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Self-consistent approach in microdynamics description of supercooled
liquids and glasses
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The study of the microdynamics of supercooled liquids and glasses is executed through calculations of the
dynamic structure factor S(k, ω). The theory developed on the basis of a self-consistent approach in the framework
of memory function formalism is applied to define the frequency spectra (m/kBT)S(k, ω) of supercooled argon at
the temperature T = 5 K for wave number region from 2 to 8.5 nm−1. Obtained results are in a good agreement
with the molecular dynamics simulation data.
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The understanding of the microscopic dynamics of super-
cooled liquids and of its relation with the glass transition is
one of the open problems in the physics of the condensed
matter, which induces the performance of numerous ex-
perimental [1–3] and theoretical investigations [4]. Although
different details of the microdynamics of supercooled liquids
and glasses are essentially exactly determined, much is
unclear still now. So, for example, even though the relation
between the phenomenology of glass transition and the long
time dynamics has been almost clarified, the effect of

”
the

structural arrest“ on the high frequency collective vibrational
motion and a role of memory effects in structural relaxation
is much less clear [5–7]. The present paper is devoted to
the study of this issue.

The most convenient way to stydy the dynamics of the
density fluctuations is the determination of the dynamic
structure factor S(k, ω), which can be experimentally
obtained by means of the scattering of light, neutrons
and X-rays. One of the common features established
for glass and supercooled liquids via the above-mentioned
experimental techniques consists in the fact that acoustic-
like excitations in these systems are propagated up to a value
of the wave number k, which corresponds to the minimal
interparticle distances. As this takes place, the broadening of
high frequency peaks corresponded to these collective exci-
tations follows a power law Dk2, where D does not depend
practically on temperature. It is need to note that similar
features were earlier established in the microdynamics of
density fluctuations in liquid alkali metals [8–10]. From
the theoretical point of view, S(k, ω) can be found from
the generalized Langevin equation [11] for the normalised
density correlator φ(t) = 〈δρk(t)δρ−k(0)〉/〈|δρk(0)|2〉

d2φ(k, t)
dt2

+�2
1(k)φ(k, t)

+�2
2(k)

∫ t

0
dτM2(k, t − τ )

dφ(k, τ )
dτ

= 0, (1)

where M2(k, t) is the second order memory function,
�2

1(k) and �2
2(k) are the frequency relaxation parameters,

which are expressed through th even frequency moments
of S(k, ω)

ω(n)(k) =
∫

dωωnS(k, ω)∫
dωS(k, ω)

. (2)

Namely,

�2
1(k) = ω(2)(k) =

kBT
m

k2

S(k)
, (3)

�2
2(k) =

ω(4)(k)
ω(2)(k)

− ω(2)(k). (4)

As was recently shown (see Ref. [7], and Eq. (7) in
Ref [12]), the Laplace transform, f̃ (s) =

∫∞
0 e−st f (t)dt,

of the non-Markovian equation (1) for the case of non-
erfodicity glass systems allows one to obtain the dynamic
structure factor in the following form

S(k, ω) = S(k)
[

f (k)δ(ω) +
1− f (k)

π

× [�2
1(k)+�2

2(k)]M ′2(k,ω)
[ω2−�2

1(k)+ω�2
2(k)M ′′2 (k,ω)]2+[ω�2

2(k)M ′2(k,ω)]2

]
,

(5)
where M̃2(k, iω) = M ′2(k, ω) + iM ′′2 (k, ω), S(k) =
= 〈|δρk(0)|2〉 is the static structure factor, and f (k) is the
non-ergodicity factor, which is expressed thorough �2

1(k)
and �2

2(k) [4,6]

f (k) = lim
t→∞

φ(k, t) = F(�2
1(k), �2

2(k)). (6)

Then, the problem of definition of the dynamic structure
factor S(k, ω) is reduced to the finding of the second-order
memory function M2(k, t) (or its the Laplace transform),
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Figure 1. Frequency spectra of (m/kBT)S(k, ω) of supercooled argon for T = 5 K at k = 2.0 (a), 2.9 (b), 5.0 (c), and 8.5 nm−1 (d).
Circles are the data of molecular dynamics simulations [6], solid line is our theoretical results.

which is also the time correlation function described the cor-
responding relaxation process. From the point of view of the
Zwanzig–Mori formalism [13,14], the Laplace transforms of
the whole set of memory functions arised in hierarchical
chain of the non-Markovian equations, interrelate by the
following recurrent relation

M̃n(k, s) =
[
s +�2

n+1(k)M̃n+1(k, s)
]−1

, (7)

where �2
n(k) is the relaxation parameter of the n the

order. The finding of the term M2(k, t) can be also
executed in the framework of a self-consistent approach
based on the assumption about equalization of time-scales
of high-order memory functions, τ3(k) and τ4(k), where
τn(k) =

