О морфологии углеродных нанотрубок, растущих на нанопористой подложке из каталитических частиц

© Н.И. Алексеев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: aleks@mail.ioffe.ru, NIAlekseyev@ilip.itc.etu.ru

(Поступила в Редакцию 18 августа 2005 г.)

Развита расчетная модель роста углеродных нанотрубок на нанопористой подложке с наночастицами металлического катализатора на дне пор. Показано, что в широком диапазоне условий морфология возникающих нанотрубок полностью соответствует результатам эксперимента: для многослойных нанотрубок может наблюдаться как вершинный, так и корневой рост, для однослойных нанотрубок всегда наблюдается только корневой рост — растущий конец нанотрубки всегда свободен от катализатора.

PACS: 61.46.-w, 61.46.Fg

1. Введение

Углеродные нанотрубки (УНТ), систематически исследуемые с 1991 г. [1,2], привлекают внимание в связи с рядом возможных применений [3]. При этом устоявшейся теоретической модели роста УНТ, пусть даже отнесенной к конкретным экспериментальным условиям, не существует. Большинство предлагаемых моделей так или иначе связано с механизмом пар—жидкость—капля (ПЖК) [4] и восходит к работе Тиббетса [5]. Согласно механизму ПЖК, УНТ растут в результате выделения углерода из каталитической нанокапли металлического расплава, пересыщенной углеродом. Металл относится, как правило, к числу известных из химии катализаторов.

Первая часть настоящей работы [6] описывает термодинамику выделения графенового островка на плоской или искривленной поверхности нанокапли (или каталитической частицы — КЧ) [6]. Работа [6] непосредственно применима лишь к простому модельному объекту сферической КЧ, не связанной с подложкой, так что зарождение УНТ происходит с равной вероятностью в любой точке поверхности КЧ. Физически такая ситуация отвечает дуговому синтезу УНТ. С другой стороны, технология выращивания нанотрубок CVD-методами (chemical vapor decomposition — химическое разложение углеродных носителей [7,8]) подразумевает, как правило, подложку, в наноразмерных порах которой и осаждены КЧ. В такой системе в зависимости от типа катализатора, размера пор, наложения поля и других условий эксперимента может наблюдаться рост как однослойных нанотрубок (ОНТ), так и многослойных нанотрубок (МНТ). Кроме того, может иметь место как корневой рост нанотрубки (закрытый конец УНТ свободен от катализатора и несет лишь фуллереноподобную шапочку), так и вершинный (когда на растущем конце УНТ находится открытая КЧ, не капсулированная внутрь шапочки). Примечательно, что для МНТ может наблюдаться как вершинный, так и корневой рост. Для ОНТ наблюдается только корневой рост — растущий конец нанотрубки всегда свободен от катализатора. На отсутствие объяснения такого феномена в рамках имеющихся моделей указано, в частности в [3,9].

С математической точки зрения задача роста УНТ из глубокой узкой поры представляет собой другую (по сравнению со свободной сферической КЧ) модельную задачу — одномерную. Ее решение, предлагаемое в настоящей работе, дает также аппарат полуколичественного описания в задаче двумерного нестационарного расчета поля концентраций углерода внутри свободной КЧ и перемещения границы островка зародыша УНТ — на поверхности КЧ. Этот аппарат был использован в [6].

2. Рост нанотрубки со дна поры, заполенной жидкой КЧ. Качественное рассмотрение

Возможные сценарии роста УНТ из КЧ показаны на рис. 1. В случае, соответствующем рис. 1, а, динамика роста УНТ не отличается от случая сферической КЧ в бесконечном пространстве, заполненном газом [9], за исключением того, что источник углерода локализован лишь на части поверхности КЧ (стрелка S). Данный сценарий реализуется, очевидно, если условия роста на верхней и нижней поверхности КЧ мало отличаются: островок появляется там, где больше пересыщение в данном случае сверху. Это происходит, если температура КЧ со стороны реактора ниже температуры стенок. Это в свою очередь возможно, когда тепло, выделяемое при разложении углеродного носителя, отрицательно или очень мало. В зависимости от условий, описанных в [6], в этом случае рост ОНТ или МНТ происходит с верхней поверхности капли и является корневым: в растущем конце УНТ КЧ нет.

