Особенности темновой проводимости кристаллов ниобата лития конгруэнтного состава

© С.В. Евдокимов, А.В. Яценко

Таврический национальный университет, 95007 Симферополь, Украина E-mail: lab2@crimea.edu

(Поступила в Редакцию 18 января 2005 г.)

Исследована температурная зависимость темновой проводимости в серии примесных и номинально беспримесных кристаллов LiNbO₃ конгруэнтного состава. Определены энергии активации ионного и электронного вкладов в темновую проводимость, проведена оценка коэффициента диффузии ионов H⁺. Установлена корреляция между ионным и электронным вкладами в темновую проводимость.

PACS: 77.84.Dy, 72.80.Jc, 61.50.Nw

1. Введение

Благодаря уникальному комплексу оптических и электрических свойств кристаллы ниобата лития (НЛ) уже длительное время являются объектом интенсивного изучения. Это обусловлено тем, что кристаллы НЛ могут использоваться в устройствах оптической памяти, узкополосных фильтрах телекоммуникационных систем и пр. [1]. Хорошо известно, что освещение кристаллов НЛ сопровождается возбуждением примесных донорных центров и выходом в зону проводимости фотоиндуцированных электронов, мигрирующих в неосвещенную область кристалла. Возникающее при этом поле пространственного заряда за счет электрооптического эффекта модулирует коэффициенты преломления кристалла, а также влияет на скорость распространения упругих волн.

Темновая проводимость σ_d оптически активных кристаллов — очень важная характеристика, определяющая время хранения оптической информации. Время τ , за которое дифракционная интенсивность фазовой голограммы уменьшается в *е* раз, связано с темновой проводимостью следующим образом: $\tau = \varepsilon \cdot \varepsilon_0 / \sigma_d$, где ε — электрическая проницаемость кристалла вдоль полярной оси, ε_0 — электрическая постоянная [1].

На раннем этапе исследований слаболегированных (0.05% Сг, 0.05% Со, 0.05% Fe) и беспримесных кристаллов НЛ было установлено, что температурная зависимость σ_d при T > 400 К достаточно хорошо подчиняется экспоненциальному закону, а энергия активации имеет значение порядка 1.1 eV [2,3]. Однако при исследовании температурной зависимости σ_d в диапазоне 300–400 К были получены и такие результаты, которые могут быть интерпретированы в рамках существования двух различных вкладов в темновую проводимость [4,5].

В настоящее время считается, что в кристаллах НЛ в общем случае имеется две компоненты, вносящие вклад в σ_d : ионная, связанная с ионами H⁺, которые неконтролируемо входят в структуру НЛ в процессе роста и монодоменизации образцов, и электронная, проявляющаяся при более низких температурах [6,7]. В этом случае температурная зависимость σ_d может быть описана следующим выражением:

$$\sigma_d = \left[\mu_H \cdot N_H \cdot \exp\left(-\frac{E_H}{k_0 T}\right) + \mu_e \cdot N_{\text{eff}} \cdot \exp\left(-\frac{E_e}{k_0 T}\right) \right] \cdot e,$$
(1)

где е — модуль заряда электрона, μ_H и μ_e — соответственно подвижности протонов и электронов, N_H — объемная концентрация ионов H⁺, $N_{\rm eff}$ — эффективная объемная концентрация электронных ловушек. При этом $\mu_H = eD_H^0/k_0T$, где D_H^0 — коэффициент диффузии протонов в объеме кристалла, а $N_{\rm eff} = (c_{D^-}^{-1} + c_D^{-1})^{-1}$, где c_{D^-} и c_D — соответственно концентрация заполненных и пустых электронных ловушек [8] (для кристалла НЛ с примесью Fe — ионы Fe²⁺ и Fe³⁺ соответственно). Согласно такой модели, в случае номинально беспримесного кристалла НЛ выражение (1) должно упрощаться и принимать вид

$$\sigma_d = \left(N_{\rm H} e^2 D_H^0 / k_0 T \right) \cdot \exp\left(-\frac{E_H}{k_0 T} \right). \tag{2}$$

Из анализа надежных результатов экспериментального исследования температурной зависимости σ_d можно получить как значения энергий активации, так и (при известной концнтрации примесей) значения подвижности носителей. Однако имеющаяся информация о ионной проводимости кристаллов НЛ очень неоднозначна — по различным данным значение D_H^0 лежит в диапазоне 0.0014–1.0 сm²/s [9–12]. Известные результаты измерения E_H приведены в табл. 1.

