Влияние межкристаллитных потенциальных барьеров на формирование термоэлектродвижущей силы и эффекта Пельтье в поликристаллических сегнетоэлектриках-полупроводниках

© А.Н. Павлов, И.П. Раевский, В.П. Сахненко, С.А. Куропаткина, С.И. Раевская

Научно-исследовательский институт физики Ростовского государственного университета, 344104 Ростов-на-Дону, Россия

(Поступила в Редакцию 23 января 2006 г.)

Рассмотрено влияние на термоэлектрические эффекты в поликристаллических сегнетоэлектриках локальных заряженных состояний на границах раздела кристаллитов. Показана зависимость дифференциальной термоэдс и коэффициента Пельтье от высоты межкристаллитных потенциальных барьеров. Установлена возможность аномального поведения термоэдс в области сегнетоэлектрической точки Кюри.

PACS: 72.20.Pa, 44.05.+e, 65.40.-b

1. Введение

В поликристаллических сегнетоэлектриках-полупроводниках локализованные акцепторные состояния на межкристаллитных границах создают потенциальные барьеры [1], обусловливающие ряд нелинейных эффектов проводимости (варисторный, позисторный, пьезорезистивный, асимметрия вольт-амперных характеристик) [2]. Транспорт подвижных носителей заряда через потенциальные барьеры имеет термоактивационный характер и поэтому сопровождается термоэлектрическими явлениями, такими как возникновение термоэдс и эффект Пельтье.

В отсутствие внешнего напряжения в веществе устанавливается такой баланс токов диффузии и дрейфа, что плотность полного тока *j* равна нулю. При возникночении градиента температуры в веществе появляется выделенное направление, в результате чего нарушается баланс токов дрейфа и диффузии. Возникающий результирующий ток приводит к появлению на концах разомкнутой цепи термоэдс, т.е. разности потенциалов, восстанавливающей баланс токов. В поликристаллических сегнетоэлектриках-полупроводниках, являющихся окислами семейства перовскита, вклад в термоэдс создают и приповерхностная, и внутриобъемная части кристаллита. Объемная термоэдс связана с тем, что проводимость этих соединений имеет термоактивационный характер [3,4]. Дифференциальная термоэдс α выражается соотношением, учитывающим вклады объема кристаллита и его поверхности,

$$\alpha = \frac{\Delta \varepsilon_T}{\Delta T} = \frac{1}{T_0} \left(1 - \frac{2l}{d} \right) \varphi_v + \frac{u_T}{\Delta T} \frac{2l}{d}.$$
 (1)

Здесь $\Delta \varepsilon_T$ — термоэдс, возникающая на кристаллите при наличии на нем разности температур ΔT , u_T — вклад в термоэдс, обусловленный потенциальными барьерами на границах раздела кристаллитов, $-q\varphi_v \sim 0.1 \text{ eV}$ энергия активации движения носителя заряда [3,4], T_0 средняя температура на кристаллите, l — толщина области Шоттки, обусловленной локализованными на границе раздела кристаллитов зарядами [5], величина d определяет линейные размеры кристаллита. Выражение для α получено при условии однородности градиента температуры, а также $T_0 \gg \Delta T$.

2. Описание модели

Рассмотрим термоэдс, обусловленную потенциальными барьерами. Пусть отрицательно заряженная граница раздела между кристаллитами в поликристаллических сегнетоэлектриках-полупроводниках донорного типа расположена в плоскости 0YZ. Из условия j = 0, используя выражение [5] для плотности тока в направлении (X00) через потенциальный барьер

$$j = \frac{kT\mu N_d}{\int\limits_{-x_l}^{x_l} \exp\left[\frac{-q(\varphi+u)}{kT}\right] dx} \left[1 - \exp\left(\frac{-qu}{kT}\right)\right], \quad (2)$$

находим следующее соотношение:

$$\int_{-x_l}^{x_r} \frac{q}{kT} \frac{d\varphi}{dx} dx = 0,$$
(3)

где

$$\varphi(-x_l) = -u_T,$$

$$\varphi(x_r) = 0. \tag{4}$$

Здесь φ — величина потенциала, q — элементарный электрический заряд, k — постоянная Больцмана, T — температура, x_r , $-x_l$ — координаты правой и левой границ области Шоттки соответственно, N_d — плотность доноров в объеме кристаллита, μ — подвижность.