В случае когда температура нижнего края КЧ ниже, зарождение нанотрубки начинается как выделение графитового островка на этой нижней поверхности (рис. 1, *b*-*e*). Как показано далее, при варьировании

Рис. 1. Варианты роста УНТ из наночастиц катализатора на дне поры. УНТ растет с верхнего конца наночастицы (a), графеновый островок выделяется в нижней части КЧ (b-f), зарождение островка (b), граница островка перемещается вдоль вертикальной стенки наночастицы (c), второй островок выделяется при убегании второго слоя на расстояние более h(d), графеновые островки последовательно выделяются на расстоянии h один за другим (e), первый островок достигает верхнего края КЧ (f). Штриховкой показаны стенки поры.

параметров эксперимента в самых широких пределах внутри этого островка в процессе его расширения будут формироваться новые зародыши, т.е. возникает многослойная нанотрубка.

В настоящей работе рассматривается именно этот второй случай. Полагается, что на верхнем конце КЧ идет разложение углеродного носителя, и в единицу времени на единицу поверхности возникает Γ атомов углерода (источник). Температура капли от точки источника $x = L_p$ до точки стока x = 0 (низ КЧ) спадает линейно от T_1 до $T_0 = T_1 - \delta T$, $T = T_1 + \delta T x/L_p$.

То что при вершинном росте должна формироваться именно многослойная УНТ, нетрудно понять качественно. Из предложенной в [6] картины следует, что возникновение зародыша нанотрубки — графенового островка — происходит, когда пересыщение КЧ углеродом снижает потенциальный барьер энергии Гиббса G_m до некоторого критического значения.

Если один островок, потенциально способный быть зародышем нанотрубки, уже сформирован (рис. 1, b) выделение следующего островка — зародыша второго слоя МНТ — зависит от того, насколько быстро растет пересыщение в области возможного выделения этого островка (точка O' на рис. 1, d). В свою очередь рост пересыщения в точке О' определяется стоком атомов из КЧ в первый (или в общем случае в предыдущий) островок — в точке О на рис. 1, b-е. Если сток и скорость перемещения стока вверх велики, область ниже стока эффективно опустошается углеродом, и возможно перемещение первого островка вверх до верхней кромки КЧ (рис. 1, f). Однако конфигурация f все равно не может трансформироваться в ОНТ. По мере уменьшения площади источника углерода (лунки Н) напряжение подгиба графенового слоя к островку нарастает и одновременно уменьшается число атомов углерода, способное переходить из КЧ в островок (за счет того

же уменьшения площади). Поэтому критическое пересыщение, необходимое для выделения второго островка внизу, обязательно будет достигнуто. Для краткости такой сценарий будем называть далее сценарием 1.

В противоположном случае — малый сток и малая скорость расширения островка — область ниже стока обедняется углеродом незначительно, и даже за время ухода стока вверх на расстояние, равное межслойному расстоянию в углероде h = 3.34 Å, пересыщение ниже стока (точка O' на рис. 1, e) становится критическим. Происходит выделение второго островка. Образование последующих слоев происходит аналогично и заканчивается, когда совокупный сток атомов в образовавшиеся графеновые слои начинает перехватывать большую часть потока атомов углерода сверху. Этот сценарий (второй), как показано далее, является наиболее типичным.

Возможен, наконец, третий сценарий: за время, требуемое для достижения необходимого пересыщения на дне поры, уже сформировавшийся островок успевает переместиться вверх на расстояние больше h. В этом случае возникает область нескомпенсированной поверхностной энергии нанокапли (область δh на рис. 1, c). Поэтому естественно думать, что, если область стока убежала на расстояние h, а новый критический островок еще не может возникнуть, нанотрубка все же будет развиваться по первому сценарию. Однако, если разрыв $\delta h > h$ между точками стока атомов углерода в первый и второй островки все же возник, второй сток будет догонять первый, и последовательность событий в целом должна быть сходна со сценарием 2.

Таким образом, во всех случаях возникает многослойная нанотрубка, однако детальная ее морфология может быть различной.

3. Взрывная стадия образования критического зародыша

Чтобы выделить безразмерные критические параметры, определяющие тип возникающей УНТ, необходимо определить: а) характерный масштаб зарождения первого графенового островка; б) ход концентрации углерода в КЧ в момент, когда этот островок сформировался.

