Поворот плоскости поляризации и линейное двупреломление звука в гематите ниже точки Морина

© С.А. Мигачев, М.Ф. Садыков, М.М. Шакирзянов

Казанский физико-технический институт им. Е.К. Завойского Российской академии наук, 420029 Казань, Россия

E-mail: smigach@kfti.knc.ru

(Поступила в Редакцию 15 июня 2005 г.)

Приводятся результаты экспериментального исследования эффекта линейного антиферромагнитного двупреломления звука в гематите (α -Fe₂O₃), находящемся в легкоосной коллинеарной фазе (L || C₃) ниже точки Морина. В магнитных полях **H**, приложенных в базисной плоскости (H \perp C₃) (3.5 \leq H \leq 15 kOe), после ориентационного фазового перехода (по температуре) в легкоосное состояние обнаружен поворот плоскости поляризации прошедшего через образец линейно поляризованного поперечного звука, распространяющегося вдоль тригональной оси кристалла C₃. Получено, что угол поворота проявляет 180-градусную угловую зависимость от направления поля в плоскости базиса и изменяется по величине от нулевых значений до ~ $\pi/2$. На основании численных оценок показано, что условия, необходимые для поворота плоскости поляризации на значительные углы (~ $\pi/2$), могут быть выполнены в легкоосной фазе при температурах ориентационного фазового перехода, близких к температуре Морина, что и реализуется в используемых полях. Полученные результаты достаточно хорошо описываются теорией линейного антиферромагнитного двупреломления звука (Е.А. Туров) и подтверждают ее основные выводы.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 04-02-16025).

PACS: 62.65.+k, 75.30-m

1. В работе [1] сообщалось об экспериментальном обнаружении эффекта линейного магнитного двупреломления (ДП) поперечного звука, распространяющегося вдоль тригональной оси симметрии C_3 (**k** || C_3) в легкоплоскостном антиферромагнитном (АФЛП) кристалле α -Fe₂O₃ (гематит). Аналогичные эффекты были обнаружены и в других представителях этого же типа двухподрешеточных АФЛП, таких как MnCO₃ [2] и FeBO₃ [3]. Согласно теории магнитоакустических явлений [4], связанных с векторным параметром порядка вектором антиферромагнетизма (АФ) L, — линейное ДП звука присуще также и антиферромагнетикам типа "легкая ось" (АФЛО). Природа ДП связана со снятием вырождения спектра линейно поляризованных в базисной плоскости поперечных волн, распространяющихся вдоль главной оси симметрии кристалла, эффективным магнитоупругим (МУ) взаимодействием. Это приводит к зависящему от магнитного поля сдвигу фаз между нормальными модами (ξ , η) поперечных колебаний, и как следствие к повороту плоскости поляризации акустической волны, прошедшей через АФ-кристалл. При этом в АФЛО обе нормальные моды упругих колебаний являются МУ-модами, т. е. эффективно взаимодействуют с колебаниями вектора L, тогда как в АФЛП МУ-модой является лишь одна из них (ξ-мода) [4]. Уникальное свойство кристалла гематита в А Φ -фазе ($T < T_N$, T_N — температура Нееля, $T_N \cong 950 \, \text{K}$) находиться в зависимости от температуры либо в легкоплоскостном $(\Pi\Pi)$ состоянии (L \perp C₃) со слабым ферромагнетизмом при $T_M < T < T_N$ ($T_M \cong 260 \, \text{K}$ — температура Морина), либо в коллинеарном, легкоосном (ЛО) состоянии $(L \parallel C_3)$ при $T < T_M$ предоставляет редкую возможность

для экспериментального изучения закономерностей линейного ДП звука АФ природы как в легкоплоскостном, так и легкоосном антиферромагнетике. Такие исследования, на наш взгляд, важны и интересны не только с точки зрения экспериментального обнаружения явления линейного ДП звука в АФЛО и дальнейшего развития теории на основе уточненных моделей, но и с точки зрения изучения динамики ориентационных фазовых переходов (ОФП) по изменению упругих свойств гематита в различных состояниях.

