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Irreducible representations of subperiodic rod groups
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The procedure of how to take the irreducible representations of subperiodic rod groups from Tables of irreducible
representations of three-periodical space groups is derived. Examples demonstrating the use of this procedure and
derivation of selection rules for direct and phonon assisted electrical dipole transitions are presented.

PACS: 02.20.-a, 61.50.Ah

1. Introduction

The subperiodic rod groups R are the 75 three-dimen-
sional groups with one-dimensional translations which turn
up to be in concomitant relationships with three-dimensional
space groups G [1]. Rod groups describe the symmetry
of one-periodic systems and can be used for studying
polymeric molecules, nanotubes and others similar objects.
Besides, this geometrical symmetry appears when applying
a uniform magnetic field on bulk crystals, superlattices,
quantum wells [2]. Irreducible representations (IRs) of rod
groups are necessary for physical applications (e. g., deriving
selection rules for optical transitions).

A subperiodic rod group R can contain the following
elements: translations in one direction (of a vector d);
two-, three-, four- or six-fold rotation or screw axes
pointed in this direction; two-fold axes perpendicular to
it; reflection planes containing d; reflection planes per-
pendicular to d. Every subperiodic rod group R is in
one-to-one correspondence with some three-periodic space
group G: it is a subgroup of G (R⊂ G) and has the
same point symmetry group. To obtain a rod group R,
it is sufficient to keep translations only in one direction
in a related space group G. These groups (R and G)
have the same international notations. For example, G
143C1

3 (P3)↔ R42 (p3); G 173C6
6 (P63)↔ R56 (p63).

The IRs of rod groups R may be generated in the same
way as for three-periodic space groups G. All the IRs of R
are contained in the IRs of the related space group G and
can be taken directly from, e. g., Tables of Ref. [3]. The
procedure how to make this is given in Section 2.

2. The relation between IRs of space
and subperiodic rod groups

Let (gi |vi + am) ∈ R be elements of a rod group R,
where gi is a proper or improper rotation followed by
improper translation vi and am = ma3 are lattice translations
of R. Consider a group T(2) of two-dimensional translations
a(2)

n = n1a1 + n2a2 in the plane 6 which does not contain

the vectors an = ma3 (n1, n2,m are integers). The set of
elements

(E|a(2)
n )(gi |vi + am) (1)

contains a group of three-dimensional translations
(E|a(2)

n + am) ∈ T and is some space group provided the
translational symmetry (the group T) is compatible with
the point symmetry F of the rod group R. This condition is
fulfilled if the vector a3 is perpendicular to the plane 6 of
the translations a(2)

n . Indeed the translations ma3 are com-
patible with F as they are elements of R. The compatibility
of the translations a(2)

n ∈ T(2) with point group F follows
from the fact that the rotations (proper and improper)
from R transform the rod into itself and, therefore, any
vector perpendicular to the rod — into the vector also
perpendicular to the rod. Thus the set of elements (1)
forms one of three-periodic space groups G which has
the same point symmetry as the rod group R. Moreover,
the translational group T(2) is invariant in G: along with
the translation (E|a(2)

n ) it contains also the translation
(E|gi a

(2)
n ) = (gi |vi + am)(E|a(2)

n )(gi |vi + am)−1 for any gi

from (1). The group G may be represented as a semi-direct
product of T(2) and R

G = T(2) ∧ R, G =
∑

i

(gi |vi + am)T(2). (2)

For some rod groups (R1, R2, R4, R5) of low point
symmetry, the plane 6 may be inclined with respect to the
vector a3. In this case, the translational group T(2) remains
invariant in G. A rod group R is a subgroup of G and
isomorphous to the factor group G/T(2). According to the
little group method ([4,5], see also Appendix) every IR of R
is related to a definite IR of G of the same dimension. In
these IRs of G all the elements of the coset (gi |vi + am)T(2)

are mapped by the same matrix. In particular, all the
translations in T(2) (coset (E|0)T(2)) are mapped by unit
matrices.