Пусть в момент t = 0 концентрация углерода при x = 0 (в нижней точке КЧ — рис. 1, b) достигает насыщения. Для простоты нижняя поверхность КЧ сначала полагалась плоской (достаточность этого предположения обсуждается далее). Начиная с момента t = 0 задача выделения критического островка идентична задаче образования новой фазы (например, задаче о конденсации капель жидкости из пара [9,10]) с той лишь разницей, что формируется не множество капель, а всего один островок. Тем не менее выделение островка является статистическим процессом: при любом заданном пересыщении КЧ углеродом можно лишь указать вероятность выделения островка в течение заданного промежутка

времени. Чтобы сделать задачу детерминированной, надо рассматривать ансамбль пересыщения КЧ в одинаковых порах. Для такого ансамбля существуют время взрывной конденсации [9] и максимальное пересыщение, достигаемое при конденсации. При расчете этих параметров мы в целом следовали технике, разработанной впервые Ю.П. Райзером в [10]. Условие

$$D\pi \int_{0}^{t} dt' R_{1}^{2}(t') \frac{\partial n}{\partial x}(t') = \int_{0}^{t} g(t',t)J(t')dt' \qquad (1)$$

выражает равенство диффузионного притока атомов углерода к области выделения атомов из расплава (левая часть, где D — коэффициент диффузии углерода в жидком металле) и числа атомов в островке радиусом $R_1(t)$ (рис. 1, b), образовавшемся к моменту t из критического островка с числом атомов g^* , зародившегося в момент t' (правая часть). По t' ведется интегрирование. Производная $\partial n/\partial x$ в левой части (1) в предположении плоского дна поры берется при x = 0. Поток нуклеации J(t') в правой части (1) пропорционален вероятности зарождения островка критического размера в момент t' при существующем в этот момент пересыщении и удовлетворяет условию нормировки

$$\int_{-\infty}^{\infty} dt' J(t') dt' = 1.$$
 (2)

Величина *D*, по данным [11], составляет примерно $D = 3.0 \cdot 10^{-7} \text{ cm}^2$ /s. Предположим, далее, что на временах, близких к моменту достижения максимального пересыщения t_{max} (рис. 2), поток определяется гауссовым соотношением

$$J \sim \exp\left(-\Lambda^2 (t_m - t')^2\right). \tag{3}$$

Пересыщение определялось как отношение $n/n_S(T)$, где n и n_S — концентрация углерода в расплаве и концентрация насыщения расплава при температуре T.

Рис. 2. Изменение концентрации углерода при x = 0 (нижняя точка КЧ) в моменты, близкие к максимуму пересыщения (качественная иллюстрация).

В моменты, близкие к $t_{\max},$ разность $V=n-n_S$ меняется как

$$V = n - n_S = (n_{\text{max}} - n_S) \exp\left(-\frac{\Theta(t - t_{\text{max}})^2}{2}\right), \quad (4)$$

(рис. 2), а логарифм пересыщения $w = \ln(n/n_S)$ — как

$$w = w_{\max} - \frac{\Theta}{2} w_{\max} (t - t_{\max})^2.$$
 (5)

Параметр Λ в (3) связан с максимумом ΔG_m изменения свободной энергии Гиббса ΔG , преодолеваемым при зарождении критического островка. Для ΔG принималось модельное выражение

$$\Delta G = \alpha + H\sqrt{g} - Tgw, \tag{6}$$

где $H = \sqrt{6} \Delta E_{\text{Me-C}}$, а параметры α , $\Delta E_{\text{Me-C}}$ описаны в [6], α связано с искажением валентных углов связей графитового островка, подогнутого к поверхности расплава, $\Delta E_{\text{Me-C}}$ — измерение модуля энергии связи атома углерода при перемещении этого атома с кромки островка в его внутреннюю область. Величина ΔG имеет максимум

$$\Delta G_m = \alpha + \frac{H^2}{4Tw},\tag{7}$$

достигаемый при

$$g = g^* = \frac{H^2}{4(wT)^2}.$$
 (8)

Отсюда параметр Λ в (3) составляет

$$\Lambda^2 = \frac{\Theta H^2}{4T^2 w_{\text{max}}}.$$
(9)

