Переход полупроводник-металл в дефектном кобальтите лития

© Д.Г. Келлерман, В.Р. Галахов*, А.С. Семенова, Я.Н. Блиновсков, О.Н. Леонидова

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия * Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: kellerman@ihim.uran.ru

(Поступила в Редакцию 6 апреля 2005 г. В окончательной редакции 14 июня 2005 г.)

Проведены исследования магнитной восприимчивости, электропроводности и рентгеновских фотоэлектронных и абсорбционных спектров дефектных кобальтитов лития $\text{Li}_{1-x}\text{CoO}_2$. Для составов с x > 0.25 при $T \sim 150$ K обнаружено скачкообразное возрастание восприимчивости и изменение типа проводимости. Высказано предположение, что переход полупроводник-металл в дефектном кобальтите лития связан с увеличением диффузионной подвижности лития при повышении температуры в условиях существования корреляции между пространственным распределением литиевых вакансий и "электронных" дырок.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 05-03-32355_а, 04-03-96092-урал_а) и интеграционного проекта УрО-СО РАН.

PACS: 71.30.+h, 75.50.Pp

1. Введение

Особый интерес к LiCoO2 как к высокоэффективному катодному материалу возник после того, как авторы [1] обнаружили, что из этого сложного оксида можно электрохимическим способом практически полностью и обратимо извлекать литий, получая $Li_{1-x}CoO_2$ (0 < x < 1). Фазовые превращения, протекающие при химической экстракции лития из LiCoO2, описаны в [2-5]. Обнаружено, что исходная гексагональная структура (hex1) сохраняется только до Li_{0.92}CoO₂; при более глубоком извлечении лития появляется вторая (также гексагональная) фаза (hex2), а для составов начиная с Li_{0.79}CoO₂ она становится единственной. Эти фазы различаются только отношением c/a, которое для второй фазы заметно больше. Описано также появление моноклинных искажений, связанных с упорядочением литиевых вакансий в $Li_x CoO_2$ с x < 0.5 [2]. Teopeтическое исследование фазовой диаграммы Li_{1-x}CoO₂, выполненное на основе ab initio расчетов полной энергии в приближении локальных плотностей [6,7], не выявило оснований для концентрационного перехода $hex1 \rightarrow hex2$. Авторы указанных работ объяснили это невозможностью получения корректного результата в рамках примененного подхода, поскольку в нем не учтены электронные корреляции, и предположили, что именно они могут являться причиной сосуществования фаз, идентичных кристаллографически, но обладающих различной электронной структурой. В связи с этим изучение свойств, отражающих изменение особенностей электронной структуры Li_{1-x}CoO₂ в широком интервале концентраций, представляется весьма актуальным. Кроме того, поскольку электрохимический процесс с участием соединений этого класса связан с изменением зарядового состояния переходного элемента, актуальным является и корректное определение степеней

окисления всех входящих в соединение элементов на разных стадиях процесса. Ситуация для данного класса соединений является нетривиальной: так, например, данные по рентгеновской абсорбции [8] свидетельствуют о том, что в LiNiO₂ никель находится в состоянии Ni²⁺, а кислород — в состоянии O⁻. Полезную информацию способны предоставить методы, связанные с изучением магнитных свойств, особенно в совокупности с рентгеновской и фотоэлектронной спектроскопией. Именно такой комплекс методик использован при выполнении настоящего исследования.

2. Образцы и методика эксперимента

Нестехиометрические кобальтиты лития $Li_{1-x}CoO_2$ ($0.04 \le x \le 0.40$) были получены путем экстракции лития из LiCoO₂ при комнатной температуре. Экстракция осуществлялась двумя способами: 1) пропусканием сухого газообразного хлора через суспензию исходного LiCoO₂ в ацетонитриле [9]; 2) обработкой LiCoO₂ в 0.7*N* растворе серной кислоты [10].

Таблица 1. Сведения о деинтеркалированных кобальтитах $Li_{1-x}CoO_2$, использованных в работе

x	Окислитель	Время обработки, min	a,Å	c,Å
0		_	2.8155(2)	14.039(1)
0.02	Cl ₂	30	2.8186(4)	14.075(3)
0.04	H_2SO_4	20	2.8115(4)	14.118(2)
0.08	Cl ₂	80	2.8116(4)	14.129(2)
0.09	H_2SO_4	40	2.8112(5)	14.122(5)
0.27	H_2SO_4	160	2.8112(6)	14.190(6)
0.32	H_2SO_4	220	2.8106(7)	14.247(6)
0.40	H_2SO_4	520	2.8039(7)	14.304(6)

Данные об исследуемых образцах и условиях их получения приведены в табл. 1. Однофазность всех полученных образцов контролировалась рентгенографически. Исследования были проведены на дифрактометре типа ДРОН с использованием графитового монохроматора на вторичном пучке CuK_{α} -излучения при скорости съемки 0.03°/min. Для определения периодов решетки применялась съемка с эталоном (Si). Содержание лития в образцах определялось атомно-адсорбционным методом с помощью спектрофотометра Perkin-Elmer 503.

