. Чернозатонский. Письма в ЖЭТФ 80, 732 (2004).
- [15] A.K. Singh, V. Kumar, Y. Kawazoe. Phys. Rev. B 72, 155422 (2005).
- [16] G. Kresse, J. Hafner. Phys. Rev. B 47, 558 (1993).
- [17] G. Kresse, J. Hafner. Phys. Rev. B 49, 14251 (1994).
- [18] G. Kresse, J. Furthmüller. Phys. Rev. B 54, 11169 (1996).
- [19] D. Vanderbilt. Phys. Rev. B 41, 7892 (1990).
- [20] P. Hohenberg, W. Kohn. Phys. Rev. 136, 864 (1964).
- [21] W. Kohn, L.J. Sham. Phys. Rev. 140, 1133 (1965).
- [22] H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 5188 (1976).
- [23] А.А. Блистанов, В.С. Бондаренко, Н.В. Переломова и др. Акустические кристаллы. Справочник / Под ред. М.П. Шаскольской. Наука, М. (1982). 632 с.

- [24] R.B. Laughlin. Phys. Rev. B 22, 3021 (1980).
- [25] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, jr. J. Comput. Chem. 14, 1347 (1993).
- [26] M. Menon, D. Srivastava. Chem. Phys. Lett. 307, 407 (1997).
- [27] Yong-Hyum Kim, K.J. Chang, S.G. Louie. Phys. Rev. B 63, 205 408 (2001).
- [28] S.M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernhole, M. Buongiorno Nardelli. Phys. Rev. B 67, 235 406 (2003).
- [29] D. Golberg, W. Han, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato. J. Appl. Phys. 86, 23 649 (1999).
- [30] А.Н. Еняшин, Г. Зейферт, А.Л. Ивановский. Письма в ЖЭТФ **80**, 709 (2004).
- [31] T. Seeger, Ph. Redlich, N. Grobert, M. Terrones, D.R.M. Walton, H.W. Krotom, M. Rühle. Chem. Phys. Lett. 339, 41 (2001).
- [32] R. Colorado, jr., A.R. Barron. Chem. Mater. 16, 2691 (2004).