Связь размера g(t, t') с начальным размером островка зародыша может быть в принципе найдена из условия детального равновесия между твердой фазой и расплавом; вероятность того, что данный атом на кромке островка перейдет в жидкую фазу в единицу времени, определяется из теории переходного состояния [12] и пропорциональна $\theta \sim (T/\hbar) \exp(-\Delta \hat{G}/T)$, где $\Delta \hat{G}$ максимум, отвечающий переходному состоянию. Тогда скорость обратного процесса — выделения атомов углерода из расплава во вновь образующееся кольцо гексагонов островка — равна

$$\frac{dg}{dt} = \theta \, \frac{n}{n_S} N_L^{(i)},\tag{10}$$

k — число колец гексагонов в островке, связанное с числом атомов островка соотношением $g \approx 6k^2$, $N_L^{(i)} = 12k$ — число атомов углерода на кромке островка — в кольце k [6]. Как и в прямом процессе, при написании (10) считается, что все добавляемые к островку атомы выделяются в пределах вновь формируемого на его кромке кольца гексагонов. Отсюда зависимость числа атомов островка от времени может быть описана соотношением

$$g = g^* + 2\sqrt{g^*}\gamma t + \gamma^2 t^2,$$
 (11)

где $\gamma = \theta \frac{n}{n_s} \sqrt{6}$. К сожалению, параметр $\Delta \hat{G}$, определяющий θ , может быть определен в лучшем случае по порядку величины. Поэтому в дальнейшем наряду с θ вводились более "наблюдаемые" величины: сток $\Pi_1 = dg/dt$ и плотность стока атомов углерода Γ_1 , высаживающихся из КЧ в нижней ее части в единицу времени. Плотность Γ_1 отнесена к площади поперечного сечения УНТ (сток)

$$\Gamma_1 = \Pi_1 / \pi R_{\rm NT}^2, \tag{12}$$

где $R_{\rm NT} = R_{\rm KP} + h$ — радиус УНТ (рис. 1). Связь Π_1 и γ имеет вид: $\Pi_1 = 2\gamma(\sqrt{g^*} + \gamma t)$. Если $\theta, \gamma \approx {\rm const}$, Γ_1 и Π_1 , очевидно, не могут быть постоянными. Смысл введения этих величин другой: Γ_1 можно связать (хотя бы на уровне оценки) с экспериментально измеренной скоростью роста нанотрубок (Приложение 1). Напротив, плотность источника Γ (и сам источник $\Pi = \pi R_{\rm NT}^2 \Gamma$) определяется скоростью гетерогенно-каталитической реакции разложения углеродного носителя в присутствии катализатора. Опубликованные данные по кинетике таких реакций весьма неполны. Поэтому в данном расчете Γ_1 и Γ выступали как независимые параметры.

Используя (1)–(10), нетрудно получить, что в момент t_{max} правая часть Ri формулы (1) равна

$$\operatorname{Ri} = \frac{g_m^*}{2} + (\gamma^2 + \Theta g_m^*) \frac{1}{4\Lambda^2} + \frac{\gamma \sqrt{g_m^*}}{\Lambda} \left(1 + \frac{\Theta}{2\Lambda^2}\right), \quad (13)$$

а ее вторая производная по времени

$$(\mathrm{Ri})'' = \gamma^2. \tag{14}$$

Левая часть (1) рассчитывается из известных линейных задач диффузии. При t < 0 стока в точке x = 0нет, и ход концентрации углерода в момент достижения насыщения можно найти из асимптотического при $t \to \infty$ квазистационарного решения задачи диффузии с граничными условиями $D \frac{\partial n}{\partial x}(0) = \Gamma_1$; $D \frac{\partial n}{\partial x}(L) = \Gamma$ и начальным условием $n(0, 0) = n_S$,

$$n = n_S + \frac{\Gamma}{L}t + \frac{\Gamma}{2LD}x^2 \tag{15}$$

при t = 0.

