Оптическая спектроскопия кристаллического и аморфного состояний молибдата европия

© С.З. Шмурак, А.П. Киселев, В.В. Синицын, И.М. Шмытько, А.С. Аронин, Б.С. Редькин, Е.Г. Понятовский

Институт физики твердого тела Российской академии наук, 142432 Черноголовка, Московская обл., Россия

E-mail: shmurak@issp.ac.ru

(Поступила в Редакцию 22 февраля 2005 г. В окончательной редакции 30 апреля 2005 г.)

Проведены сравнительные спектроскопические исследования кристаллического и аморфного образцов $Eu_2(MoO_4)_3$. Аморфное состояние получали путем воздействия высокого давления ~ 9 GPa на кристаллическую β' -фазу. Установлено, что при переходе в аморфное состояние происходят кардинальные изменения как спектра люминесценции, так и спектра возбуждения люминесценции. Оценено смещение красной границы поглощения, которое составляет ~ 0.8 eV, что значительно больше, чем в случае аморфизации классических полупроводников.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 04-02-17143 и 04-02-97251) и программы РАН "Физика и механика сильно сжатого вещества и проблемы внутреннего строения Земли и планет".

PACS: 61.43.Er, 78.55.Hx

1. Введение

Физические свойства многих полупроводников и диэлектрических аморфных материалов, получаемых путем конденсации из газовой фазы на холодную подложку или быстрой закалкой расплава, активно и всеобъемлюще исследуются долгое время. При наличии в аморфном состоянии того же ближнего порядка, что и в кристалле, основные особенности электронной структуры и определяемые ими физические свойства (тип проводимости, ширина запрещенной зоны) при переходе из кристаллического в аморфное состояние сохраняются. Известно, что ближний порядок в аморфном и кристаллическом состояниях совпадают для Ge, Si, A³B⁵ и других полупроводниковых соединений. Поэтому фундаментальным свойством аморфных полупроводников является существование оптической щели, которая сравнима с запрещенной зоной кристалла. Кроме того, характер распределения плотности состояний в валентной зоне и зоне проводимости аморфного полупроводника и соответствующего кристалла оказываются подобными. Однако потеря дальнего порядка приводит к появлению и существенных различий. Это в первую очередь существование в аморфных полупроводниках "хвостов" плотности состояний на краях валентной зоны и зоны проводимости; возникновение в энергетических зонах локализованных состояний; нарушение, основанных на законах сохранения квазиимпульса, правил отбора для оптического возбуждения электронных и колебательных состояний.

В последние годы были развиты и некоторые другие нетрадиционные методы получения аморфных материалов, в том числе так называемые методы твердофазной аморфизации (ТФА), когда неупорядоченное состояние получается непосредственно из кристаллического. Особое место среди этих методов занимает метод ТФА путем воздействия на кристаллический образец высокого давления. В настоящее время найдено уже несколько десятков веществ, переходящих в аморфное состояние под действием давления. О том, как изменяются электронные свойства материала при таком способе аморфизации и какова взаимосвязь между электронной структурой исходного кристалла и получаемым аморфным состоянием, в настоящее время известно крайне мало. Для выяснения таких особенностей поведения электронной подсистемы необходимы прямые экспериментальные исследования, которые выполнены в настоящей работе на примере $Eu_2(MoO_4)_3$.