Let us choose, in the space of an IR of G, the basis which
is at the same time the basis of the IRs of its invariant
subgroup T(2). Then the translations belonging to T(2)
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are mapped by the diagonal matrices with the elements
exp(−i k(3) · a(2)

n ). These matrices become the unit ones,
if at any integers n1 and n2

exp(−i k(3) · a(2)
n ) = 1. (3)

This condition holds for any k(3) = αK3 in the di-
rection of the basic translation vector K3 = 2π

Va
a1 × a2

of the three-dimensional Brillouin zone (BZ) of the
space group G, which is perpendicular to the plane 6.
The only primitive translation vector K = 2π

|a|2 a and all

the wave vectors k = βK(−1/2 < β ≤ 1/2) in the one-
dimensional BZ of the rod group R are directed along the
vector a = a3. The correspondence between k(3) and k
is established by the transformation law of basic vectors
of IRs under translation operations an of the rod group:
exp(−i k(3) · a3) = exp(−i k · a), i. e. α = β . If a ⊥ 6 then
k = k(3), otherwise k is the projection of k(3) on the
direction of a = a3.

The star of any vector k(3) lies entirely in the direction
of the primitive vector K3. Therefore the correspondence
of IRs mentioned above takes place both for allowed IRs of
little groups Gk(3) (in G) and Rk (in R) and for the full IRs
of G and R. So the subduction of any small IR of a little
group Gk(3) (full IR of G with wave vector star ∗k(3)) on the
elements of the rod group R generates some small IR of the
little group Rk (full IR of R with the wave vector star ∗k)
of the same dimension.

In Tables of IRs of space groups, one finds usually small
IRs of little groups Gk ( see, e. g., Ref. [3]). An IR d(k(3),λ)(g)
of a little group Gk ⊆ G is at the same time an IR d(k,λ)(g)
of a little rod group Rk ⊆ R with k = k(3), when a ⊥ 6,
or k being projection of k(3) on the direction of a = a3.

The analogous procedure of IRs generation is valid for
IRs of 80 three-dimensional groups with two-dimensional
translations (layer) groups [5].

3. Discussion

To illustrate the proposed procedure let us consider
semiconductor structures under a magnetic field. Let us
consider the symmetry of bulk semiconductors with the zinc
blende structure (the T(2)

d symmorphic space group), such
as the GaAs or AlAs crystals for example, under a magnetic
field B parallel to the symmetry axis C3, or superlattices
of the (GaN)m(AlN)n type with an even value of m+ n
(the C1

3v symmorphic space group), when the magnetic
field B is directed along the symmetry axis C3. These
systems have the geometrical symmetry described by the
rod group R42 (p3), whose IRs are related to those of
the space group G 143 (C1

3). In this case the plane 6 of

the lattice translations a(2)
n = n1a1 + n2a2 is perpendicular

to the translation vector a of the rod group which coincides
with lattice translation vector a3 of G. Thus k(3) = k.
One takes the IRs of R for point 0 (the center of one-
dimensional BZ) and A (the edge of one-dimensional BZ)

Table 1. Single- (01−06) and double-valued (07−012) IRs
of the rod group R56 (p63) at the point 0 (k = 0) of the one-
dimensional BZ (α = (0, 0, c/2), ν ≡ exp(iπ/6))

Element 01 02 03 = 0∗5 04 = 0∗6 07 = 0∗12 08 = 0∗11 09 = 0∗10

Ē 1 1 1 1 −1 −1 −1
(C6|α) 1 −1 −iν∗ iν∗ ν −ν −i
(C3|0) 1 1 iν iν iν∗ iν∗ −1
(C2|α) 1 −1 1 −1 i −i i
(C2

3|0) 1 1 −iν∗ −iν∗ iν iν 1
(C5

6|α) 1 −1 iν −iν −ν∗ ν∗ −i

Table 2. Single- (A1−A6) and double-valued (A7−A12) IRs
of the rod group R56 (p63) at the point A (k = π/c) of the one-
dimensional BZ (α = (0, 0, c/2), ν ≡ exp(iπ/6))

Element A1 = A∗2 A3 = A∗6 A4 = A∗5 A7 = A∗11 A8 = A∗12 A9 A10

Ē 1 1 1 −1 −1 −1 −1
(C6|α) −i −ν∗ ν∗ iν −iν 1 −1
(C3|0) 1 iν iν iν∗ iν∗ −1 −1
(C2|α) −i −i i −1 1 −1 1
(C2

3|0) 1 −iν∗ −iν∗ iν iν 1 1
(C5

6|α) −i ν −ν −iν∗ iν∗ 1 −1

directly from Tables of Ref. [3] for G = C1
3 space group.