Пусть T_r, T_l — температуры на границах области Шоттки справа и слева от границы раздела кристаллитов. Учитывая граничные условия (4) для φ при появлении термоэдс, получим

$$\frac{u_T}{T_l} = -\int_{-x_l}^{x_l} \frac{\varphi}{T^2} \frac{dT}{dx} dx.$$
 (5)

Появление термоэдс обусловлено тем, что при наличии градиента температуры условия для термоактивационных перескоков через барьер по разные стороны от барьера становятся неравнозначными. Поэтому термоактивационный ток с одной стороны барьера больше, в результате по другую сторону барьера накапливается некоторый заряд, создающий термоэдс. Выражение (5) можно получить и из более общего, чем (2), выражения [5]

$$j = -\sigma \,\frac{\varphi}{T} \,\frac{dT}{dx} + \frac{\sigma}{q} \,T \,\frac{d}{dx} \left(\frac{F}{T}\right),\tag{6}$$

$$F = \xi - q\varphi, \tag{7}$$

где F — электрохимический потенциал, ξ — химический потенциал, σ — удельная проводимость. При условии j = 0 имеем

$$\frac{1}{q}\frac{d}{dx}\left(\frac{F}{T}\right) = \frac{\varphi}{T^2}\frac{dT}{dx}.$$
(8)

Далее, интегрируя по *х* и используя условия (4) и $\xi = \text{const}$, получаем выражение (5). Пусть $T_r > T_l$, $\frac{dT}{dx} = \text{const}$. Тогда перепад температур на барьере $\Delta T_s = \frac{dT}{dx} (x_r + x_l)$. Рассмотрим случай парафазы. Пусть $\varphi_r(\varphi_l)$ и $\varepsilon_r(\varepsilon_l)$ — соответственно потенциалы и диэлектрические проницаемости областей справа (слева) от границы кристаллита, n_s — плотность заполненных локализованных состояний на межкристаллитных границах, ε_0 — электрическая постоянная, тогда φ_r и φ_l описываются выражениями

$$\varphi_r = -\frac{qN_d(x-x_r)^2}{2\varepsilon_r\varepsilon_0} + u_T, \quad x > 0,$$

$$\varphi_l = -\frac{qN_d(x+x_l)^2}{2\varepsilon_l\varepsilon_0}, \quad x < 0,$$
 (9)

$$2l = x_r + x_l = \frac{n_s}{N_d}, \quad \frac{x_r^2}{\varepsilon_r} = \frac{x_l^2}{\varepsilon_l}, \tag{10}$$

$$\varphi_r(0) = \varphi_l(0) = \varphi_s. \tag{11}$$

При $\varepsilon_l = \varepsilon_r = \varepsilon$, T = const имеем $\varphi_s = \varphi_{s0}$, где

$$\varphi_{s0} = -\frac{qn_s^2}{8N_d\varepsilon_0\varepsilon}.$$
 (12)

Считая, что добавки в $x_{r,l}$ и $\varphi_{r,l}$, связанные с градиентом температуры, малы, получаем из выражения (5) при $T_{0s} \gg \Delta T_s$ (где T_{0s} — средняя температура на барьере) соотношение

$$u_T = \frac{qN_d}{6\varepsilon_0 T_0} \left(\frac{x_l^3}{\varepsilon_l} + \frac{x_r^3}{\varepsilon_r} \right) \frac{\Delta T_s}{x_l + x_r}.$$
 (13)

При $\varepsilon_l = \varepsilon_r = \varepsilon$

$$u_T = -\frac{\varphi_{s0}}{T_{0s}} \,\Delta T_s \,\frac{1}{3},\tag{14}$$

$$\alpha = \frac{\Delta \varepsilon_T}{\Delta T} = -\frac{1}{T_0} \left(\left(1 - 2\frac{l}{d} \right) \varphi_v + \frac{2}{3} \varphi_s \frac{l}{d} \right).$$
(15)

Рис. 1. Энергетическая диаграмма вблизи границ кристаллитов в поликристалле [6] в отсутствие внешнего поля.