Соединение Еи₂(MoO₄)₃ относится к семейству редкоземельных молибдатов $\operatorname{Re}_2(\operatorname{MoO}_4)_3$ (где $\operatorname{Re}=\operatorname{Pr}$, Nd, Sm, Eu, Gd, Tb, Dy), образующих изоструктурный ряд при атмосферном давлении [1]. При низких температурах стабильной кристаллической модификацией этих соединений является моноклинная α -фаза (пр. гр. C2/c). При нагревании при температурах $T \approx 1078 - 1260 \, {\rm K}$ (в зависимости от атомного номера редкоземельного катиона) α -фаза переходит в тетрагональную β -фазу (пр. гр. P421₁m). Из-за большой разности удельных объемов (~25%) при охлаждении обратный переход в более плотную α-фазу подавляется, что позволяет даже при малых скоростях охлаждения сохранить β-фазу до низких температур. Поэтому кристаллы, выращенные из расплава, если при охлаждении не использовались специальные режимы, остаются в метастабильном β-состоянии значительно ниже точки перехода, не теряя при этом оптического качества. В области метастабильности β-фазы при температурах 418-508 К наблюдается подгрупповой переход в орторомбическую β' -фазу (пр. гр. Pba2), сопровождаемый слабыми структурными изменениями [1]. При воздействии высокого давления $\sim 7-9$ GPa на метастабильные β - и β' -фазы наблюдается переход в аморфное состояние, которое сохраняется при понижении давления до атмосферного давления, что позволяет проводить изучение физических свойств кристаллического и аморфного состояний при одних и тех же условиях [2,3].

Цель настоящей работы — исследование спектров возбуждения люминесценции (СВЛ) и спектров люминесценции (СЛ) исходной кристаллической β' -фазы молибдата европия (ЕМО) и аморфного состояния, получаемого при воздействии на β' -фазу высокого давления.

Выбор этих методов не случаен. Дело в том, что редкоземельные элементы являются весьма эффективными в качестве структурно-чувствительных меток, так как свечение катионов Re³⁺ обусловлено переходами внутри 4 fⁿ-электронной конфигурации. Переходы в 4 fⁿ-оболочке в значительной степени заэкранированы внешними замкнутыми 5s²- и 5p⁶-электронными оболочками, что обусловливает малую ширину линий в спектрах люминесценции. В то же время энергия взаимодействия 4f-электронов с кристаллическим полем значительно больше, чем ширина электронных переходов между 4fⁿ-состояниями. Это приводит к существенным изменениям спектральных характеристик люминесценции ионов Re³⁺ при изменении локальной симметрии атомов [4,5]. С другой стороны, изучение СВЛ при переходе из кристаллического в аморфное состояние позволяет оценить изменение такого фундаментального параметра твердого тела как красная граница поглощения образца, от положения которой зависят оптические и транспортные свойства полупроводниковых и диэлектрических материалов. Поэтому комбинация обоих методов при исследовании кристаллического и аморфного состояний данного соединения представляется весьма эффективным методом для проведения сравнительного анализа изменения его электронной структуры.

Экспериментальные методы и образцы

Кристаллы Eu₂(MoO₄)₃ выращивались из расплава по методу Чохральского в форме були диаметром 15 mm и длиной 25 mm. Для приготовления поликристаллических образцов буля распиливалась на отдельные части, которые тщательно перетирались. Для снятия механических напряжений, возникающих в результате перетирания, порошки отжигались при температуре 400-550°С. Структурная аттестация порошков осуществлялась на рентгеновском дифрактометре Siemens D-500 с использованием Си-К_а излучения в интервале углов 5-80°. Перевод в аморфное состояние осуществлялся в камере высокого давления типа "тороид" под действием всестороннего давления 9 GPa при комнатной температуре и последующей выдержке в этих условиях в течение 3-5 часов. Для выяснения фазового состава аморфных образцов были проведены исследования методом электронной микроскопии. Образцы в виде порошка наносились на углеродную подложку и исследовались "на просвет" с помощью электронного микроскопа JEM-100 CX. Оптические исследования проводились на установке, состоящей из источника света (лампа ДКСШ-120), двух монохроматоров (МДР-4 и МДР-6), фотоумножителя (ФЭУ 106) и системы регистрации. Сканирование по длинам волн осуществлялось шаговыми двигателями, управляемыми ЭВМ.