The group C1
3 is symmorphic. The IRs with k on the line 0

A for the elements (C3|ma) differ from those for (C3|0) by
the factor exp(−i k ·ma) as this factor corresponds to the
translation ma. Another example is the non-symmorphic
rod group R56 (p63). Its IRs are related to the IRs of
the non-symmorphic space group G 173 (C6

6). This is the
geometrical symmetry of bulk materials with the wurtzite
structure (e. g. bulk GaN) and the superlattices of the
(GaN)m(AlN)n type with odd values of m+ n (the C4

6v
non-symmorphic space group), when the magnetic field B
is directed along the symmetry axis. Since the crystal
system is the same as in the first example (hexagonal
lattice), one has also k(3) = k and takes the IRs of R56
for point 0 (the center of one-dimensional BZ, Table 1)
and A (the edge of one-dimensional BZ, Table 2) directly
from Tables of Ref. [3] for G = C6

6 space group. Note
that all the points in the BZ of the rod group R56 have
the same point symmetry C6. The IRs with k on the
line 0A for the elements (C6|a/2 + ma) differ by the factor
exp
(
−i k · (m+ 1/2)a

)
from those for element (C6|a/2)

at 0 (k = 0) as it follows from the theory of projective
representations.

4. Selection rules for electrical dipole
transitions

The stationary states of a system with the symmetry of a
rod group R are classified according to the small IRs |k, γ〉
of the little group Rk ⊂ R.
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Table 3. Direct (Kronecker) products (Ai × Aj and A∗j × Aj ) of the single- (A1−A6) and double-valued (A7−A12) IRs at A-point of the BZ
for rod group R56 (p63)

IR A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A∗2 A1 02 01 04 03 06 05 07 08 09 010 011 012

A∗1 A2 01 02 03 04 05 06 08 07 010 09 012 011

A∗6 A3 04 03 06 05 02 01 09 010 011 012 07 08

A∗5 A4 03 04 05 06 01 02 010 09 012 011 08 07

A∗4 A5 06 05 02 01 04 03 011 012 07 08 09 010

A∗3 A6 05 06 01 02 03 04 012 011 08 07 010 09

A∗11 A7 07 08 09 010 011 012 03 04 05 06 01 02

A∗12 A8 08 07 010 09 012 011 04 03 06 05 02 01

A∗9 A9 09 010 011 012 07 08 05 06 01 02 03 04

A∗10 A10 010 09 012 011 08 07 06 05 02 01 04 03

A∗7 A11 011 012 07 08 09 010 01 02 03 04 05 06

A∗8 A12 012 011 08 07 010 09 02 01 04 03 06 05

N o t e. 03 = 0∗5 , 04 = 0∗6 , 07 = 0∗12, 08 = 0∗11, 09 = 0∗10.

Let us consider the selection rules [6] for transitions
between stationary states of symmetry |k( f ), γ ( f )〉 and
|k(i ), γ (i )〉 caused by an operator P(k(p), γ (p)) transforming
according to the IR (∗k(p), γ (p)) of R. If the operator P
transforms according some reducible rep of R, one can
consider the selection rules for every of its irreducible
components separately.

The transition probability is governed by the value of the
matrix element

〈k( f ), γ ( f )|P(k(p), γ (p))|k(i ), γ i 〉. (4)

The transition is referred to as allowed by symmetry, if the
triple direct (Kronecker) product

(k( f ), γ ( f ))∗ × (k(p), γ (p))× (k(i ), γ (i )) (5)

contains the identity IR of R, or

(k( f ), γ ( f ))∗ × (k(i ), γ (i )) ∩ (k(p), γ (p))∗ 6= 0, (6)

i. e., it is necessary to find the direct product of two IRs of
the rod group R (complex conjugate IRs are also IRs of R).