Магнитная восприимчивость в температурном интервале 1.5–300 К измерялась SQUID-магнитометром MPMS-5XL (Quantum Design) в полях напряженностью до 50 kOe, а при температуре 77–1000 К — методом Фарадея в полях до 10 kOe.

Электропроводность метастабильных деинтеркалированных кобальтитов исследована в температурном интервале 77–300 К методом импедансной спектроскопии (анализатор частотных характеристик Solartron-1260, перекрытие частотного диапазона от 1 до $1 \cdot 10^6$ Hz). Величина полного активного сопротивления определялась из анализа частотных зависимостей импеданса. Измерение проводилось на частоте 1000 Hz, при которой действительная часть импеданса образца $Z' \approx \text{const.}$

Рентгеновские O1s- и Co2p-спектры поглощения дефектных кобальтитов Li_{1-x}CoO₂ получены на российско-германской линии накопительного кольца BESSY-II (Берлин). Рентгеновские фотоэлектронные спектры валентной полосы и Co3s-спектры получены на рентгеновском фотоэлектронном спектрометре PHI6500 сі Multitechnique System с использованием монохроматизированного Al K_{α} -излучения. Образцы в виде спрессованных таблеток были исследованы после излома в вакууме.

3. Результаты

3.1. Магнитная восприимчивость $Li_{1-x}CoO_2$ (x < 0.1). Ионы трехвалентного кобальта, содержащегося в LiCoO₂, находятся в низкоспиновом состоянии [11], в котором t_{2g} -уровни полностью заняты, а e_g -уровни свободны: $(t_{2\uparrow})^3(t_{2g\downarrow})^3(e_g)^0$. Экспериментально измеренная щель между этими состояниями составляет 2.7 eV [12]. Расчет из первых принципов [13,14] тоже показывает наличие щели, хотя и не столь большой. Отсутствие неспаренных *d*-электронов у ионов Co³⁺ обусловливает их нулевой магнитный момент.

Таблица 2. Параметры уравнения Кюри–Вейсса для $Li_{1-x}CoO_2$ (x<0.1)

Состав	$A_0 \cdot 10^4, \\ cm^3 \cdot mol^{-1}$	$\frac{C \cdot 10^3}{\mathrm{cm}^3 \cdot \mathrm{K} \cdot \mathrm{mol}^{-1}}$	Θ, K	$\mu = \sqrt{8C/x},$ $\mu_{\rm B}$
Li _{0.98} CoO ₂	1.09	1.80	-2.3	0.85
Li _{0.92} CoO ₂	1.56	8.81	-1.8	0.94
$Li_{0.91}CoO_2$	1.28	9.32	-1.7	0.91

Рис. 1. Магнитная восприимчивость деинтеркалированных кобальтитов. $I - \text{Li}_{0.98}\text{CoO}_2$, $2 - \text{Li}_{0.92}\text{CoO}_2$, $3 - \text{Li}_{0.91}\text{CoO}_2$, $4 - \text{Li}_{0.68}\text{CoO}_2$.

В результате деинтеркаляции и нестехиометрических по литию кобальтитах наряду с вакансиями лития возникают дефекты и в подрешетке переходного металла. Их появление связано с процессом зарядовой компенсации при низкотемпературном окислении LiCoO₂, а концентрация пропорциональна количеству удаленного лития. Естественно предположить, что такими дефектами являются ионы Co⁴⁺. По своей электронной структуре Co⁴⁺ эквивалентен иону Fe^{3+} (3 d^5), и для него возможны три спиновых состояния: $(t_{2g})^3 (e_g)^2$, $(t_{2g})^4 (e_g)^1$ и $(t_{2g})^5 (e_g)^0$. В любом из этих случаев у иона Со⁴⁺ имеются неспаренные электроны, и, следовательно, образовавшийся дефект является парамагнитным центром. Это делает метод магнитной восприимчивости эффективным инструментом для исследования свойств деинтеркалированных кобальтитов.

Рассмотрим магнитную восприимчивость составов с малым содержанием вакансий лития. Вид температурных зависимостей, показанных на рис. 1, служит очевидным свидетельством того, что в подрешетке кобальта присутствуют дефекты, являющиеся парамагнитными центрами. Анализ показал, что восприимчивость (χ) $Li_{1-x}CoO_2$ (*x* < 0.1; кривые 1–3) хорошо описывается законом Кюри–Вейсса: $\chi = A_0 + C/(T-\Theta)$, где A_0 температурно-независимая часть, включающая диамагнитную составляющую и парамагнетизм Ван Флека, С — константа Кюри, Θ — константа Вейсса. В табл. 2 наряду с параметрами А0, С и О приведены величины магнитных моментов $\mu = \sqrt{8C/x}$. Видно, что для всех составов моменты близки и составляют ~ 0.9 µ_B. Близкие магнитные моменты приводятся и в [5]. Выясним, какому состоянию иона Со⁴⁺ это соответствует. В литературе высказываются различные мнения отно-

Рис. 2. Рентгеновские O1s- (a) и Co2*p*-спектры поглощения (b) кобальтитов LiCoO₂, Li_{0.68}CoO₂ и Li_{0.60}CoO₂.