3. Экспериментальные результаты

3.1. Структурные характеристики образцов. На рис. 1 приведена дифрактограмма исходных порошков. Структурный анализ показал, что все пики хорошо описываются в рамках β' -фазы, а какие-либо дополнительные рефлексы отсутствуют. После барической обработки наблюдаются кардинальные изменения дифрактограмм образцов. Они представляют собой набор широких галообразных рефлексов, характерных для аморфного состояния.

На рис. 2 приведено типичное светлопольное изображение исследованного образца в электронном микроскопе. На представленной микрофотографии видна только аморфная компонента без каких-либо кристаллических включений. Однако исследование других участков показало, что наряду с частицами аморфной структуры имеются микрокристаллические и нанокристаллические частицы, доля которых мала. Присутствие в образце небольшой части микрокристаллов проявляется и на рентгеновских спектрах, где на максимумах гало наблюдаются слабые брэгговские рефлексы (рис. 1). Оценки показывают, что доля таких включений не превышает $\sim 2-3\%$; следовательно, их вклад в исследуемые спектральные характеристики незначителен. Отметим, что

Рис. 1. Рентгеновские дифрактограммы молибдата европия, находящегося в различных структурных состояниях: *1* — микрокристалл, отожженный при 550°С; *2* — аморфный ЕМО.

Рис. 2. Электронно-микроскопическое изображение и микродифракционная картина частиц аморфной фазы Eu₂(MoO₄)₃.

не гауссовая форма рефлексов аморфного состояния связана с большой расходимостью первичного пучка. Использование в таких случаях коллимированных пучков привело бы к очень большой экспозиции, реально неосуществимой в наших исследованиях.

3.2. Спектры возбуждения люминесценции Eu₂(MoO₄)₃.

3.2.1. Кристаллическое состояние. Спектры возбуждения основных полос люминесценции β' -фазы Eu₂(MoO₄)₃ $\lambda_{max} = 614.0$ и 616.2 nm приведены на рис. 3. Как видно из рис. 3, *а*, *b* СВЛ кристаллического, а также измельченного и отожженного образцов практически полностью совпадают. Эти спектры можно представить в виде суперпозиции двух спектральных кривых: *1* — спектра, соответствующего резонансному возбуждению ионов европия (Eu³⁺), и *2* — нерезонансного возбуждения свечения (Eu³⁺) — спектральной зависимости возбуждения внутрицентрового свечения Eu³⁺ в результате рождения при освещении образца электронно-дырочных пар и последующей рекомбинации их на Eu³⁺.

Спектр *1* состоит из ряда узких линий. Спектральное положение наиболее интенсивных из них в исследованном интервале длин волн 250–500 nm совпадает

с полосами, наблюдающимися в спектре пропускания кристалла ЕМО (рис. 4). Наиболее интенсивными в СВЛ кристалла являются полосы с $\lambda_{max} = 320, 362.8, 377.1, 382.5, 395, 416.5, 466, 466.5 и 475 nm.$

Пропускание кристалла (пластинки толщиной 0.5 mm) начинается при $\lambda \sim 312$ nm (3.97 eV) и монотонно возрастает вплоть до $\lambda \sim 340$ nm (3.65 eV). Коротковолновые полосы 320 и 327.6 nm, наблюдающиеся в спектре возбуждения EMO, не проявляются в спектре пропускания кристалла при 300 K, вероятно, потому, что находятся в области быстрого роста пропускания образца вблизи E_g . При понижении температуры ширина запрещенной зоны увеличивается, край пропускания сдвигается в область больших энергий. Поэтому при 77 K в спектре

Рис. 3. возбуждения Спектры люминесценции c структурных $\lambda_{\text{max}} = 614.0 \,\text{nm}$ различных модификаций молибдата европия при T = 300 К. Кружочки — экспериментальные данные. *а* — кристалл ЕМО. *1* — резонансная составляющая СВЛ; 2 — нерезонансная составляющая СВЛ. b — микрокристалл, отожженный при 550°C. с — аморфный ЕМО. 1 резонансная составляюшая СВЛ; 2 — нерезонансная составляющая СВЛ. d — аморфный ЕМО после отжига при 950°С. На вставке — начальный участок СВЛ при T = 77 К.