Для функции $V = n - n_S - \frac{\Gamma}{D} \frac{x^2}{2L}$ задача диффузии имеет вид $\frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2} + \frac{\Gamma}{L}$, начальное условие в которой известно — нулевое, а граничное выражается через неизвестную функцию времени $n = n_0(t)$ при x = 0. Принимая для простоты условие V = 0 при $x \to \infty$, нетрудно получить для производной концентрации на границе x = 0, входящей в (1)

$$\frac{\partial n}{\partial x} = \frac{1}{\sqrt{\pi D}} \left(\frac{2\Gamma}{L} \sqrt{t} - \int_{0}^{t} d\tau \, \frac{V_0'(\tau)}{(t-\tau)^{1/2}} \right). \tag{16}$$

Используя (4)–(9), нетрудно получить тогда для левой части (16) и ее второй производной в момент максимума пересыщения

$$L(t_m) = a^2 \sqrt{D\pi t_\alpha} g^* t_\alpha \left(\frac{\Gamma}{L} - \frac{2}{3} \Theta t_\alpha \Delta n\right), \qquad (17)$$

$$L_{1}^{\prime\prime}(t_{m}) = \sqrt{\pi D t_{\alpha}} a^{2} \sqrt{g^{*}} \left(2\gamma \left(\frac{\Gamma}{L} - \frac{1}{3} \Theta t_{\alpha} \Delta n \right) + \frac{2}{3} \Theta \Delta n \left(\sqrt{g^{*}} + 2\gamma t_{\alpha} \right) \right),$$
(18)

где время $t_{\alpha} = \sqrt{2/\Theta}$ — характерная полуширина максимума пересыщения, $\Delta n = n_{\text{max}} - n_S$.

Приравнивая (13) и (17), (14) и (18), получаем два уравнения для определения n_{\max} , Θ . В обычных для теории взрывной конденсации упрощениях: g^* , $\sqrt{g^* \gamma t_{\alpha}} \ll \gamma^2 t_{\alpha}^2$ параметр θ вообще выпадает из системы. Нетрудно показать, что логарифм максимального пересыщения оценивается в таком предположении на уровне $w_m^{(0)} \approx 0.1 \left(\frac{\Gamma}{La^4 n_S^3 \pi D}\right)^{1/3}$ и может составлять $w_m^{(0)} = 1$ лишь при чрезвычайно малой концентрации, т.е. очень низкой температуре $T \leq 300$ К. Поэтому необходимо рассматривать противоположный случай $\sqrt{g^* \gamma t_{\alpha}} \gg \gamma^2 t_{\alpha}^2$, т.е. учитывать в (11) первый и второй члены. Система уравнений для n_{\max} , Θ приобретает при этом вид

$$\left(\frac{H}{4w_mT} + \frac{2\gamma t_{\alpha}Tw_m^{1/2}}{H}\right) \left(1 + \frac{4T^2w_m}{H^2}\right) = a^2\sqrt{D\pi}$$
$$\times \frac{H}{2w_mT} t_{\alpha}^{3/2} \left(\frac{\Gamma}{L} + \frac{4}{3t_{\alpha}}w_mn_s\right),$$
$$\gamma^2 = a^2\sqrt{\pi D} \frac{H}{2w_mT} t_{\alpha}^{1/2} \left(2\gamma \frac{\Gamma}{L} + \frac{2}{3t_{\alpha}^2} n_s \frac{H}{2T}\right).$$
(19)

При условии малости параметра

$$\delta = \frac{n_S \gamma}{q} \frac{T}{H} \ll 1 \tag{20}$$

ее решение имеет в первом приближении вид

$$w_m = \left(\frac{\Pi}{\Pi_1}\right)^{1/3} \frac{H}{T} \left(\frac{a^4}{\pi} \frac{D}{\Pi R_{\rm NT}^4 L_p^2}\right)^{1/6},$$
 (21)

а (20) можно привести к виду

$$\frac{T}{H} \frac{\pi^{5/6}}{\sqrt{2}} \left(\frac{\Pi_1}{\Pi}\right)^{2/3} \left(aR_{\rm NT}L_p n_S\right) \left(\frac{D}{\pi\Gamma a^2 L_p^2}\right)^{1/6} \ll 1$$

Для не слишком широких УНТ $R_{\rm NT} \leq (3-5)$ nm, и не слишком больших $L_p/R_{\rm NT} \leq 10$ это условие выполняется.

Найденное из (21) относительное пересыщение, как правило, также не превышает 5%. Таким образом, зарождение графенового островка происходит при весьма малом пересыщении. В результате этого появляется сток, и концентрация углерода снижается далее до величины $1 < n_{\min} < n_{\max}$ (рис. 2), но не достигает n_S в силу постоянного присутствия источника. Такое соотношение между n_{\min} и n_{\max} сильно затрудняет последующее рассмотрение, так как диапазон изменения пересыщения слишком мал и задачу необходимо рассматривать очень детально. В дальнейшем n_{\min} присутствует как свободный параметр, но для формулировки окончательных вывыдов оказывается достаточным просто положить его равным n_s .