Отметим, что метод определения σ_d по времени релаксации дифракционной интенсивности объемных фазовых голограмм (РФГ) имеет очевидные принципиальные недостатки: зависимость τ от периода записываемой решетки [10], а также необходимость записи и считывания голограммы при фиксированной температуре кристалла. В противном случае (запись при комнатной температуре) нагреву кристалла сопутствует неконтролируемая частичная релаксация голограммы. Кроме того, при рас-

Состав (Li/Nb) 0.945 конгруэнтный 0.945 конгруэнтный то же 	Примесь	Метод, энергия активации E_H , eV			Cauting
		ΡΦΓ	СДВ	ЭМ*	Ссылка
0.945	Mn	1.05 ± 0.03	1.06 ± 0.03	1.11 ± 0.03	[13]
конгруэнтный	Mn (0.2 mol.%)	1.01			[7]
0.945	Fe	1.25 ± 0.03	1.12 ± 0.03	1.13 ± 0.03	[13]
конгруэнтный	Mn	1.06 ± 0.03			[14]
то же	Fe (0.1 mol.%)	0.95 ± 0.02			[10]
_ " _	Fe (0.14 mol.%)	0.97			[6]
_ " _	Fe			1.17 ± 0.01	[12]
_ " _	беспримесный			1.23 ± 0.04	[12]
0.988	_ " _	1.10 ± 0.10			[15]
0.99	_ " _	0.81			[16]
0.99	Fe	1.02 ± 0.03	-	0.95 ± 0.03	[13]
0.99	Fe		1.10 ± 0.03		[13]
0.99	Mn	1.05 ± 0.03	1.10 ± 0.03	0.96 ± 0.03	[13]
0.99	Mn	1.10 ± 0.03			[14]
0.988	Mn (0.1 mol.%)	1.14 ± 0.02			[15]

Таблица 1. Энергия активации протонной проводимости в кристаллах НЛ различного состава

* Электрометрический метод.

Таблица 2. Параметры, определяющие темновую проводимость кристаллов НЛ

Образец		$N_{\rm H}$, 10 ¹⁸ cm ⁻³	E_H, eV	$D_H^0, \mathrm{cm}^2/\mathrm{s}$	E_e, eV
a b c	Fe (0.07 mol.%) Mg (2.0 mol.%) беспримесный	7.0 ± 2.0	$\begin{array}{c} 1.08 \pm 0.02 \\ 1.10 \pm 0.02 \\ 1.07 \pm 0.02 \\ 1.05 \pm 0.02 \end{array}$	0.016 ± 0.006	$\begin{array}{c} 0.33 \pm 0.03 \\ 0.29 \pm 0.07 \\ 0.28 \pm 0.10 \\ 0.20 \pm 0.12 \end{array}$

чете σ_d этим методом необходимо учитывать температурную зависимость электрической проницаемости $\varepsilon(T)$, что не делалось ни в одной из цитированных работ.

Цель настоящей работы — исследование механизмов темновой проводимости кристаллов НЛ конгруэнтного состава в практически важном температурном диапазоне 293–463 К и уточнение значений энергии активации E_H и коэффициента D_H^0 .

2. Экспериментальные результаты

Метод прямого электрометрического определения σ_d — измерение тока, протекающего через кристалл при приложении к кристаллу внешней постоянной разности потенциалов, несмотря на проблематичность $T \cong 293 \,\mathrm{K}$ измерений при в слаболегированных кристаллах, свободен от перечисленных выше недостатков и обеспечивает лучшую абсолютную точность измерений, чем методы РФГ или смешивания двух волн (СДВ).

Для проведения экспериментов использовалась специально разработанная установка с погрешностью измерения тока через кристалл не более 0.02 рА. Для исключения влияния поверхностной проводимости кристалл тщательно обезжиривался, а воздух внутри термостата осушался при помощи силикагеля. Верхняя граница исследуемого температурного диапазона ограничивалась температурой T = 463 K, чтобы заведомо исключить влияние диффузии ионов Li⁺ [17], которая могла бы внести дополнительный вклад в σ_d .

Результаты исследования температурной зависимости σ_d в четырех образцах НЛ конгруэнтного состава представлены на рис. 1. Видно, что двухкомпонентная зависимость σ_d от температуры (1) наблюдается во всех исследованных образцах, а не только в образце с примесью 0.07 wt.% Fe.