Габлица 1	١.	Основные максим	іумы полос в	з СВЛ	I c λ_{max}	= 61	4.0 m	mи	соответствующие	им элект	ронные п	ереходы
-----------	----	-----------------	--------------	-------	---------------------	------	-------	----	-----------------	----------	----------	---------

Структура				λ_{\max}, nm			
Кристалл Поликристалл Аморфное состояние	320 320	362.8 363	377.1 377.1	382.5 382.5	395 395 395	416.5 416.5 416.5	466, 466.5 466,466.5 466
Отожженный аморфный образец	319.8	363	377.1	382.5	395	416.5	466, 466.5
Электронный переход	$^7F_0 \rightarrow {}^5H_4$	${}^7F_0 \rightarrow {}^5D_4$	${}^7F_0 \rightarrow {}^5G_3$	${}^7F_0 \rightarrow {}^5G_2$	$^7F_0 \rightarrow {}^5L_6$	${}^7F_0 \rightarrow {}^5D_3$	${}^7F_0 \rightarrow {}^5D_2$

пропускания проявляется наиболее интенсивная коротковолновая полоса ($\lambda_{max} = 320 \text{ nm}$) поглощения ионов Eu³⁺ (рис. 4). При 77 К нерезонансная часть спектра возбуждения (кривая 2) сдвигается в область больших энергий, и коротковолновые полосы резонансного возбуждения Eu³⁺ выделяются из кривой 2 (вставка на рис. 3). Суперпозиция кривых 1 и 2 определяет провал (отсутствие свечения) в СВЛ.

Спектр 2 обусловлен возникновением внутрицентрового свечения ионов Eu^{3+} при возбуждении образца светом с энергией большей, чем E_g ($\lambda < 312$ nm). Этот процесс описывается известной схемой [6,7]

$$\mathrm{Eu}^{3+} + e + p \to (\mathrm{Eu}^{3+})^* \to \mathrm{Eu}^{3+} + h\nu_{\mathrm{Eu}^{3+}},$$
 (1)

При $hv < E_g$ рождения электронно-дырочных пар не происходит, поэтому свечение кристалла ЕМО при возбуждении светом с $\lambda > 312$ nm при 300 K по механизму (1) не осуществляется (рис. 3, *a*).

Следует заметить, что длинноволновый край нерезонансного возбуждения Eu³⁺ в спектре возбуждения люминесценции при понижении температуры синхронно

Рис. 4. Спектр пропускания молибдата европия при 300 К. Участок пропускания при 77 К обозначен точками.

с E_g сдвигается в область больших энергий и совпадает с началом пропускания кристалла (рис. 3, *a* и 4). Это позволяет по длинноволновой границе кривой 2 СВЛ оценивать красную границу поглощения образца.

3.2.2. Аморфное состояние. Спектры возбуждения люминесценции аморфных ЕМО существенно отличаются от СВЛ кристаллов. Их главные отличительные особенности заключаются в отсутствии провала в области длин волн 330–360 nm и исчезновении ряда резонансных пиков (рис. 3, *c*). Как видно из этого рисунка, в аморфных ЕМО свечение эффективно возбуждается при энергиях, меньших ширины запрещенной зоны кристалла.

Если, как и для кристалла, представить СВЛ аморфного молибдата европия (ЕМО–А) в виде суперпозиции двух кривых, то видно, что они существенно отличаются от соответствующих спектров кристаллического ЕМО. В спектре I ЕМО–А первые семь пиков отсутствуют, оставшиеся полосы уширяются и происходит перераспределение интенсивности в полосах 395 и 466 nm. Интенсивность максимума 466 nm становится в несколько раз больше, чем интенсивность пика 395 nm. Также исчезает тонкая структура в области 466 nm, где вместо двух линий 466 и 466.5 nm наблюдается одна с максимумом при 466 nm.