сительно спинового состояния ионов Co^{4+} в сложных оксидах. Так, данные, приведенные в [15,16], указывают на низкоспиновую конфигурацию Co^{4+} в $Li_{1-x}CoO_2$. Аналогичные результаты были получены для систем La–Sr–Li–Co–O [17] и Ba–Sr–Co–O [18]. В то же время имеются работы, в которых утверждается, что ионы четырехвалентного кобальта находятся в высокоспиновом состоянии [19,20].

Чисто спиновые значения магнитных моментов для электронных конфигураций $(t_{2g})^3 (e_g)^2$, $(t_{2g})^4 (e_g)^1$ и $(t_{2g})^5 (e_g)^0$ составляют 5.92, 3.87 и 1.73 $\mu_{\rm B}$ соответственно. Сравнивая эти величины с экспериментальными значениями магнитных моментов Li_{1-r}CoO₂, можно сделать вывод о том, что вариант низкоспинового состояния иона Co^{4+} с S = 1/2 в рассматриваемом случае более вероятен, поскольку для двух первых характерны большие значения магнитных моментов. Низкоспиновое состояние d^5 -иона довольно часто реализуется в сильном кристаллическом поле и характеризуется существенным спин-орбитальным взаимодействием [21]. Однако значения магнитных моментов Li_{1-r}CoO₂ — как полученные в данной работе, так и приведенные в [5] существенно отличаются от тех, которые можно было бы ожидать для ионов Со⁴⁺ даже с одним неспаренным *d*-электроном ($\mu^2 = 3 \mu_B^2$). По-видимому, это обстоятельство связано с тем, что способ зарядовой компенсации при деинтеркаляции лития сложнее, чем обсужденный выше, и при излучении лития из LiCoO2 не только изменяется электронное состояние кобальта ($Co^{3+} \rightarrow Co^{4+}$), но и происходит частичное окисление ионов кислорода $(O^{2-} \to O^{-})$. Подобные процессы зарядовой компенсации, приводящие к появлению дырки в кислородной полосе, наблюдаются, например, в ВТСП [22]. В таком случае парамагнитными центрами с низкими значениями магнитных моментов являются либо дефекты типа О₀¹, либо какие-то комплексы, их содержащие.

3.2. Рентгеновские спектры поглощения Li_{1-x}CoO₂. Для анализа валентного состояния ионов

кобальта и кислорода воспользуемся рентгеновскими O1s- и Co2p-спектрами поглощения, представленными на рис. 2, а, b. Первый максимум рентгеновского O1s-спектра поглощения LiCoO2 при 530.5 eV соответствует переходу 1s-электрона кислорода на гибридизованные состояния $Co3d(e_{\rho}^*)$ -O2 $p\sigma$ -орбиталей. В спектрах рентгеновского O1s-поглощения деинтеркалированных кобальтинов наблюдаются дополнительные особенности ниже порога поглощения (отмечены стрелками), что указывает на увеличение плотности вакантных O2p-состояний. В то же время, как видно из рис. 2, b, Со2р-спектры поглощения дефектных кобальтитов практически не изменяются по сравнению со спектром исходного LiCoO2. Таким образом, можно сделать вывод, что зарядовая компенсация в дефектных кобальтитах Li_xCoO₂ осуществляется за счет формирования дырок в О2*p*-состояниях, а электронная конфигурация ионов кобальта остается без изменения.

3.3. Рентгеновские Со3*s*-спектры фотоэмиссии Li_{1-x} СоО₂. Известно, что 3*s*-уровни в соединениях переходных металлов проявляют обменное расщепление, величина которого пропорциональна (2*S* + 1), где *S* — локальный спин 2*d*-электронов в основном состоянии. Помимо процессов обменного взаимодействия важную роль играют эффекты зарядового переноса.

Для стехиометрического LiCoO₂ с низкоспиновой конфигурацией ионов Co³⁺ (S = 0) Co3s-спектры не расщепляются (рис. 3). Сателлитная структура в области энергий от 105 до 115 eV обусловлена электронными конфигурациями $3d^6$, $3d^7L$, d^8L^2 , где <u>L</u> обозначает дырку в 2*p*-состояниях кислорода, возникшую в результате переноса электрона от кислорода к металлу. В нашей предыдущей работе [23] было показано, что кабальтиты лития с дефектами в кислородной подрешетке LiCoO_{2- δ} характеризуются появлением дополнительных ионов Co³⁺, что сопровождается изменением в

Рис. 3. Рентгеновские фотоэлектронные Co3s-спектры $Li_{1-x}CoO_2$.