Let us take the case of GaN bulk crystal with the wurtzite
structure under the magnetic field B directed along the
symmetry axis (rod group R56 (p63)). The symmetry of
the electrical dipole operator in this group described by vec-
tor representation 0ν = 01(z) + 04(x − iy) + 06(x + iy).
As k(p) ≈ 0, k( f ) ≈ k(i ), only the so-called direct transitions:
0→ 0, A→ A, etc. are allowed (wave vector selection
rules). In particular, when the spin-orbit interaction is
taken into account, the symmetry of allowed final stated for
A→ A transitions is pointed out in Table 3 by the entries
of the rows containing 0∗1 = 01, 0∗4 = 06, or 0∗6 = 04 in the
columns corresponding to the symmetry of the initial state.
For example, the direct transitions are allowed from the
initial state of symmetry A8 to final states of symmetry A8,
A9 and A11.

In the case of phonon assisted electric dipole transitions,
these selection rules have to be supplemented with the

selection rules, where the operator P has the symmetry
of phonon participating in the transition. In GaN crystal,
atoms occupy the sites of b-type of symmetry C3v . Under
the magnetic field B directed along the symmetry axis, the
symmetry of the system reduces down to rod group R56,
and the site symmetry of atoms down to C3. In this case
the symmetries of phonons are given by representations
of rod group R56 induced by the vector representation
a + e(1) + e(2) of the site symmetry group C3. The short
symbol [5] of this representation is 0 (1, 4, 2, 5, 3, 6), i. e.,
phonons can be of any symmetry. The short symbol
determines the symmetry of phonons in all the points in
a one-dimensional BZ. For example, as it was established
above, the electric dipole transtitions are allowed from
initial electronic A8 state to the intermediate A8, A9, A11

states. From these states, with assistance of the phonons of
symmetry A3, the transitions are allowed into the final 09,
08, 012 states (see Table 3). If the intermediate state is of
symmetry 09, the same phonon allows the transition in the
finale state A12.

5. Conclusion

It is not necessary to generate IRs of rod groups R.
As it is demonstrated above, they can be taken directly
from the existing Tables of IRs for space groups with three-
dimensional translations.

Appendix

Let H be an invariant subgroup of a group G (H / G,
gHg−1 = H , g ∈ G) and d(γ)(h) be an IR of H . The
group G can be developed in terms of left cosets with
respect to H

G =
t∑

j =1

g j H, g1 = E (identity element). (A1)
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The cosets g j H compose a factor group G/H with compo-
sition law

gi Hg j H = gi g j g
−1
j Hg j H = gi g j HH = gi g j H. (A2)

The matrices d(µ)(g j hg−1
j ) form an IR of H conjugate

to d(µ)(h) by means of g j . The set of elements of
those left cosets gpH (p = 1, 2, . . . , s ≤ t) for which
the IRs d(µ)(gphg−1

p ) are equivalent to the IR d(µ)(h)
(d(µ)(gphg−1

p ) = Ad(µ)(h)A−1, where A is some non-singu-
lar matrix of the same order as d(µ)(h)), forms a group
Gµ ⊆ G called the little group for the IR d(µ)(h) of
H / G [4,5]. If the IR of Gµ, when restricted to H , contains
only the IR d(µ)(h) of H , it is called allowed (small). Small
IRs of the little group Gµ compose a part of all the IRs
of Gµ .

According to the little group method [4,5], the little group
G1 for the identical IR d(1)(h) = 1 (h ∈ H , all the elements
are mapped by 1) of an invariant subgroup H coincides
with the whole group G (G1 = G). Then there is a simple
relation between the allowed IRs of the group G1 = G and
the IRs of the factor group G/H : every IR of G/H generates
some allowed IR of G, in which all the elements of the
coset gi H in the decomposition (A1) are mapped by the
same matrix, namely by the matrix of the factor-group G/H
IR for the coset gi H .
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