Рассмотрим случай сегнетофазы

$$\varphi_r = -E_c(x_r - x) + u_T, \quad x > 0,$$

 $\varphi_l = -E_c(x_l + x), \quad x < 0.$
(16)

При T = const имеем $\varphi_s = \varphi_{s0}$, где

$$\varphi_{s0} = -E_c \, \frac{n_s}{N_d}.\tag{17}$$

Считая, что добавки в $x_{r,l}$ и $\varphi_{r,l}$, связанные с градиентом температуры, малы, имеем из (5) при $T_{0s} \gg \Delta T_s$

$$u_T = \frac{E_c}{2T_0} \left(x_l^2 + x_r^2 \right) \frac{\Delta T_s}{x_l + x_r}.$$
 (18)

При $\varepsilon_l = \varepsilon_r = \varepsilon$

$$u_T = -\frac{\varphi_{s0}}{T_{0s}} \Delta T_s, \qquad (19)$$

$$\alpha = \frac{\Delta \varepsilon_T}{\Delta T} = -\frac{1}{T_0} \left(\left(1 - 2\frac{l}{d} \right) \varphi_v + \varphi_s \frac{l}{d} \right).$$
(20)

На формирование термоэдс влияют E_s и N_s — энергия и плотность локализованных состояний на межкристаллитных границах, E_F — энергия Ферми (рис. 1), $n = N_d$ — концентрация свободных носителей заряда. Для проявляющих позисторный эффект мелкозернистых материалов, в которых $2l/d \sim 1$, получаем соотношение

$$\alpha = \frac{\Delta \varepsilon_T}{\Delta T} \approx \frac{u_T}{\Delta T},\tag{21}$$

в соответствии с которым при $T = T_K$ произойдет увеличение α вследствие роста потенциального барьера.

Для материалов с $l/d \ll 1$ основную роль в поведении α будут играть объемные эффекты. При этом выражение для α сводится к соотношению

$$\alpha \approx -\frac{\varphi_v}{T_0},\tag{22}$$

в соответствии с которым величина α не будет иметь аномалий в области T_K .

Физика твердого тела, 2006, том 48, вып. 10

Рис. 2. Зависимости α от $T-T_K$. I-3 — экспериментальные кривые для Ba_{0.999}Ce_{0.001} Ti_{0.85}Sn_{0.15}O₃ [7] с медленным охлаждением после синтеза на воздухе (*I*), с закалкой на воздухе после синтеза (*2*) и для BaTiO₃ с 0.17 at.% Sm (*3*); *4*, 5 — расчетные кривые для $N_d = 4 \cdot 10^{23} \text{ m}^{-6}$, $E_s = 0.9 \text{ eV}$ при $d = 5 \cdot 10^{-4} \text{ m}$, $N_s = 3 \cdot 10^{18} \text{ m}^{-2}$ (*4*) и при $d = 2.5 \cdot 10^{-5} \text{ m}$, $N_s = 10^{18} \text{ m}^{-2}$ (5).

3. Результаты расчетов термоэдс

На рис. 2 приведены результаты расчетов α , коррелирующие с нашими экспериментальными данными для ВаТіO₃ с 0.15 at.% Sm и с экспериментальными данными для Ba_{0.999}Ce_{0.001}Ti_{0.85}Sn_{0.15}O₃ [7]. При $T_K < T$ имеем $|\varphi_s| \gg |\varphi_v|$, поэтому выражение (15) сводится к виду

$$\alpha = -\frac{1}{T_0} \frac{2}{3} \varphi_s \frac{l}{d}.$$
 (23)

При $-q\varphi_s \sim 1 \text{ eV}$, $T_0 \sim 400 \text{ K}$, $l \leq 0.5d$ из выражения (23) получаем $\alpha \leq 0.8 \text{ mV/K}$, что согласуется с экспериментальными данными (рис. 2). Закаленные образцы Ва_{0.999}Се_{0.001}Ti_{0.85}Sn_{0.15}O₃ обнаруживают наличие аномалий α в области T_K , в то же время для отожженных образцов Ва_{0.999}Се_{0.001}Ti_{0.85}Sn_{0.15}O₃ такие аномалии отсутствуют. Однако позисторная аномалия в зависимости $\rho(T)$ во всех случаях указывает на существование потенциальных барьеров на границах кристаллитов (рис. 3). Представленные на рис. 2 теоретические результаты показывают, что описанное выше поведение α для Ва_{0.999}Се_{0.001}Ti_{0.85}Sn_{0.15}O₃ можно объяснить влиянием размерного фактора.