Со3s-спектрах. Однако в случае кобальтитов с дефектами в литиевой подрешетке Li_{1-x}CoO₂ формально четырехвалентные ионы кобальта не вызывают изменения в Со3s-спектрах, как это видно из рис. 3. Аналогичный эффект для легированных манганитов La_{1-x}Sr_xMnO₃ наблюдался в работе [24], где легирование стронцием (которое должно приводить к появлению четырехвалентных ионов кобальта) не сопровождается изменением обменного расщепления в Mn3s-спектрах в концентрационной области $0 \le x \le 0.3$, что связано с сохранением электронной конфигурации Mn3d⁴ и формированием "электронных" дырок O2p-характера (L). Таким образом, мы приходим к заключению, что в дефектных кобальтитах Li_{1-x}CoO₂ конечное состояние трех- и четырехвалентных ионов кобальта имеет вид $3d^6 + 3d^6L$. Отсутствие изменений в Со3s-спектрах свидетельствует также о низкоспиновом характере электронных конфигураций.

3.4. Рентгеновские фотоэлектронные спектры валентной полосы $Li_{1-r}CoO_2$. На рис. 4 показаны рентгеновские фотоэлектронные спектры валентной полосы (XPS) и рентгеновские абсорбционные O1s-спектры (XAS) кобальтитов LiCoO₂, Li_{0.96}CoO₂ и Li_{0.60}CoO₂. Спектры приведены в единой энергетической шкале — шкале энергий связи. Для построения в этой шкале рентгеновских абсорбционных спектров поглощения использованы данные для энергий связи электронов остовных О1*s*-уровней, полученных из рентгеновских фотоэлектронных спектров. Рентгеновский фотоэлектронный спектр валентной полосы LiCoO₂ и рентгеновские абсорбционные O1s-спектры разложены на составляющие — гауссианы.

В фотоэлектронном спектре LiCoO₂ самый интенсивный пик A и, по всей видимости, особенность B обусловлены Co3 $d(t_{2g})$ -состояниями. В соответствии с расчетом Чижика [14] и данными наших предыдуших исследований электронной структуры и рентгеновских спектров валентной полосы LiCoO₂ [23] особенность C сформирована t_{1u} -орбиталями, происходящими от O2p-состояний с небольшой примесью Co4p-состояний. Полоса D отображает гибридизованные O2p-Co3 $d(e_g)$ -состояния, а полоса E — гибридизацию Co4s- и 4p-состояний (a_{1g} - и t_{1u} -орбитали) с O2p-состояниями. Дефекты в литиевой подрешетке практически не изменяют интенсивности пика A; следовательно, во всех исследованных здесь кобальта.

В спектре поглощения LiCoO₂ максимум *E* отображает вакантные O2*p*-состояния, гибридизованные с Co3*d*(e_g)-состояниями. Расстояние между пиками *A* и *G* равно примерно 2.5 eV, что хорошо согласуется с величиной энергетической щели 2.7 eV, оцененной в работе [12]. В спектрах дефектных кобальтитов появляются дополнительные особенности *G*₁, *G*₂ и *G*₃, что отображает возникновение дополнительных вакантных состояний O2*p*-природы. Особенности *G*₁ и *G*₂ показаны на рис. 4 жирными линиями.

Рис. 4. Рентгеновские фотоэлектронные спектры валентной полосы (XPS) и рентгеновские абсорбционные O1s-спектры (XAS) кобальтитов LiCoO₂, Li_{0.96}CoO₂ и Li_{0.60}CoO₂. Спектры приведены в единой энергетической шкале. Для совмещения использованы данные энергий связи электронов остовных O1s-уровней. Рентгеновский фотоэлектронный спектр LiCoO₂ и рентгеновские абсорбционные спектры разложены на составляющие — гауссианы (показаны сплошными линиями).

Для сильнодефектного кобальтита Li0.6 CoO2 наблюдается перекрытие занятых и вакантных состояний, что отражает металлический характер проводимости этого кобальтита. Согласно [20], металлический характер проводимости должен наблюдаться для Li_{1-x}CoO₂ с x > 0.1. Однко перекрытие спектов поглощения и фотоэлектронных спектров фиксируется уже для Li_{0.96}CoO₂, который должен быть полупроводником. Объяснить это можно, если предположить существование так называемого разделения фаз. Подобный эффект хорошо изучен в манганитах (см., например, [25]). Деинтеркаляция лития вызывает появление небольших металлических областей, окруженных полупроводниковой матрицей. Уменьшение концентрации лития ведет к перекрыванию этих областей и как следствие к появлению металлических свойств в дефектных кобальтитах лития.

