Электрические и термоэлектрические свойства биоморфного композита SiC/Si при высоких температурах

© А.И. Шелых, Б.И. Смирнов, Т.С. Орлова, И.А. Смирнов, А.R. de Arellano-Lopez*, J. Martinez-Fernandez*, F.M. Varela-Feria*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Universidad de Sevilla, 41080 Sevilla, Spain

Ornversidad de Sevilla, 41060 Sevilla, Sp

E-mail: Igor.Smirnov@mail.ioffe.ru

(Поступила в Редакцию 18 мая 2005 г.)

В интервалах температур 100–950 и 100–750 К измерены соответственно удельное электросопротивление ρ и коэффициент термоэдс α биоморфного композита SiC/Si, приготовленного на основе пористой углеродной матрицы, полученной путем пиролиза дерева (белого эвкалипта), с последующей инфильтрацией в пустые каналы этой матрицы расплавленного кремния. В результате химической реакции Si с углеродом матрицы образуется 3C-SiC, который формирует с "избытком" Si, не вступившим в реакцию с углеродом, биоморфный композит SiC/Si. Исследовались образцы SiC/Si с концентрацией "избыточного" Si ~ 30 vol.% и пористостью ~ 13–15 vol.%.

Измерение ρ проводилось на образцах, вырезанных вдоль (ρ_{\parallel}) и поперек (ρ_{\perp}) направления роста дерева, а величина α измерялась на образце, вырезанном вдоль направления роста дерева.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 04-03-33183), программы Президиума РАН (П-28) и технологии Испании (проект МАТ 2003-05202-C02-01).

PACS: 72.80.Tm, 72.20.-i

Исследование физических свойств биоморфного композита SiC/Si, или, как его еще называют в литературе, экокерамики (ecoceramics — environment conscious ceramics [1]), вызывает в последнее время достаточно большой научный и практический интерес. Особое внимание привлекает оригинальная методика приготовления этого материала и заманчивые перспективы его широкого применения.

На первом этапе исследования биоморфных композитов усилия исследователей были сконцентрированы на изучении их структурных и механических свойств [1,2]. В [1] представлен достаточно полный обзор имеющихся в литературе работ, выполненных до 2005 г. В последние годы большее внимание стало уделяться исследованию их основных физических параметров, которые могли бы помочь найти новые сферы для практических приложений биоморфных композитов. Так, в интервале 5–300 К были измерены теплопроводность [3] и удельное электросопротивление ρ [3,4], а в интервале 100–650 К — коэффициент линейного расширения [5].

В настоящей работе мы расширили температурные границы исследования и провели измерения $\rho(T)$ SiC/Si в интервале 100–950 K, а коэффициента термоэдс α — в интервале 100–750 K.

Биоморфные композиты SiC/Si получили применение в качестве легких сверхпрочных материалов в аэрокосмической и автомобильной промышленности, в медицине (ортопедии). Они используются также для изготовления высокотемпературных нагревателей и термометров сопротивления. В связи с этим исследования $\rho(T)$ SiC/Si при высоких температурах представляют не только научный, но и практический интерес.

Образцы для исследования были получены по хорошо отработанной методике приготовления биоморфных композитов SiC/Si [1]. Использовалась канальная пористая углеродная матрица, полученная путем пиролиза (обугливания) в атмосфере аргона при 1300 К дерева (белого эвкалипта), имеющего присущую лишь ему сетку "питательных" каналов (со средними диаметрами от 4 до $65\,\mu m$), вытянутых вдоль направления роста дерева. При 1685 К в эти уже пустые сквозные каналы полученной углеродной матрицы проводилась инфильтрация расплавленного Si. В результате химической реакции его с углеродом матрицы образовывался кубический 3C-SiC. Затем уже на основе 3C-SiC и "избыточного" (не вступившего в реакцию с углеродом) кремния происходило конструирование биоморфного композита SiC/Si [1]. Образцы SiC/Si, использованные для измерений, содержали, согласно оценкам по данным рентгеноструктурного анализа, $\sim 30 \text{ vol.}\%$ Si, а их пористость составляла ~ 13-15 vol.%. Микрофотографии образцов, полученные в сканирующем электронном микроскопе для углеродной матрицы белого эвкалипта и биоморфного композита SiC/Si, были аналогичны приведенным на рис. 1 работы [2].

Измерение $\rho(T)$ проводилось с помощью стандартной четырехзондовой методики на воздухе на образцах, вырезанных вдоль (ρ_{\parallel}) и поперек (ρ_{\perp}) направления роста дерева. Коэффициент термоэдс α_{\parallel} исследовался на образце, вырезанном вдоль направления роста дерева. Измерение $\rho(T)$ и $\alpha(T)$ на воздухе особенно важно для практического использования, поскольку эксплуатация большего числа объектов, выполненных на основе экокерамики SiC/Si, происходит на воздухе.