4. Эффект Пельтье

Перенос подвижного заряда через потенциальные барьеры сопряжен с тепловыми явлениями. При этом *I* — поток тепла, обусловленный градиентом температу-

ры и транспортом носителей заряда во внешнем поле, — определяется выражением

$$I = -\chi \frac{dT}{dx} + \varphi j, \qquad (24)$$

где χ — коэффициент теплопроводности [5],

$$\varphi = \varphi_{\rm int} + \varphi_{\rm out}. \tag{25}$$

Здесь φ_{int} — потенциал, обусловленный заряженной границей, φ_{out} — потенциал, обусловленный внешним источником.

Выделение тепла определяется соотношением

$$Q = \frac{dI}{dx} = Q_T + Q_P + Q_D.$$
 (26)

Здесь Q_T — выделение тепла, связанное с теплопроводностью и градиентом температуры, Q_P — тепло Пельтье, обусловленное мезоскопической разностью потенциалов на межкристаллитном барьере, Q_D — тепло Джоуля–Ленца, определяемое внешней разностью потенциалов,

$$Q_T = -\frac{d}{dx}\chi \frac{dT}{dx},\tag{27}$$

$$Q_P = (\mathbf{E}_{\text{int}} \cdot \mathbf{j}), \qquad (28)$$

$$\mathbf{E}_{\text{int}} = -\nabla \boldsymbol{\varphi}_{\text{int}},\tag{29}$$

$$Q_D = (\mathbf{E}_{\text{out}} \cdot \mathbf{j}), \tag{30}$$

$$\mathbf{E}_{\rm out} = -\nabla \varphi_{\rm out}.\tag{31}$$

Ввиду немонотонного поведения величины φ_{int} в области границы кристаллита (рис. 1) [8] знак Q_P меняется при переходе через межкристаллитный потенциальный

Рис. 3. Зависимости ρ от $T - T_K$. Обозначение кривых то же, что и на рис. 2.

барьер (в отличие от величин Q_T и Q_D , которые остаются постоянными по знаку). Если обусловленный внешним электрическим полем поток термоактивированных за счет взаимодействия с кристаллической решеткой электронов проводимости идет относительно плоскости границы раздела кристаллитов справа налево, то справа от границы $\mathbf{E}_{int} \uparrow \downarrow \mathbf{j}$, тепло Пельтье поглощается, и решетка охлаждается. Слева от границы раздела кристаллитов $\mathbf{E}_{int} \uparrow \uparrow \mathbf{j}$, тепло Пельтье выделяется, и в результате решетка нагревается, так как электроны проводимости увеличивают свою кинетическую энергию в поле потенциального барьера, становятся "горячими" [5] и при дальнейшей термализации отдают энергию решетке. Нагрев решетки в области раздела происходит и из-за тепла Джоуля, так как основное уменьшение внешнего потенциала происходит в области Шоттки. Приводимые далее соотношения (32), (33) описывают полное выделение тепла соответственно справа и слева от границы раздела кристаллитов, а выражение (36) определяет перенос тепла через границу раздела кристаллитов из одного кристаллита в другой, в соответствии с чем относительно границы раздела имеется асимметрия тепловыделения, обусловленная теплом Пельтье. При этом в силу указанных процессов в поликристаллических сегнетоэлектриках при прохождении тока должно быть асимметричное (с максимумом вблизи границы раздела кристаллитов) распределение температур, что согласуется с экспериментальными данными [6] по зондовому сканированию температуры внутри кристаллитов в поликристаллическом ВаТіО₃.