Данное выше рассмотрение относится, как было сказано, к случаю плоского дна поры. Предположение полусферической формы дна поры и соответственно КЧ (как показано на рис. 1) было бы корректнее. Пусть, однако, на взрывной стадии конденсации критический зародыш умещается в полусфере, отвечающей дну поры. Следующая "быстрая" стадия [9,10] лимитируется во времени резким уменьшением производной концентрации п. Но при переходе границы зародыша с полусферы на вертикальный участок поры увеличение площади стока резко замедляется по чисто геометрическим причинам. Поэтому и на быстрой стадии конденсации островок обязан умещаться в той же полусфере $x < R_{\rm KP}$, и достижение точки $x = R_{\rm KP}$ всегда можно отождествить с концом быстрой стадии выделения островка, если только этот конец не достигнут раньше.

Таким образом, за время взрывной и последующих стадий конденсации графеновый островок достигает размера, соответствующего переходу к вертикальному участку КЧ и, во всяком случае, не успевает выйти за пределы нижней полусферы на расстояние, соизмеримое с h. Исходя из этого, точку $x = R_{\rm KP}$ можно считать началом координат (x = 0), а дно поры — плоским и локализованным в точке x = 0.

Перемещение стока вверх и изменение концентрации углерода на дне поры

Самосогласованное рассмотрение роста пересыщения в разных точках вверх вдоль поры и выделения новых графеновых слоев должно включать наряду с уравнением типа (14), (15) решение задач диффузии выше и ниже стока, причем эти задачи имеют переменную границу. Такое рассмотрение чрезвычайно сложно, но ряд качественных выводов можно получить, не обращаясь к нему.

Будем определять скорость перемещения стока — границы островка — по поверхности КЧ из геометрического условия

$$\frac{dg}{dt} = \frac{N_L^{(t)}}{l_L^{(t)}} \frac{dl}{dt},\tag{22}$$

где $N_L^{(t)}$ — приращение числа атомов в боковой стенке УНТ при формировании очередного яруса гексагонов (по аналогии с величиной $N_L^{(i)}$ для кольца гексагонов в островке), $l_L^{(t)}$ — ширина одного яруса гексагонов (рис. 1, *d*). Для УНТ типа "zigzag" [1] (стрелка "zigzag" на рис. 1, *d*) $l_L^{(t)} = 3a/2$, $N_L^{(t)} = 4\pi R_{\rm NT}/a\sqrt{3}$.

С другой стороны, dg/dt можно выразить, как и в [6], через локальное пересыщение, $\frac{dg}{dt} = \theta \frac{n}{n_s} N_L^{(t)}$. Введем, как и выше, среднюю локальную плотность стока атомов Γ_1 , будем считать ее постоянной и отнесем к моменту t = 0, $\frac{dg}{dt} (0, 0) = \theta N_L^{(t)} = \pi R_{\rm NT}^2 \Gamma_1$. Предположение о постоянстве Γ_1 допустимо в силу того, что температура, определяющая значение параметра θ , меняется вдоль поры незначительно, так же как и пересыщение n/n_s . Тогда скорость перемещения стока равна

$$\frac{dl}{dt} = \beta \Gamma_1 \, \frac{n}{n_s},\tag{23}$$

где

$$eta = rac{\pi R_{
m NT}^2 l_L^{(t)}}{N_L^{(t)}} = rac{3a^2 R_{
m NT} \sqrt{3}}{8},$$

а $n, n_S = n, n_S(l(t))$ зависят от положения стока l(t) в момент t.

Относительное изменение хода концентрации углерода вдоль оси, вызванное появлением стока, можно оценить следующим образом. Из (22) следует, что характерное время перемещения слоя на длину поры L_p равно L_p/Γ_1 . С другой стороны, время распространения информации о движении слоя определяется диффузией и составляет $L_p^2/2D$. Тогда условие медленности движения слоя имеет вид

$$p = \frac{\Gamma_1 \pi R_{\rm NT}^2 l_L^{(t)}}{N_t^{(t)}} \frac{L_p}{2D} \ll 1.$$
 (24)

Это условие выполняется с большим запасом для самых толстых и длинных УНТ и всех интересных для роста УНТ температурах, так что пользоваться квазистационарным решением можно всегда.