Рис. 1. Температурные зависимости удельного электросопротивления биоморфного композита SiC/Si (без учета его пористости), полученного на основе белого эвкалипта, измеренные на образцах, вырезанных вдоль (1) и поперек (2) направления роста дерева. Концентрация Si в образцах ~ 30 vol.%. На вставке a — температурная зависимость анизотропии удельного электросопротивления $\rho_{\perp}(T)/\rho_{\parallel}(T)$ для измеренных образцов биоморфного композита SiC/Si. На вставке b — сравнение значений удельных электросопротивлений (ρ_{\parallel}) биоморфных композитов SiC/Si (без учета их пористости), полученных на основе белого эвкалипта (данные настоящей работы и [3]: концентрация Si в образцах соответственно ~ 30 и ~ 15 vol.%) и дерева Sapele [4] с концентрацией Si в образце ~ 30 vol.%.

Данные для $\rho_{\perp}(T)$ и $\rho_{\parallel}(T)$ исследованных образцов SiC/Si представлены на рис. 1. Прямой и обратный ход при измерении $\rho_{\perp}(T)$ и $\rho_{\parallel}(T)$ до высоких температур совпадает. Данный факт указывает на отсутствие какихлибо изменений при высокотемпературном нагреве в образцах. В интервале температур 100–850 К была обнаружена анизотропия в поведении $\rho(T)$, возникающая, по-видимому, из-за наличия дополнительного электросопротивления на границах слоев Si и 3C-SiC при измерении $\rho_{\perp}(T)$. При T > 850 К анизотропия исчезает ($\rho_{\perp} = \rho_{\parallel}$) (рис. 1 и вставка *a* на нем).

Такая же картина (но в несколько ином интервале температур) наблюдалась при измерении коэффициента линейного расширения $\beta(T)$ SiC/Si [5]. Анизотропия в $\beta(T)$ у образцов, вырезанных вдоль ($\beta_{\parallel}(T)$) и поперек ($\beta_{\perp}(T)$) направления роста дерева, имеется в интервале 100–350 К. При 200 К $\beta_{\perp}/\beta_{\parallel} \sim 1.3$, что близко к величине анизотропии $\rho_{\perp}/\rho_{\parallel}$ для исследованных в настоящей работе образцов SiC/Si (вставка на рис. 1). При T > 350 К анизотропия $\beta(T)$ исчезает и уже не возникает во всем исследованном высокотемпературном интервале от 350 до 650 К.

На вставке *b* к рис. 1 для сравнения приведены также имеющиеся в литературе низкотемпературные данные для удельного электросопротивления образцов SiC/Si, вырезанных вдоль направления роста дерева и приготовленных на основе белого эвкалипта [3] (с концентрацией Si \sim 15 vol.%) и дерева Sapele [4] (с концентрацией Si \sim 30 vol.%).

Полученные в настоящей работе экспериментальные данные для $\rho_{\perp}(T)$ и $\rho_{\parallel}(T)$ будут, вероятно, весьма полезны при разработках новых моделей высокотемпературных нагревателей.

В то же время до сих пор остается открытым вопрос о том, какой из материалов, составляющих биоморфный композит SiC/Si, вносит основной вклад в величину $\rho(T)$ композита и отвечает за "металлический" характер его температурной зависимости. В [3] при исследовании $\rho(T)$ SiC/Si, полученного на основе дерева белого эвкалипта, было высказано предположение,

Рис. 2. Температурная зависимость термоэдс α_{\parallel} биоморфного композита SiC/Si для образца, вырезанного вдоль направления роста дерева.

что за наблюдаемый в эксперименте "металлический" ход $\rho(T)$ может быть ответствен сильнолегированный кремний (и, возможно, 3*C*-SiC), поскольку, согласно данным химического анализа, в углеродной матрице белого эвкалипта были обнаружены примеси Al, Cu, Fe, S, Tl, Ca, P [6].

Для проверки этого предположения на образце SiC/Si, вырезанном вдоль направления роста дерева, нами был измерен эффект Холла при 300 К. Знак постоянной Холла R_H соответствовал дырочному характеру проводимости. Концентрация дырок p,¹ вычисленная с его помощью, составила ~ $7.2 \cdot 10^{19}$ cm⁻³, что указывает на большую степень легирования Si (или 3*C*-SiC). Сильнолегированные Si [7] и 3*C*-SiC [8,9] могут быть ответственными за "металлический" характер поведения $\rho(T)$ SiC/Si. Окончательный же вывод можно будет сделать лишь после проведения измерений $\rho(T)$ на образце 3*C*-SiC, полученном после удаления из биоморфного композита SiC/Si кремния. Такие эксперименты мы планируем провести в ближайшее время.

На рис. 1 (а также на вставке b к нему) значения $\rho(T)$ приведены без учета пористости образца. Учет пористости в $\rho(T)$ можно провести с помощью простого соотношения [10]

$$\rho^0 = \rho(1-m),\tag{1}$$

где ρ и ρ^0 — соответственно удельные электросопротивления без учета и с учетом пористости образца, а m — величина пористости, равная в нашем случае 0.15.