Таким образом,

$$W_r = \int_0^{x_r} (Q_P + Q_D) dx = \int_0^{x_r} (\mathbf{E} \cdot \mathbf{j}) dx < 0, \qquad (32)$$

$$W_{l} = \int_{-x_{l}}^{0} (Q_{P} + Q_{D}) dx = \int_{-x_{l}}^{0} (\mathbf{E} \cdot \mathbf{j}) dx > 0, \qquad (33)$$

$$\mathbf{E} = -\nabla \varphi, \tag{34}$$

$$W_D = W_l + W_r = \int_{-x_l}^{x_r} Q_D dx = uj,$$
 (35)

$$W_P = \int_{-x_l}^{0} Q_P dx = -\int_{0}^{x_r} Q_P dx = -j\varphi_s.$$
(36)

Пусть $-\varphi_{s0}\gg u$, тогда $x_r\sim x_l$ и выполняются соотношения

$$W_r \approx \int_0^{M} Q_P dx \approx \varphi_{s0} j < 0, \qquad (37)$$

$$W_l \approx \int_{-x_l}^0 Q_P dx \approx -\varphi_{s0} j > 0.$$
 (38)

При установившемся распределении температур на длине области Шоттки образуется разность температур, определяемая соотношением

$$\Delta T \sim \frac{-\varphi_{s0}jl}{\chi}.$$
 (39)

При $\chi = 12 \,\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$ (для SrTiO₃ [9]), $j \sim 10^6 \,\mathrm{A} \cdot \mathrm{m}^{-2}$, $l \sim 10^{-6} \,\mathrm{m}$, $-\varphi_{s0} \sim 1 \,\mathrm{V}$ перепад температур вблизи границы раздела благодаря эффекту Пельтье составит $\Delta T \sim 0.1 \,\mathrm{K}$.

Пусть $-\varphi_{s0} \sim u$, тогда $x_r \sim 0$ и выполняются соотношения

$$W_r \approx 0, \quad W_l \approx uj > 0.$$
 (40)

В соответствии с выражением (37) обусловленный межкристаллитными барьерами коэффициент Пельтье П будет определяться соотношением

$$\Pi = -\varphi_s. \tag{41}$$

С другой стороны, согласно выражениям (1), (5), дифференциальная термоэдс, определяемая локально на границе раздела кристаллитов, будет описываться выражением

$$\alpha_s = -\frac{\varphi_s}{T}.\tag{42}$$

Таким образом, для дифференциальной термоэдс и коэффициента Пельтье, обусловленных влиянием межкристаллитных барьеров, справедливо общее, определяемое термодинамической теорией [5] соотношение

$$\Pi = \alpha_s T. \tag{43}$$

5. Выводы

 Благодаря наличию потенциальных барьеров, переход через которые осуществляется вследствие термоактивации подвижных носителей заряда, межкристаллитные границы вносят вклад в термоэлектрические эффекты.

 Дифференциальная термоэдс, определяемая межкристаллитными границами, пропорциональна величине потенциального барьера и поэтому обнаруживает аномалию в области температуры Кюри.

3) Перенос подвижных носителей заряда во внешнем электрическом поле через границы кристаллитов сопровождается эффектом Пельтье, т.е. пропорциональным плотности тока *j* выделением или поглощением теплоты. По одну сторону от границы раздела кристаллитов тепло отбирается от кристаллической решетки, а по другую сообщается ей.

Список литературы

- В.М. Фридкин. Сегнетоэлектрики-полупроводники. Наука, М. (1976). 408 с.
- [2] A.N. Pavlov, I.P. Raevsky, M.A. Malitskaya, I.A. Sizkova. Ferroelectrics 174, 35 (1995).

- [3] Поляроны / Под ред. Ю.А. Фирсова. Наука, М. (1975). 424 с.
- [4] Э.В. Бурсиан. Нелинейный кристалл: титанат бария. Наука, М. (1974). 296 с.
- [5] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников. Наука, М. (1977). 672 с.
- [6] G. Mader, H. Meixner, P. Kleinschmidt. J. Appl. Phys. 56, 2832 (1984).
- [7] И.Т. Шефтель. Терморезисторы. Наука, М. (1973). 416 с.
- [8] Полупроводники на основе титаната бария. Пер. с яп. Энергоиздат, М. (1982). 328 с.
- [9] А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др. Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Атомиздат, М. (1991). 1232 с.