При наличии постоянного стока в точке x = 0 это решение на временах $t \ge x^2/2D$ имеет вид

$$n = n_S + \frac{\Gamma - \Gamma_1}{L_p} t + \frac{\Gamma}{2L_p D} x^2 + \frac{\Gamma_1 x}{D} \left(1 - \frac{x}{2L_p} \right),$$

так что, относительное понижение концентрации в точке x = 0 и на временах $t \ge x^2/2D$ составляет

$$\frac{\Delta n}{n} = \frac{\Gamma_1 t / L_p}{n_s + \Gamma t / L_p}.$$
(25)

Если сток находится не в нуле, а в точке $l = \text{const} < L_p$, квазистационарное решение в точке стока имеет вид

$$n(x=l) = n_{S} + \left(\frac{t}{l} + \frac{l}{2D}\right) \frac{l^{\Phi}}{l^{\Phi} + L^{\Phi}} (\Gamma - \Gamma_{1}), \quad L = L_{p} - l,$$

1 < Ф < 2 — показатель степени, не определяемый однозначно в рамках асимптотического решения, если

на всем отрезке $[0, L_p]$ не заданы начальные условия. Нетрудно видеть, что оценка (25) меняется при этом крайне незначительно.

Таким образом, если отношение стока к источнику $\varepsilon = \Gamma_1 / \Gamma$ мало, изменение концентрации атомов углерода вдоль поры вверх от места стока также мало. В расчете ε варьировалась в пределах $0 < \varepsilon \leq 0.5$.

В приближении малости изменения концентрации углерода достаточно взять для текущей концентрации в (23) квазистационарное выражение (15)

$$n(l(t)) = n_{\min} + \frac{\Gamma}{D} \frac{l^2}{2L_p} + \frac{\Gamma}{L_p} t, \qquad (26)$$

а зависимость $n_S(l(t))$ выразить через концентрацию атомов металла в расплаве n_{Met} , считающуюся постоянной, и ход температуры T(x) соотношением $n_S/n_{\text{Met}} \sim \exp(-Q/T)$ [14], где Q, T выражаются в eV, Q = (0.11-0.13) для металлов группы железа. Тогда (26) приобретает в безразмерных переменных $\xi = l/h$, $\tau = \left(\frac{h}{\beta\Gamma_1} \frac{n_S}{n_{\min}}\right)^{-1}$ вид

$$\frac{d\xi}{d\tau} = \exp(-B\xi) \left(1 + \frac{\Gamma h^2}{2DL_p n_{\min}} \xi^2 + \frac{\Gamma}{\Gamma_1} \frac{h}{L_p} \frac{1}{\beta n_{\min}} \frac{n_s}{n_{\min}} \right),\tag{27}$$

где

$$B = \frac{Q}{T_0} \frac{\delta T}{T_0} \frac{l}{L_p},$$

а время перемещения стока вверх до точки $\xi = 1$ ($x = L_p$) определяется интегрированием (27).

Оценки безразмерных параметров $u = \Gamma h^2 / (2DLn_{\min}), z = (\Gamma/\Gamma_1)(h/L_p)(1/\beta n_{\min})(n_S/n_{\min})$ в (27) показывают, что $u \ll 1, z \sim (1-10)$. Как видно из рис. 3, зависимость $\tau(\xi)$ почти не меняется при изменении ε в 5 раз —

Рис. 3. Зависимости $\tau(\xi)$ при Γ_1/Γ : I - 0.1, 2 - 0.3, 3 - 0.5. Другие параметры: глубина поры $L_p = 20$ Å, $R_{\rm KP} = 7$ Å, T = 0.08 eV, $\Gamma = 2 \cdot 10^{16}$ 1/cm²·s.

Рис. 4. Зависимость отношения $n_0(t_h)/n_s$ от Γ_1/Γ (параметры нанопоры те же, что и для рис. 3).