2. В настоящей работе сообщается о первом наблюдении и результатах экспериментального исследования эффекта линейного ДП звука в гематите, находящемся при *T* < *T_M* в ЛО состоянии. В экспериментах измерялась температурная зависимость амплитуды прошедшего через образец гематита поперечного ультразвука (**k** || **C**₃) при фиксированном значении магнитного поля **H**, приложенного в базисной плоскости ($\mathbf{H} \perp \mathbf{C}_3$). Величина магнитного поля всегда превышала величину поля монодоменизации гематита (~2 kOe) и в ЛП состоянии обеспечивала выполнение условия $\mathbf{M} \parallel \mathbf{H} \perp \mathbf{L}$ $(M - вектор слабого ферромагнетизма, |M| \ll |L|).$ Образцы представляли собой прямоугольные параллелепипеды (длиной *d* = 6.2 mm) с плоскопараллельными (с точностью до 10"), оптически обработанными торцами, перпендикулярными оси С3. К торцам приклеивались пьезопреобразователи (Х-срез ниобата лития), один из которых являлся излучателем, а другой приемником ультразвука. Эксперименты проводились по эхо-импульсной методике, и отклик системы определялся по первому прошедшему через образец акустическому импульсу. Методика измерений изложена в

Рис. 1. Расположение осей координат при описании линейного ДП звука в легкоплоскостном и легкоосном состояниях гематита. На вставке показано расположение направлений поляризаций приемных пьезопреобразователей.

работах [1,5]. На выходе из образца регистрировались амплитуды акустических волн, поляризация которых была как параллельна (A_{\parallel}) , так и перпендикулярна (A_{\perp}) поляризации входящей волны $U_e(0, t)$. Направление вектора поляризации (е) возбуждаемой поперечной волны $(\mathbf{e} \perp \mathbf{C}_3)$ составляло с выбранной осью 2-го порядка \mathbf{C}_2 в базисной плоскости угол, равный $\varphi_e \cong 30^\circ$ (рис. 1). В описываемых экспериментах в отличие от предыдущих работ [1,5] к выходному торцу образца было приклеено два принимающих пьезопреобразователя, поляризация одного из которых была параллельна поляризации излучающего пьезопреобразователя, а у другого — перпендикулярной. Это позволило одновременно измерять обе компоненты амплитуды $(A_{\parallel} \ u \ A_{\perp})$, эллиптически поляризованной в результате ДП акустической волны на выходе из образца. Контрольные измерения, проведенные при комнатных температурах, практически совпали с результатами экспериментов на тех же образцах, полученными с одним пьезопреобразователем на выходе при обеих ориентациях его поляризации [1,5]

Из выводов работы [4] известно, что если волна на входе поляризована вдоль колебаний одной из нормальных мод: $\mathbf{U}_e \parallel \boldsymbol{\xi}$ или $\mathbf{U}_e \parallel \boldsymbol{\eta}(\boldsymbol{\xi} \perp \boldsymbol{\eta})$, то она на выходе остается также линейно поляризованной и сохраняет прежнее направление поляризации, т.е. эффект ДП не проявляется. При этом амплитуды волн A_{\parallel} и A_{\perp} , определяемые формулами [4]

$$A_{\parallel}^2 = 1 - A_{\perp}^2, \quad A_{\perp}^2 = \sin^2 2\varphi_0 \sin^2(\Delta k d/2),$$
 (1)

соответственно равны: $A_{\parallel} \sim 1$ и $A_{\perp} \sim 0$ (в отн. единицах). Здесь d — длина образца в направлении распространения волны ($\mathbf{k} \parallel \mathbf{C}_3$), $\Delta \varphi = \Delta k d = (k_{\xi} - k_{\eta})d$ — сдвиг фаз нормальных мод на выходе из образца,