3.5. Магнитная восприимчивость $Li_{1-x}CoO_2$ (x > 0.25). При более глубоком извлечении лития из LiCoO₂ температурные зависимости магнитной восприимчивости существенно усложняются. Парамагнитное поведение, описываемое законом Кюри–Вейсса, которое характерно для богатых литием составов, наблюдается,

Состав	$\begin{array}{c} A_0 \cdot 10^4, \\ \mathrm{cm}^3 \cdot \mathrm{mol}^{-1} \end{array}$	$\frac{C \cdot 10^3}{\mathrm{cm}^3 \cdot \mathrm{K} \cdot \mathrm{mol}^{-1}}$	Θ, K	$\mu = \sqrt{8C/x}, \ \mu_{ m B}$	$A \cdot 10^4, \\ cm^3 \cdot mol^{-1}$	$B \cdot 10^{10},$ cm ³ · mol ⁻¹ · K ⁻²	m^*
$\begin{array}{c} Li_{0.73}CoO_{2}\\ Li_{0.68}CoO_{2}\\ Li_{0.60}CoO_{2}\end{array}$	2.99 3.41 5.73	17.0 15.5 19.2	$-1.9 \\ -2.1 \\ -2.9$	0.71 0.63 0.62	0.9 1.1 1.2	11.4 11.1 8.9	76m _e 78m _e 73m _e

Таблица 3. Параметры, описывающие магнитную восприимчивость $\text{Li}_{1-x}\text{CoO}_2$ (x > 0.25): T < 100 K — закон Кюри–Вейсса (A_0 , C, Θ , μ); T > 150 K — $\chi_P = A - BT^2$ (A, B, m^*)

но только при низких температурах (до ~ 100 K). На рис. 1 в качестве примера показана политерма восприимчивости для $Li_{0.68}CoO_2$ (кривая 4). Параметры, описывающие низкотемпературную часть восприимчивости $Li_{1-x}CoO_2$ (x > 0.25), приведены в табл. 3. Так же как и для составов с x < 0.1, обнаружены аномально низкие значения магнитных моментов, что указывает на неизменную природу парамагнитных центров во всей исследованной области концентраций. Как уже отмечалось, парамагнитными центрами в $Li_{1-x}CoO_2$ являются обменно-связанные пары ($Co^{3+\delta}-O^{2-\delta}$). Далее для удобства будем условно обозначать такой дефект, возникающий при деинтеркаляции, как Co^{4+} .

Рис. 5. Магнитная восприимчивость деинтеркалированных кобальтитов, принадлежащих области hex2.

На политерме магнитной восприимчивости Li_{0.68}CoO₂, приведенной на рис. 1, наблюдается аномалия в виде небольшого наплыва при T > 150 К. Более детально зависимости $\chi(T)$ для составов, принадлежащих области hex2, представлены на рис. 5. Отличительной чертой приведенных зависимостей является резкое возрастание восприимчивости в температурном интервале 120–160 К, причем сколько-нибудь заметного температурного гистерезиса не обнаружено.

Можно рассмотреть несколько возможных причин, вызывающих скачок восприимчивости. Одна из них — переход ионов Co^{4+} в высокоспиновое состояние: $(t_{2g})^5(e_g)^0 \rightarrow (t_{2g})^3(e_g)^2$. При таком переходе магнитный момент, приходящийся на парамагнитный центр, увеличивается за счет роста числа неспаренных электронов. Однакоо величина скачка магнитной восприимчивости, вызванного спиновым переходом, которую можно оценить исходя из соотношения

$$\Delta \chi \sim N_A \mu_B^2 (\mu_{hs}^2 - \mu_{ls}^2) x / 3k \tag{1}$$

(где μ_{hs} и μ_{ls} — магнитные моменты, соответствующие высокоспиновому и низкоспиновому состояниям ионов Co⁴⁺), более чем на порядок превышает реально наблюдаемую. Кроме того, если бы высокоспиновое состояние Co⁴⁺ действительно реализовалось в Li_{1-x}CoO₂, оно привело бы к расщеплению фотоэлектронных 3*s*-спектров и изменению 2*p*-абсорбционных спектров кобальта. Данные, приведенные на рис. 2, *b* и 3, указывают на отсутствие таких эффектов.

Чтобы убедиться в отсутствии связи обнаруженного эффекта со структурной перестройкой деинтеркалированного кобальтита, было проведено рентгенографическое исследование одного из составов ($Li_{0.60}CoO_2$) в интервале температур 80–300 К. Съемка велась на рентгеновском автодифрактометре STADI-Р в Cu K_{α} -излучении. Было установлено, что в исследованном температурном

Рис. 6. Изменение параметра решетки *с* Li_{0.60}CoO₂ в зависимости от температуры.

интервале наблюдается сжатие решетки преимущественно вдоль оси *c* (рис. 6), но дифракционный спектр остается неизменным (характерным для гексагональной фазы кобальтита лития).

Скачкообразное изменение магнитной восприимчивости часто бывает одним из проявлений фазового перехода полупроводник-металл и отражает процесс делокализации электронов. Такие переходы описаны для ряда соединений переходных металлов [26]. В том случае, если это действительно так, магнитная восприимчивость $Li_{1-x}CoO_2$ с x > 0.25 в металлической фазе складывается из следующих составляющих:

$$\chi = \chi_{\rm dia} + \chi_{V-V} + \chi_P + \chi_L, \qquad (2)$$

где χ_{dia} — диамагнетизм заполненных оболочек, χ_{V-V} ванфлексовский температурно-независимый парамагнетизм, χ_P — паулиевский парамагнетизм электронного газа, χ_L — диамагнетизм Ландау, который составляет 1/3 от χ_P [27].