от 0.1 до 0.5. Этот результат сохраняется при варыировании параметров Г, L_p и $R_{\rm KP}$ в весьма широких пределах. Поэтому размерное время движения стока от l = 0 до l = h оценивается как $t_n \approx h/(\beta\Gamma_1 \frac{n_{\rm min}}{n_s})$, а концентрация углерода при l = 0 дорастает за это время до $n_0(t_h) \approx n_{\rm min} + \frac{\Gamma}{L} + \frac{h}{\beta\Gamma_1} \frac{n}{n_{\rm min}}$, которое превышает $n_{\rm max}$ по крайней мере в 3–5 раз. Таким образом, выделение нового островка между поверхностью расплава и первым островком неизбежно. Нанотрубка развивается по сценарию $b \rightarrow e$ (рис. 1) как многослойная.

Более точно зависимость отношения $n_0(t_h)/n_S$ от Γ_1/Γ построена на рис. 4. График доведен до $\Gamma_1/\Gamma = 0.5$, когда можно еще считать, что сток мал по сравнению с источником, хотя бы для оценок.

5. Выводы

1) Предложенная модель рождения нанотрубки из графенового островка на поверхности нанокапли катализатора удовлетворительно объясняет основные закономерности роста нанотрубок в конкретных условиях их выращивания — из пор наноразмерного диаметра, заполненных наночастицами катализатора: рост однослойных нанотрубок всегда корневой, рост многослойных нанотрубок может быть как корневым, так и вершинным.

2) Многослойный тип нанотрубки, возникающей при вершинном росте, связан с тем, что за время вырастания первого островка — зародыша первого слоя — от размера критического зародыша на величину порядка межслойного расстояния в графите пересыщение в области зарождения исходного островка снова возрастает до критических значений. При этом снова возникают условия для выделения нового критического зародыша, размещенного внутри первого островка.

Приложение. Скорость выделения атомов углерода на дне поры

Число атомов углерода, рождающихся на поверхности, в расчете на единицу площади поверхности (с размерностью $1/x^2t$), составляет $\Gamma_1 = \frac{1}{s} \frac{8\pi R_{\rm NT}}{3a^2\sqrt{3}} \frac{dl}{dt}$, если предполагать, что нанотрубка образуется в результате выделения атомов углерода на источнике площадью s, а dl/dt — скорость нарастания длины УНТ. Площадь источника является весьма неопределенным параметром, но, очевидно, должна составлять некоторую часть от площади сферы (отождествляемой с частицей катализатора при корневом росте) с диаметром несколько больше диаметра нанотрубки. Численные значения скорости роста нанотрубки брались в диапазоне $(1-10) \mu m/min$ на основе достаточно произвольного подбора относительно свежих работ по CVD-методам [15-17]. Исходя из этого, Γ_1 составляет величину $\Gamma_1 \approx 10^{16} - 10^{19} \, 1/{\rm cm}^2 \, {\rm s}.$

Список литературы

- [1] S. Iijima. Nature **354**, 56 (1991).
- [2] S. Iijima, T. Ichihashi. Nature 363, 603 (1993).
- [3] P.J. Harris. Carbon Nanotubes and Related Structures. Cambridge University Press (1999). 306 p.
- [4] Е.И. Гиваргизов. Рост нитевидных и пластинчатых кристаллов из пара. Наука, М. (1977). 304 с.
- [5] G.O. Tibbets. J. Cryst. Growth 66, 632 (1984).
- [6] Н.И. Алексеев. ФТТ **48**, 8 1518 (2006).
- [7] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, L. Zhao, L. Gao. Science 274, 1701 (1996).
- [8] S. Fan, M.G. Chapline, N.R. Franklin. Science 283, 512 (1996).
- [9] Ф.М. Куни. Проблемы кинетики конденсации. Препринт ИТФ АН УССР-83-79-Р. Киев (1983). 26 с.
- [10] Ю.П. Райзер. ЖЭТФ 37, 1741 (1959).
- [11] В.Н. Льняной. Известия РАН. Металлы 1, 119 (1999).
- [12] Г. Эйринг, С.Г. Лин, С.М. Лин. Основы химической кинетики. Мир, М. (1983). 527 с.
- [13] А.В. Елецкий. УФН 172, 401 (2002).
- [14] И.С. Кузнецов. Изв. АН СССР. Металлы 1, 89 (1977).
- [15] C.J. Lee, J. Park, J. Yu. Chem. Phys. Lett. 360, 250 (2002).
- [16] G. Bertoni, C. Cepek, F. Romanato, C.S. Casari. Carbon 42, 423 (2004).
- [17] Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama. Chem. Phys. Lett. 377, 49 (2003).