 Δk — разность волновых векторов этих мод, φ_0 — угол между направлением вектора поляризации звука на входе и направлением смещений нормальной моды ξ (угол $\varphi_0 = 0$ при $\mathbf{U}_e \parallel \boldsymbol{\xi}$ и $\varphi_0 = \pi/2$ при $\mathbf{U}_e \parallel \boldsymbol{\eta}$). Направление осей поляризации ($\xi \perp \eta$) нормальных мод упругих колебаний $\mathbf{U}_{\xi}(k_{\xi}z - \omega t)$ и $\mathbf{U}_{\eta}(k_{\eta}z - \omega t)$ ($\omega = 2\pi \nu$ круговая частота возбуждаемого звука, $\nu \cong 90.86$ MHz), распространяющихся в образце, определяется направлением магнитного поля **H** в базисной плоскости. Направление поля в базисной плоскости характеризуется углом φ_H , отсчитываемым от выбранной оси **C**₂. Новые оси $\boldsymbol{\xi}$ и $\boldsymbol{\eta}$ получаются поворотом системы координат $\mathbf{x} \parallel \mathbf{C}_2$, $\mathbf{y} \perp \mathbf{C}_2$ вокруг оси $\mathbf{z} \parallel \mathbf{C}_3$ на углы, равные (n — целое число)

$$\varphi_{\xi} = \pi n/2 - 2\varphi_H, \quad \varphi_{\xi}^* = \pi n/2 - \varphi_H/2$$
 (2)

соответственно в ЛП и ЛО состояниях [4]. (Верхний значок (*) при обозначениях здесь и далее соответствует значению данной величины в ЛО состоянии). Используя рис. 1 и выражение для угла φ_{ξ} , легко убедиться в том, что в ЛП состоянии одно из направлений поля, при котором U_e $\parallel \xi$, характеризуется углом $\varphi_H = 105^\circ$ и что условие $\mathbf{U}_{e} \parallel \boldsymbol{\eta}$ выполняется при $\varphi_{H} = 150^{\circ}$. Экспериментальные значения этих углов оказались равными: $\varphi_{H \exp} \cong 110^{\circ}$ и $\varphi_{H \exp} \cong 155^{\circ}$ соответственно. Этого незначительного различия в экспериментальном и теоретическом значениях углов ϕ_H следовало ожидать, поскольку теоретические формулы для углов φ_{ε} получены на основе модели АФ, изотропной по магнитным свойствам в плоскости базиса [4]. При этом также следует учесть магнитострикционные поля, возникающие в этой плоскости из-за механических граничных условий в акустических экспериментах [5,6]. Такой выбор направлений магнитного поля, когда в ЛП состоянии эффекты линейного ДП отсутствуют, значительно облегчает сравнение экспериментальных данных в различных состояниях до и после ОФП.

Исключив таким образом проявления линейного ДП звука в ЛП состоянии, в дальнейшем при фиксированных значениях величины ($H \cong 4.2 \, \text{kOe}$) и направления ($\varphi_{H \exp} \cong 110^\circ$ и $\varphi_{H \exp} \cong 155^\circ$) магнитного поля совершался ОФП по температуре в ЛО состояние и измерялась зависимость амплитуд A_{\parallel} и A_{\perp} от температуры. Температура непрерывно понижалась от комнатной температуры до температур ниже температуры ОФП (T^*). При ненулевых значениях магнитного поля $H \neq 0$ температура ОФП T^* ниже температуры Морина ($T^* < T_M$) и при $H \cong 4.2 \, \text{kOe}$ приблизительно равна $T^* \approx 253.5 \, \text{K}$ [7]. Температура образца контролировалась при помощи медь-константанового термостолбика.

Результаты измерений температурной зависимости $A_{\parallel}(T)$ и $A_{\perp}(T)$ для двух направлений магнитного поля приведены на рис. 2 ($\varphi_{H \exp} \cong 110^{\circ}$) и рис. 3 ($\varphi_{H \exp} \cong 155^{\circ}$). Как видно из рис. 2, после ОФП ($T < T^*$) амплитуды смещений в обоих направлениях отличны от нуля и сравнимы по величине ($A_{\parallel}(T < T^*) \neq 0, A_{\perp}(T < T^*) \neq 0$), тогда как до перехода $A_{\parallel}(T > T^*) \gg A_{\perp}(T > T^*) \sim 0$. Температурные