Нерезонансная составляющая спектра возбуждения аморфного молибдата европия (рис. 3, c) существенно сдвигается в область меньших энергий по сравнению с кристаллическим образцом. В ЕМО–А длинноволновый край нерезонансного возбуждения Eu³⁺ находится при $\lambda \sim 395$ nm.

3.2.3. Кристалл, полученный из аморфного ЕМО. После отжига аморфного молибдата европия по описанной выше процедуре образец, согласно данным рентгеноструктурного анализа, вновь переходит в кристаллическое состояние. На дифрактограммах появляются узкие линии, свидетельствующие о переходе образца в β' -фазу. В дальнейшем отожженный аморфный молибдат европия будем называть ЕМО–А–О.

Спектр возбуждения люминесценции такого кристалла практически полностью совпадает с СВЛ исходного образца (рис. 3, d). Длинноволновый край нерезонансного возбуждения свечения Eu³⁺ вновь сдвигается в область больших энергий к длинам волн ~ 312 nm.

Таблица	2.	Основные	максимумы	спектров	люминесценции	различных	структурных	состояний	молибдата	европия	при
возбужден	ии с	ветом с λ _{ma}	$ax = 395 \mathrm{nm}$ E	соответст	гвующие им элект	ронные пере	еходы				

Структура	$\lambda_{ m max},{ m nm}$									
Кристалл	608	612.0	614.0	616.2	622.3	624.8				
Поликристалл	608	612.0	614.0	616.2	622.2	625				
состояние			013.3							
Отожженный аморфный образец	608	612.0	614.0	616.2	622.3	625				
Электронный переход	$^5D_1 ightarrow {}^7F_4$	${}^5D_0 \rightarrow {}^7F_2$	${}^5D_0 \rightarrow {}^7F_2$	${}^5D_0 ightarrow {}^7F_2$	${}^5D_0 \rightarrow {}^7F_2$	${}^5D_0 \rightarrow {}^7F_2$				

Появляются все резонансные линии, восстанавливается тонкая структура полос. При этом положении всех полос спектра возбуждения люминесценции ЕМО–А–О совпадает с исходным кристаллическим образцом. Наиболее интенсивные полосы в спектре возбуждения люминесценции с $\lambda_{max} = 614.0$ nm кристаллического, по-

Рис. 5. Спектры люминесценции различных структурных состояний молибдата европия при T = 300 К. a — кристалл ЕМО; b — микрокристалл, отожженный при 550°С; c — аморфный ЕМО; d — аморфный ЕМО после отжига при 950°С.

ликристаллического порошка после отжига при 550°C (МК), аморфного и отожженного аморфного образцов и соответствующие им электронные переходы представлены в табл. 1. Идентификация электронных переходов осущесвлялась на основании данных, приведенных в работах [4,8–10].

3.3. Спектры люминесценции молибдата европия. Спектр люминесценции кристаллов молибдата европия при возбуждении светом с $\lambda_{max} = 395 \, \text{nm}$, соответствующим одной из самых интенсивных полос в спектре возбуждения люминесценции, содержит в исследованной спектральной области 605-630 nm шесть полос, наиболее интенсивными из которых являются полосы с $\lambda_{\text{max}} = 612.0$, 614.0 и 616.2 nm (рис. 5, *a*, *b*). Полуширины этих полос равны соответственно ~ 0.8, 0.7 и 0.7 nm. После перевода кристалла в аморфное состояние СЛ, также как и СВЛ, кардинально изменяется (рис. 5, c). Вместо шести линий появляется одна широкая полоса с максимумом при 613.5 nm и полушириной ~ 9 nm. При обратном переводе образца из аморфного в кристаллическое состояние путем отжига при 950°С в течение 6 часов происходит восстановление всех шести линий в спектре люминесценции, причем их положения с точностью до ошибки эксперимента совпадают с исходным СЛ кристаллического ЕМО (рис. 5, d и табл. 2). Обозначения такие же, как и в табл. 1, а определение электронных переходов проводилось, как и выше, в соответствии с данными работ [4,8-10]. Следует отметить, что подобные трансформации спектров люминесценции при переходе ЕМО из кристаллического в аморфное состояние наблюдались panee in situ (под высоким давлением) в [3].