Используя полученные таким образом значения для ρ_{\parallel}^0 при 300 K, мы оценили величину эффективной по-

движности дырок $\mu_{\parallel}^{\rm eff}$ для биоморфного композита SiC/Si по формуле

$$\mu_{\parallel}^{\text{eff}} = R_H / \rho_{\parallel}^0. \tag{2}$$

Она оказалась небольшой по величине ($\sim 10 \, {\rm cm}^2/{\rm V}\cdot{\rm s}$), что, однако, вполне может наблюдаться у сильнолегированных Si и 3*C*-SiC.

На рис. 2 представлены полученные экспериментальные данные для коэффициента термоэдс образца биоморфного композита SiC/Si, измеренного вдоль направления роста дерева белого эвкалипта (α_{\parallel}). Данные о термоэдс SiC/Si в литературе отсутствуют.

Во всем интервале температур (100–750 K) знак термоэдс был положительным (дырочным), что совпадало со знаком коэффициента Холла, измеренного при 300 K, а зависимость $\alpha_{\parallel}(T)$ SiC/Si имела линейный вид, характерный для диффузионной термоэдс и вырожденного состояния носителей заряда с одним типом носителей.

В результате проведенного цикла измерений $\rho(T)$ и $\alpha(T)$ биоморфного композита SiC/Si можно сделать следующие основные выводы.

1) $\rho_{\perp}(T)$ и $\alpha_{\parallel}(T)$ измерены в области температур 100–950 К. В интервале 100–850 К наблюдается анизотропия в поведении $\rho(T)$ ($\rho_{\perp} > \rho_{\parallel}$). При 200 К $\rho_{\perp}/\rho_{\parallel} = 1.3$. При T > 850 К анизотропия исчезает ($\rho_{\perp} = \rho_{\parallel}$).

2) В интервале 100–750 К измерен коэффициент термоэдс $\alpha_{\parallel}(T)$. Знак термоэдс во всем исследованном интервале температур положительный (дырочный механизм переноса заряда).

3) При 300 К проведено измерение эффекта Холла, постоянная Холла соответствует дырочному характеру проводимости. Эффективная концентрация дырок в исследованных образцах составила $\sim 7.2 \cdot 10^{19}$ сm⁻³, а эффективная подвижность дырок при 300 К оказалась равной ~ 10 cm²/V · s.

Авторы благодарят Н.Ф. Картенко и Н.В. Шаренкову за проведение рентгеноструктурного анализа исследованных образцов и оценку концентрации кремния в них.

Список литературы

- A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, M. Singh. Int. J. Appl. Cer. Technol. 1, 1, 1 (2004).
- [2] Б.И. Смирнов, Ю.А. Буренков, Б.К. Кардашев, F.M. Varela-Feria, J. Martinez-Fernandez, A.R. de Arellano-Lopez. ΦΤΤ 45, 3, 456 (2003).
- [3] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Ү. Misiorek, A. Jezowski, F.M. Varela-Feria, J. Martinez-Fernandez, A.R. de Arellano-Lopez. ФТТ 47, 7, 1175 (2005).
- [4] T.S. Orlova, B.I. Smirnov, A.R. de Arellano-Lopez, J. Martinez-Fernandez, R. Sepulveda. ΦΤΤ 47, 2, 229 (2005).

¹ Полученные в эксперименте величины R_H и p будем называть эффективной постоянной Холла и эффективной концентрацией носителей тока, поскольку они характеризуют композит в целом. В настоящее время выделить вклад в R_H и p от Si и 3C-SiC не представляется возможным.

- [5] Α.И. Шелых, Б.И. Смирнов, И.А. Смирнов, А.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. ΦΤΤ 48, 2, 202 (2006).
- [6] P. Gonzalez, J.P. Borrajo, J. Serra, S. Liste, S. Chiussi, B. Leon, K. Semmelmann, A. de Carlos, F.M. Varela-Feria, J. Martinez-Fernandez, A.R. de Arellano-Lopez. Key Eng. Mater. 254– 256, 1029 (2004).
- [7] С.С. Шалыт. Электропроводность полупроводников. В. 1–2. Ленинградский дом научно-технической пропаганды, ИПАН АН СССР, Л. (1956). 96 с.
- [8] Л.С. Айвазова, С.Н. Горин, В.Г. Сидякин, И.М. Шварц. ФТП 11, 9, 1826 (1977).
- [9] Карбид кремния как материал современной оптоэлектроники и полупроводниковой техники. Информационноаналитический обзор по материалам отечественной и зарубежной печати. Экос, М. (1984). 133 с.
- [10] Э.А. Бельская, А.С. Тарабанов. В сб.: Теплофизические свойства твердых тел. Наук. думка, Киев (1971). С. 111.