Рис. 2. Температурная зависимость амплитуды звука до и после ОФП для параллельной $(A_{\parallel}(T))$ и перпендикулярной $(A_{\perp}(T))$ ориентации поляризаций при $\varphi_{H \exp} \approx 110^{\circ}, \varphi_0 \cong 0, \varphi_0^* \cong 67.5^{\circ}.$

Рис. 3. Температурная зависимость амплитуды звука до и после ОФП для параллельной $(A_{\parallel}(T))$ и перпендикулярной $(A_{\perp}(T))$ ориентации поляризаций при $\varphi_{H \exp} \approx 155^{\circ}, \varphi_0 \cong 90^{\circ} \varphi_0^* \cong 45^{\circ}.$

зависимости на рис. З показывают, что при определенных направлениях магнитного поля результирующее смещение на выходе из образца $U^*(d, t)$ в ЛО состоянии $(T < T^*)$ может стать практически ортогональным направлению смещений на входе $(U^*(d, t) \perp U_e(0, t))$, поскольку $A_{\parallel}(T < T^*) \ll A_{\perp}(T < T^*) \neq 1$. Эти результаты свидетельствуют о повороте эллипса (плоскости) поляризации поперечного звука, прошедшего через образец, что является следствием эффекта линейного ДП звука в ЛО состоянии. Отметим, что в непосредственной близости к точке фазового перехода $(|T - T^*|/T^* \ll 1)$ температурная зависимость амплитуд $A_{\parallel}(T)$ и $A_{\perp}(T)$ носит

весьма сложный характер, что, по-видимому, связано с кинетикой ОФП [4]. Более детальное экспериментальное изучение температурной зависимости амплитуд вблизи температуры перехода T^* является целью дальнейших исследований

665

3. Наблюдаемый поворот эллипса (плоскости) поляризации звука после ОФП обусловлен, на наш взгляд, тем, что эффекты линейного ДП звука в ЛП и ЛО состояниях определяются различными компонентами МУ взаимодействия. В ЛП состоянии это компоненты МУ взаимодействия, определяющие связь упругих волн с колебаниями вектора $\mathbf{L} \perp \mathbf{C}_3$ в плоскости базиса, а в ЛО состоянии — компоненты, связанные с колебаниями вектора L || C₃ в вертикальных плоскостях, проходящих через ось С3. Это приводит, прежде всего, к изменению направлений осей поляризации § и η нормальных мод колебаний при фазовом переходе (см. формулы (2)). Очевидно, что при этом изменяется и угол ϕ_0 между направлением поляризации волны на входе и осью ξ. Используя формулу для угла φ_{ξ}^{*} и рис. 1, можно легко получить, что угол $\varphi_0^* \cong 67.5^\circ$ при $\varphi_H \cong 105^\circ$ и $\varphi_0^* \cong 45^\circ$ при $\varphi_H \cong 150^\circ$. В этих случаях согласно (1) имеем

$$A_{\perp}^{2}(T < T^{*}) \approx 1/2 \sin^{2}(\Delta \varphi^{*}/2), \quad (\varphi_{H} \cong 105^{\circ}), \quad (3a)$$

$$A_{\perp}^2(T < T^*) \approx \sin^2(\Delta \varphi^*/2), \quad (\varphi_H \cong 150^\circ).$$
 (3b)

Выражения (3а) и (3b) согласуются с экспериментальными данными, приведенными на рис. 2 и 3 соответственно, если для сдвига фаз $\Delta \phi^* = \Delta k^* d$ на выходе из образца выполняется условие $\Delta \phi^* \sim \pm \pi$. Сдвиг фаз нормальных мод колебаний в ЛО состоянии определяется выражением (см. разд. 3.3.4 работы [8])

$$\Delta \varphi^* \cong 2\pi \nu H \times (\beta L_z) / (\omega_{af} / \gamma)^4, \tag{4}$$