Выше уже отмечалось, что при известной концентрации ионов H^+ в образце можно установить не только энергии активации носителей, но и значение D_H^0 . Определение объемной концентрации протонов в кристаллах НЛ обычно проводится на основании исследования ИК-поглощения при $\lambda = 2870$ nm [6–14]. При этом вклад в ИК-поглощение вносят как OH⁻ группы, находящиеся в поверхностном слое, так и распределенные внутри кристалла, а в процессах объемной проводимости участвуют только ионы H⁺ второго типа. Последнее обстоятельство очень существенно, так как большинство известных данных о подвижности ионов H⁺ в HЛ [9,11,12] получено на кристаллах HЛ, подвергшихся специальной обработке для повышения объемной концентрации ионов H⁺.

Рис. 1. Температурные зависимости σ_d в кристаллах НЛ, выращенных из конгруэнтного расплава: с добавлением 0.07 wt.% Fe (*a*), с добавлением 2.0 wt.% MgO (*b*), номинально беспримесный кристалл в форме тонкой пластинки с узкой гранью вдоль полярной оси кристалла (*c*) и номинально беспримесный кристалл кубической формы (*d*).

Исследованные нами кристаллы НЛ с примесью 0.07 wt.% Fe (по шихте) и один из номинально беспримесных образцов имеют известную объемную концентрацию ионов H⁺, измеренную методом ЯМР ¹H [18]. Поэтому для этих образцов можно было определить не только энергии активации E_H и E_e , но и коэффициент D_H^0 . Аппроксимация экспериментальных данных выполнялась методом взвешенных наименьших квадратов [19], соответствующие результаты представлены сплошными линиями на рис. 1, а полученные значения E_H , E_e и D_H^0 приведены в табл. 2.

Энергия активации электронной проводимости E_e для кристалла НЛ с примесью Fe (табл. 2) в пределах погрешности достаточно близка к известному значению $E_e = 0.28 \text{ eV} [6,7]$, что свидетельствует о корректности применяемых нами методик измерения σ_d и аппроксимации данных. Отметим существенную разницу значений D_H^0 для беспримесного образца НЛ и кристалла с примесью Fe. Это может свидетельствовать о том, что дефектные октаэдры Fe_{Li}O₆, где Fe_{Li} — ион Fe^{2+/3+}, замещающий ион Li⁺, являются предпочтительными центрами захвата ионов H⁺ и о необходимости пересмотра особенностей локализации ионов H⁺ в примесных и конгруэнтных кристаллах НЛ по отношению к стехиометрическому образцу [20].

Представленные на рис. 1 зависимости $\sigma_d(T)$ наглядно показывают, что для беспримесных кристаллов НЛ конгруэнтного состава и образца с примесью Mg в области высоких температур доминирующим является

Рис. 2. Нормированные температурные зависимости σ_d : квадраты — данные для кристалла с примесью Mg, кружки — для беспримесного кристалла в виде пластинки, треугольники — для беспримесного кристалла кубической формы.

ионный механизм проводимости. Если предположить, что коэффициент D_H^0 в этих кристаллах одинаков, можно пронормировать полученные зависимости по значению объемной концентрации ионов H⁺ в зоне проводимости или в первом приближении по значению σ_d при определенной температуре. Обобщенные результаты, полученные в результате нормирования по значению σ_d при T = 420 K, представлены на рис. 2. Совокупность нормированных данных достаточно хорошо описывается выражением (1), причем отношение концентраций ионов H⁺ и носителей второго типа в зоне проводимости исследованных кристаллов в пределах погрешности аппроксимации является примерно одинаковым.