Для расчета паулиевской составляющей магнитной восприимчивости может быть использовано соотношение (3) [27]

$$\chi_P = \frac{12m^*\mu_{\rm B}^2}{h^2} \left(\frac{\pi}{3}\right)^{2/3} n^{1/3} \left[1 - \frac{\pi^2}{12} \left(\frac{kT}{\xi_0}\right)^2\right]$$
$$= A - BT^2, \tag{3}$$

где m^* — эффективная масса электрона, h — постоянная Планка, n — концентрация электронов проводимости, ξ_0 — энергия Ферми.

Результаты аппроксимации экспериментальных данных по магнитной восприимчивости $\text{Li}_{1-x}\text{CoO}_2$ при T > 160 K квадратичной зависимостью приведены в табл. 3. В экспериментальные значения восприимчивости при расчете были введены поправки, учитывающие диамагнитные и ванфлековский вклады.

Полученные в результате расчеты значения эффективной массы $\sim 75m_e$ отражают высокую плотность состояний вблизи уровня Ферми, с которой связаны, как отмечается в [20], такие важные функциональные параметры кобальтита, как слабая чувствительность потенциала катодного материала к содержанию лития и большая емкость. Кроме того, большие значения эффективной массы указывают на то, что электронная система Li_{1-x}CoO₂ является сильно коррелированной, что характерно для объектов, в которых реализуется переход полупроводник-металл [26].

Для того чтобы убедиться в том, что наблюдаемая при $T \sim 150 \,\mathrm{K}$ аномалия магнитных свойств $\mathrm{Li}_{1-x}\mathrm{CoO}_2$ с x > 0.25 действительно связана с изменением типа проводимости, было предпринято исследование электрических свойств деинтеркалированных кобальтитов лития.

3.6. Электропроводность $Li_{1-x}CoO_2$. Химическая деинтеркаляция кобальтита лития, представляющая по сути процесс окисления, как уже отмечалось, со-

Li_{0.60}CoO₂ 0 Li_{0.68}CoO₂ $lg(\sigma,\,S\cdot cm^{-1})$ Li_{0.73}CoO₂ -2 Li_{0.91}CoO₂ -3 $Li_{0.96}CoO_2$ -4 LiCoO₂ -5 4 6 8 10 12 $10^3/T$, K⁻¹

1

Рис. 7. Зависимости проводимости $Li_{1-x}CoO_2$ от обратной температуры.

провождается появлением "электронных" дырок. Таким образом, по мере уменьшения содержания лития в Li_{1-x}CoO₂ проводимость кобальтита должна возрастать. На этот факт указывают измерения, проведенные как на объемных образцах [28], так и на пленках [29]. Более того, при достаточно большой концентрации вакансий лития, а значит, и "электронных" дырок проводимость приобретает металлический характер [20,30]. На то, что для кобальтитов с определенным содержанием лития существует температурная область, в которой происходит смена типа проводимости, указывают только результаты работы [31], авторы которой обнаружили (хотя и никак не прокомментировали) излом на температурной зависимости электропроводности Li_{0.7}CoO₂ при ~ 160 К температуре, очень близкой к той, при которой происходит скачкообразное изменение магнитной восприимчивости (рис. 5). Температурные зависимости электропроводности, которые приводятся авторами других работ, являются монотонными [20,30]. Следует отметить, что изучение электрических свойств $Li_{1-x}CoO_2$, полученных как с помощью химической, так и с помощью электрохимической деинтеркаляции, осложнено метастабильностью объектов, которая делает невозможным получение высокоплотных образцов путем отжига при повышенных температурах. Это обстоятельство, по-видимому, и является причиной принципиального расхождения результатов исследований электрических свойств, выполненных разными исследовательскими группами. В данной работе для устранения влияния контактных эффектов, неизбежных в пористых объектах, все измерения проводились на переменном токе, что является принципиальным отличием от измерений, результаты которых описаны в литературе.

Полученные температурные зависимости проводимости показаны на рис. 7. Результаты настоящей работы, так же как и литературные данные, однозначно свидетельствуют о существовании принципиальных различий в поведении бедных и богатых по литию кобальтитов. Проводимость составов, примыкающих к стехиометрической границе LiCoO₂, является термически активируемой и возрастает при повышении температуры. При этом с увеличением глубины деинтеркаляции кобальтита заметно уменьшается величина энергии активации, а уровень проводимости повышается. Вид температурных зависимостей проводимости, полученных в нашем исследовании, указывает на то, что металлическую проводимость кобальтиты с пониженным содержанием лития приобретают только при температурах выше ~ 160 K. Этот факт подтверждает предположение о существовании перехода полупроводник-металл, сделанное при рассмотрении результатов измерения магнитной восприимчивости.