∫∞
0 dtMn(k, t) [8]. 1 As a result, we obtain the

termination in the recurrent relation (7) and find exactly the
following expression for M2(k, t) without any trivial approx-
imations for the memory function M2(k, t) (or M̃2(k, s)) by
different model time (frequency) dependencies

M̃2(k, s) =
[
s +

�2
3(k)

√
s2 + 4�2

4(k)−�2
3(k)s

2�2
4(k)

]
. (8)

Now, the spectra S(k, ω) can be deduced by simple substi-
tution of Eq. (8) into Eq. (5). So, the position as well

1 Such interrelation between τ3(k) and τ4(k) is based on the assumption
of equalization of time scales for TCF of energy current fluctuations and
its memory function.

as broadening and the amplitude of high frequency peak
of S(k, ω) in this approach are interrelated terms, which are
determined by the frequency relaxation parameters �2

3(k)
and �2

4(k). It is need to note that as it was recently
shown in Ref. [15], this approach allows one to obtain
the second order memory function in terms of simple
relaxation functions. It is in a full agreement with the
mode-coupling theory ideas [16]. In accordance with the
presented approach, the spectra of the dynamic structure
factor S(k, ω) were calculated by Eqs. (5) end (8) for the
supercooled argon at temperature T = 5 K for wave num-
bers k = 2.0, 2.9, 5.0 and 8.5 nm−1. The parameter �2

1(k)
was exactly found from Eq. (3), whereas numerical values
of the second order relaxation parameter �2

2(k) were taken
from Ref. [6]. The frequency parameters �2

3(k) and �2
4(k)

were determined from the comparison of theoretical results
with the molecular dynamics simulation data. Obtained
theoretical results for the reduced dynamical structure
factor (m/kBT)S(k, ω) (solid line) together with the results
of the molecular dynamics simulation (circles) [6] are
presented in Fig. 1. It is need to note that the molecular
dynamics study of Ref. [6] was performed for system of
N = 2048 argon atoms interacted via a Lennard−Jones
potential (ε/kB = 125.2 K, σ = 3.405 Å). It is obvious that
theoretical curves are in a good agreement with the mole-
cular dynamics data for the whole range of wave number
values. Insignificant oscillations observed in the data of
molecular dynamics simulations for low frequency regions
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Figure 2. (a) dispersion of the side peak of the dynamic structure factor for supercooled argon (T = 5 K); (b) k-dependence of the
side peak amplitude; (c) dependence of the side peak amplitude hc on the frequency of collective excitations ωc/2πc. Solid line presents
theoretical results, circles are the data of molecular dynamics simulations [6].

of dynamic structure factor spectra are related to errors,
which arise at the numerical Laplace- (Fourier-) transform
of data for the density correlator [6]. A good agreement
between theory and molecular dynamics simulation data are
also seen in Fig. 2, where dispersion of high frequency peak
of dynamic structure factor (see Fig. 2, a), dependencies of
the side peak amplitude hc on the wave number k (see
Fig. 2, b) and on the frequency ωc/2πc at fixed values of k
(see Fig. 2, c) are presented. In Fig. 3, we present numerical
values of frequency relaxation parameters �2

n(k), n = 1, 2, 3
and 4, used in our calculations. It is need here to note
that all frequency relaxation parameters have the same k-
dependence. Similar scenario was earlier obtained for the
description of microscopic dynamics of liquid alkali metals

(lithium, sodium, rubidium and caesium) near their melting
temperatures [8–10,15].

In conclusion, this paper is devoted to the development
of a self-consistent approach executed in the framework
of memory function formalism and suggested earlier for
the description of microdynamics of liquid alkali metals for
finding the dynamic structure factor of supercooled liquids.
The results of the theoretical analysis of S(k, ω) performed
for supercooled argon at the temperature T = 5 K for values
of wave numbers ranging from 2 to 8.5 nm−1 are in a good
agreement with molecular dynamics simulation data. It
allows us to make the following inferences.

1) Possibility of the use of quasi-hudrodynamic approach
to the description of

”
instantaneous“ dynamical processes in
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Figure 3. Frequency relaxation parameters �2
n(k), n = 1, 2, 3

and 4, used in theoretical analysis of S(k, ω) for supercooled argon
at T = 5 K.

supercooled liquids and glasses at the 10−12 s time scale in
the microscopic spatial space.

2) Microscopic processes and corresponding collective
excitaitons, which are observed in the THz frequency region
of the dynamic structure factor spectra, have unified origin
in liquid alkali metals as well as in supercooled liquids
that can serve as a convincing proof for the benefit of the
assumptions of Ref. [17].

The authors acknowledge V. Götze, M. Sperl and
V.Y. Shurygin for the useful correspondence.
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