Как видно из табл. 2, величина Е_е во всех исследованных кристаллах близка к значению 0.28 eV, характерному для кристаллов с примесью Fe. Для кристаллов LiNbO₃: Fe электронный механизм проводимости обусловлен туннелированием электронов между позициями ионов Fe²⁺ и Fe³⁺ [6], однако объемная концентрация подобных центров в номинально беспримесных образцах НЛ и кристалле с примесью Мд очень мала. На ранней стадии исследования проводимости кристаллов НЛ были высказаны предположения, что механизм проводимости может иметь поляронный характер [4,21]. Классической причиной возникновения поляронов малого радиуса Nb⁴⁺_{1 i} (ион Nb⁴⁺, занимающий позицию иона Li⁺ в нестехиометрическом НЛ) в процессе освещения кристалла считается захват фотоэлектрона ионами $Nb_{L_{i}}^{5+}$ [1]. Однако можно предположить, что процесс миграции ионов H⁺ в структуре кристаллов НЛ при определенных условиях сопровождается не только встречной диффузией ионов Li⁺ [22], которая имеет место лишь при достаточно больших температурах, но и возникновением поляронов малого радиуса, что вполне отвечает принципу сохранения локальной электронейтральности кристалла. В этом случае полученные результаты получают вполне удовлетворительное объяснение.

3. Заключение

В большинстве современных публикаций, посвященных исследованию температурной зависимости σ_d в кристаллах НЛ [6,7,10,12–16], приводятся результаты измерений, выполненных при $T \ge 330$ К (кроме кристаллов с примесью Fe), а тот температурный диапазон, где существенный вклад в проводимость вносит предположительно поляронный механизм (рис. 2), обычно не исследуется. Экспериментальные результаты, представленные выше, не противоречат известным данным, но свидетельствуют о необходимости дополнительного тщательного изучения темновой проводимости кристаллов НЛ разного состава и с разной предысторией в области температур, близких к комнатной, а также исследования механизмов возникновения поляронов малого радиуса. Авторы выражают признательность С.Г. Одулову (институт физики НАН Украины, г. Киев) за участие в обсуждении некоторых результатов работы.

Список литературы

- [1] K. Buse. Appl. Phys. B 64, 391 (1997).
- [2] D.L. Staebler, J.J. Amodei. Ferroelectrics 3, 107 (1972).
- [3] K. Yoshino, M. Yamagushi, Y. Inuishi. Technol. Repts Osaka Univ. 29, 93 (1979).
- [4] А.А. Блистанов, В.В. Гераськин, А.В. Степанов, М.В. Пучкова, Н.Г. Сорокин. ФТТ 26, 1128 (1984).
- [5] А.П. Леванюк, Е.М. Уюкин, В.А. Пашков, Н.М. Соловьева. ФТТ 22, 1161 (1980).
- [6] Y. Yang, I. Nee, K. Buse, D. Psaltis. Appl. Phys. Lett. 78, 4076 (2001).
- [7] Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse. J. Opt. Soc. Am. 20, 1491 (2003).
- [8] I. Nee, M. Müller, K. Buse, E. Krätzig. J. Appl. Phys. 88, 4282 (2000).
- [9] B.I. Sturman, M. Carracosa, F. Agulló-López, J. Limeres. Phys. Rev. B 57, 12792 (1998).
- [10] E.M. Miguel-Sans de, M. Carracoza, L. Arizmendi. Phys. Rev. B 65, 165 101 (2002).
- [11] W. Bollmann, H.J. Stöhr. Phys. Stat. Sol. A 39, 477 (1977).
- [12] S. Klauer, M. Wöhlecke, S. Kapphan. Phys. Rev. B 45, 2786 (1992).
- [13] M.A. Ellaban, G. Mandula, R.A. Rupp, M. Fally, E. Hartmann, L. Kovács, K. Polgár. SPIE Proc. 4607, 327 (2002).
- [14] G. Mandula, K. Lengyel, L. Kovács, M. Ellaban, R.A. Rupp, M. Fally. SPIE Proc. 4412, 226 (2001).
- [15] K. Lengyel, L. Kovács, G. Mandula, R. Rupp. Ferroelectrics 257, 255 (2001).
- [16] M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura. J. Appl. Phys. 87, 1291 (2000).
- [17] T.K. Halstead. J. Chem. Phys. 53, 3427 (1970).
- [18] А.В. Яценко. УФЖ 44, 381 (1999).
- [19] Дж. Тейлор. Введение в теорию ошибок. Мир, М. (1985). [J.R. Taylor. An Introduction to error analysis. Univ. Sci. Books Mill Valley, California (1982).]
- [20] С.В. Евдокимов, А.В. Яценко. Кристаллография 48, 594 (2003).
- [21] W. Jösch, R. Munser, W. Ruppel, P. Würfel. Ferroelectricity 21, 623 (1978).
- [22] А.А. Блистанов. Кристаллы квантовой и нелинейной оптики. МИСИС, М. (2000).