4. Обсуждение результатов

Металлический характер связи в слоистом кобальтите лития возможен благодаря прямому перекрыванию t2g-орбиталей, принадлежащих ионами кобальта, которые занимают центральные позиции в кислородных октаэдрах, сопряженных ребрами. При этом у ионов Co³⁺, находящихся в низкоспиновом состоянии, все t2g-орбитали заполнены, и электронная делокализация связана только с ионами $Co^{4+}(t_{2g}^5)$, обеспечивающими электронейтральность при экстракции лития. В Li_{1-x}CoO₂ с высоким содержанием лития (x < 0.1) концентрация ионов Со⁴⁺, а следовательно, и "электронных" дырок слишком мала для того, чтобы произошла делокализация электронов. В связи с этим такие составы, как это видно из рис. 7, характеризуются полупроводниковой проводимостью. При более глубокой деинтеркаляции, когда концентрация Со⁴⁺ становится достаточной для того, чтобы был превышен порог перколяции, происходит делокализация носителей заряда и проводимость преобретает металлический характер. Однако, как показывают приведенные на рис. 7 зависимости, требуется не только определенная концентрация дырок, но и дополнительная энергия.

Существует ряд обстоятельств, с которыми может быть связан переход полупроводник-металл. Это могут быть особенности зонной и кристаллической структуры, корреляционные внутриатомные и межатомные эффекты. Детальное рассмотрение многообразных аспектов этого явления проведено Моттом [9]. Можно предположить, что в рассматриваемом случае мы имеем дело с так называемым андерсоновским переходом [32]. Суть этого перехода состоит в том, что в некоторых случайных полях может наблюдаться локализация одноэлектронных функций, если случайная компонента достаточно велика. Следствием локализации волновых функций является невозможность движения электронов при T = 0. Когда температура повышается, возникает проводимость, связанная с термически активированными перескоками. Для нас существенно, что в роли случайного потенциала, как это было показано Кикучи [33] и Моттом [34], может выступать и неупорядоченное размещение центров (в нашем случае комплексов V_{Li}- $O^{2-\delta}-Co^{3+\delta}$). Есть основания полагать, что "электронные" дырки, образующиеся в процессе химической деинтеркаляции кобальтита, локализуются вблизи вакансий (V_{Li}). Это соответствует требованиям сохранения локальной электронейтральности. Таким образом, должна существовать корреляция между пространственным распределением литиевых вакансий и электронных "дырок". При низких температурах это распределение полностью заморожено, при повышении температуры, когда становятся возможными термические флуктуации, происходит выравнивание потенциала. Изменение условий экранирования стимулирует переход системы в металлическое состояние.

Для подтверждения реалистичности предложенной интерпретации обнаруженного перехода необходимы данные, указывающие на то, что при $T \sim 160 \,\mathrm{K}$ в $Li_{1-x}CoO_2$ (x > 0.25) подвижность литиевых вакансий (или, что одно и то же, ионов лития) действительно увеличивается. Такое подтверждение было получено при исследовании спектров ЯМР ⁷Li в Li_{1-x}CoO₂, результаты которого приведены в [35]. Установлено, что для составов с $0.16 \le x \le 0.40$ при $T \sim 150 - 200 \,\mathrm{K}$ наблюдается резкое сужение резонансной линии, которое свидетельствует об увеличении диффузионной подвижности ионов лития. Аналогичное диффузионное сужение сигнала ЯМР ⁷Li обнаружено ранее при $T \sim 430 \,\mathrm{K}$ у кобальтита лития практически стехиометрического состава [36]. Различие температур связано с тем, что вакантных позиций в подрешетке лития стехиометрического LiCoO₂ очень мало. Кроме того, следует указать на то, что усиление диффузии в стехиометрическом LiCoO₂ не сопровождается никакими аномальными изменениями магнитных или электрических характеристик, поскольку концентрация как парамагнитных центров, так и носителей заряда определяется отклонением отношения Li/Co от единицы.

5. Заключение

Совместное рассмотрение результатов, полученных методом магнитной восприимчивости, и рентгеновских фотоэлектронных и абсорбционных спектров дефектных кобальтитов лития позволило установить, что зарядовая компенсация, сопровождающая процесс химической деинтеркаляции кобальтита, вызывает генерацию "электронных" дырок в кислородной полосе. Магнитные свойства Li_{1-x}CoO₂ определяются обменно-связанными парами (Co^{3+δ}–O^{2-δ}), характеризующимися магнитным моментом ~ 0.9 $\mu_{\rm B}$.

В дефектных кобальтитах $Li_{1-x}CoO_2$ с x > 0.24 при температуре $T \sim 160$ К обнаружен переход полупроводник-металл, сопровождающийся скачкообразным изменением магнитной восприимчивости. Высказано предположение, что переход связан с увеличением диффузионной подвижности лития при повышении температуры.

Авторы выражают благодарность сотрудникам Оснабрюкского университета (Германия) К. Кюпперу и М. Нойманну за помощь в проведении фотоэлектронных исследований.