где ω_{af} — частота АФМР в ЛО фазе, $L_z \approx L_0 = 2M_0$, M_0 — равновесная намагниченность подрешеток, β параметр, зависяший от магнитных, магнитоупругих и упругих постоянных АФ кристалла. С учетом хорошо известных для гематита значений этих постоянных [4] условие $\Delta \phi^* \sim \pm \pi$ можно представить в виде (в безразмерных единицах) $2d\nu H \times 10^6 \sim (\omega_{af}\gamma/\gamma)^4$. Это условие для ультразвуковых частот (~ 100 MHz) в используемых нами внешних полях $H < 15 \, \mathrm{kOe}$ трудновыполнимо для температур, существенно отличных от температуры Морина. Однако при этих же значениях Н температура T^* близка к температуре Морина T_M , вблизи которой, как показано в работах [9,10], частота АФМР ω_{af} определяется в основном второй константой осевой анизотропии и, согласно экспериментальным данным [11], приблизительно равна $[(\omega_{af}/\gamma)^2] \sim 7 \times 10^8$. Отсюда вытекает, что условие $\Delta \phi \sim \pm \pi$ может быть вполне реализовано вблизи температуры Т* для тех значений частоты ультразвука, величины магнитного поля и длины образца $d \cong 6.2 \,\mathrm{mm}$, которые использовались в проведенных экспериментах.

Рис. 4. Зависимость амплитуд $A_{\parallel}(T < T^*)$ и $A_{\perp}(T < T^*)$ от направления магнитного поля в базисной плоскости.

В заключение отметим следующее. Из выводов теории линейного ДП в ЛО состоянии [4,8] следует, что угол поворота полного смещения $\mathbf{U}^*(d, t)$ на выходе (большой оси эллипса поляризации) относительно направления смещений на входе $\mathbf{U}_e(0, t)$ при выполнении условия $\Delta \varphi^* \sim \pm \pi$ равен $\theta \cong -2\varphi_0^*$. Тогда, поскольку в ЛО состоянии для угла φ_0^* выполняется соотношение $2\varphi_0^* = (\pi n - \varphi_H) + 2\varphi_e$, угол θ должен проявлять 180-градусную угловую зависимость от направления магнитного поля в базисной плоскости. Это полностью подтверждается экспериментально полученной 180-градусной угловой зависимостью амплитуд смещений $A_{\parallel}(\varphi_H)$ и $A_{\perp}(\varphi_H)$, приведенной на рис. 4. Угловая зависимость этих величин от направления поля в ЛП состоянии подробно изучалась в работе [5].

Список литературы

- И.Ш. Ахмадуллин, С.А. Мигачев, М.Ф. Садыков, М.М. Шакирзянов. ФТТ 46, 2, 305 (2004).
- [2] В.Р. Гакель. Письма в ЖЭТФ 9, 5, 590 (1969).
- [3] А.П. Королюк, В.В. Тараканов, В.И. Хижный. ФНТ 22, 8, 924 (1996).
- [4] Е.А. Туров, А.В. Колчанов, В.В. Меньшенин, И.Ф. Мирсаев, В.В. Николаев. Симметрия и физические свойства антиферромагнетиков. Физматлит, М. (2001). 559 с.
- [5] И.Ш. Ахмадуллин, С.А. Мигачев, М.Ф. Садыков, М.М. Шакирзянов. ФТТ 47, 3, 506 (2005).
- [6] Ю.Н. Мицай, К.М. Скибинский, М.Б. Стругацкий, В.В. Тараканов. ФТТ **39**, *5*, 901 (1997).
- [7] Y. Shapira. Phys. Rev. 184, 2, 589 (1969).
- [8] Е.А. Туров, А.В. Колчанов, В.В. Николаев. УФН 172, 2, 193 (2002).
- [9] В.И. Ожогин, В.Г. Шапиро. ЖЭТФ 55, 5 (11), 1737 (1968).
- [10] Г.К. Чепурных. ФТТ 17, 8, 2335 (1975).
- [11] Л.В. Великов, С.В. Миронов, Е.Г. Рудашевский. ЖЭТФ 75, 3 (9), 1110.