Список литературы

- K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough. Mater. Res. Bull. 15, *6*, 783 (1980).
- [2] J.N. Reimers, J.R. Dahn. J. Electrochem. Soc. 139, 8, 2091 (1992).
- [3] T. Ohzuku, A. Ueda. J. Electrochem. Soc. 141, 11, 2972 (1994).
- [4] G.G. Amatucci, J.M. Tarascon, L.C. Klein. J. Electrochem. Soc. 143, 3, 1114 (1996).
- [5] N. Imanishi, M. Fujiyoshi, Y. Takeda, O. Yamamoto, M. Tabuchi. Solid State Ion. 118, 1–2, 121 (1999).
- [6] A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, J. Hafner. Phys. Rev. B 58, 6, 2975 (1998).
- [7] A. Van der Ven, M.K. Aydinol, G. Ceder. J. Electrochem. Soc. 145, 6, 2149 (1998).
- [8] P. Kuiper, G. Kruizinga, J. Ghijsen, G.A. Sawatsky, H. Verweij. Phys. Rev. Lett. 62, 2-9, 221 (1989).
- [9] Д.Г. Келлерман, В.В. Карелина, Я.Н. Блиновсков, А.И. Гусев. ЖНХ 47, 6, 984 (2002).
- [10] Y. Shao-Horn, S.A. Hackney, S.C. Johnson, A.J. Kahaian, M.M. Thackeray. J. Solid State Chem. **140**, *1*, 116 (1998).
- [11] M. Oku. J. Solid State Chem. 23, 1–2, 177 (1978).
- [12] J. van Elp, J.L. Wielan, H. Eskes, P. Kuiper, G.A. Sawatzky, F.M.F. de Groot, T.S. Turner. Phys. Rev. B 44, 12, 6090 (1991).
- [13] M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, J. Joannopopulos. Phys. Rev. B 56, 3, 1354 (1997).
- [14] M.T. Czyzyk, R. Potze, J.A. Sawatzky. Phys. Rev. B 46, 7, 3729 (1992).
- [15] E. Zhecheva, R. Stoyanova. J. Solid State Chem. 109, 1, 47 (1994).
- [16] C. Julien. Solid State Ion. 157, 1-4, 57 (2003).
- [17] S.A. Warda, W. Massa, D. Reinen, Z.W. Hu, G. Kaindl, F.M.F. de Groot. J. Solid State Chem. 146, 1, 79 (1999).
- [18] K. Yamaura, H.W. Zandbergen, K. Abe, R.J. Kava. J. Solid State Chem. 146, 1, 96 (1999).
- [19] D. Carlier, M. Menetrier, C. Delmas. J. Mater. Chem. 11, 2, 594 (2001).
- [20] J. Molenda, A. Stoklosa, T. Bak. Solid State Ion. 36, 1–2, 53 (1989).
- [21] Р. Карлин. Магнетохимия. Мир, М. (1989). 399 с.
- [22] N. Nucker, J. Fink, J.C. Fuggle, P.J. Durham, W.M. Temmerman. Phys. Rev. B 37, 10, 5158 (1988).
- [23] В.Р. Галахов, В.В. Карелина, Д.Г. Келлерман, В.С. Горшков, Н.А. Овечкина, М. Нойманн. ФТТ 44, 2, 257 (2002).

- [24] V.R. Galakhov, M. Demeter, S. Bartkowski, M. Neumann, N.A. Ovechkina, E.Z. Kurmaev, N.I. Lobachevskaya, Ya.M. Mukovskii, J. Mitchell, D.L. Ederer. Phys. Rev. B 65, 11, 113102 (2002).
- [25] J.M. De Teresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. Del Moral, Z. Arnold. Nature 386, 6622, 256 (1997).
- [26] Н.Ф. Мотт. Переходы металл-изолятор. Наука, М. (1979). 342 с.
- [27] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
- [28] E. Pichta, M. Solomon, S. Slane, M. Uchiyama, D. Chua, W.B. Ebner, H.W. Lin. J. Power Souces 21, 1, 25 (1987).
- [29] M. Shibuya, T. Nishina, T. Matsue, I. Uchida. J. Electrochem. Soc. 143, 10, 3157 (1996).
- [30] S. Levasseur, M. Menterier, E. Suard, C. Delmas. Solid State Ion. 128, 1–4, 11 (2000).
- [31] M. Menetrier, I. Saaddoune, S. Levasseur, C. Delmas. J. Mater. Chem. 9, 5, 1135 (1999).
- [32] P.W. Anderson. Phys. Rev. 109, 5, 1492 (1958).
- [33] M.J. Kikuchi. J. Phys. Soc. Jap. 33, 304 (1972).
- [34] N.F. Mott. Phil. Mag. 26, 1015 (1972).
- [35] Д.Г. Келлерман, Н.А. Журавлев, А.С. Семенова, Т.А. Денисова, Р.Н. Плетнев. Тез. докл. Всерос. конф. "Химия твердого тела и функциональные материалы-2004". Екатеринбург (2004). С. 185.
- [36] K. Nakamura, H. Ohno, K. Okamura, Y. Michihiro, I. Nakabayashi, T. Kanashiro. Solid State Ion. 135, 1–4, 143 (2000).