4. Обсуждение экспериментальных результатов

Каков механизм наблюдаемых экспериментально радикальных трансформаций спектральных характеристик молибдата европия при переходе из кристаллического в аморфное состояние?

4.1. Спектры люминесценции. Как отмечалось, при переходе из кристаллического в аморфное

53

состояние вместо шести узких линий наблюдается одна широкая полоса свечения. Такие изменения СЛ связаны, вероятно, с тем, что в аморфном состоянии возникает неоднородное уширение всех полос свечения, в результате чего и наблюдается одна широкая полоса.

4.2. Спектры возбуждения люминесценции. Как следует из рис. 3, после перехода молибдата европия из кристаллического состояния в аморфное красная граница (E_r) спектра нерезонансного возбуждения люминесценции ионов Er³⁺ (кривая 2) заметно сдвигается в область меньших энергий от $E_r = 3.97 \, \text{eV}$ (312 nm) для кристалла до $E_r \sim 3.14 \text{ eV}$ (395 nm) для аморфного образца. В то же время, как отмечалось выше, совпадение Е_r и длинноволнового порога начала пропускания кристаллического образца, совпадающего с Е, а также синхронный сдвиг красной границы нерезонансного возбуждения Eu³⁺ и ширины запрещенной зоны позволяют предположить, что $E_g \sim E_r$. В этом случае, так как E_r аморфного EMO (3.14 eV) значительно меньше E_g кристалла (3.97 eV), нерезонансное возбуждение ионов Eu³⁺ в результате рождения электроннодырочных пар и их рекомбинации на ионах европия в соответствии с процессом (1) в аморфном ЕМО будет осуществляться при энергиях меньших, чем ширина запрещенной зоны кристалла, т.е. при длинах волн, меньших чем 395 nm. Поэтому в аморфном образце свечение Eu³⁺ наблюдается также и при возбуждении светом в области длин волн 330-360 nm (3.76-3.44 eV), в то время как в кристалле при таком возбуждении свечение отсутствует (рис. 3).

Прямое определение красной границы пропускания (оптической щели) аморфного ЕМО по спектру пропускания, к сожалению, невозможно осуществить, так как исследования перехода кристалл–аморфное состояние, как отмечалось выше, в настоящей работе производились на непрозрачном поликристаллическом образце.

Отсутствие в спектре возбуждения люминесценции аморфного молибдата европия всех коротковолновых полос с $\lambda < 395$ nm (рис. 3) обусловлено следующими обстоятельствами. Как известно [6,7], коэффициент поглощения света с энергией, большей ширины запрещенной зоны составляет $\alpha \sim 10^5 - 10^6$ сm⁻¹, поэтому глубина проникновения света (Δ) (уменьшение интенсивности света в *e* раз) в этом спектральном диапазоне составляет (верхняя оценка) $\Delta \sim 10^{-5}$ сm. Произведем оценку Δ для полос поглощения ионов Eu³⁺ в EMO ($\Delta_{\rm Eu^{3+}}$).

Как следует из спектра проспускания ЕМО (рис. 4), коэффициент поглощения ионов Eu^{3+} (α) даже в самой интенсивной полосе поглощения с $\lambda_{max} = 395$ nm, определенный из соотношения $J/J_0 = e^{-\alpha d}$ (J/J_0 — пропускание образца, d — толщина), равен $\alpha = 23$. Столь низкое значение α при наличии в каждой элементарной ячейке нескольких ионов европия обусловлено тем, что электрические дипольные переходы между состояниями свободных ионов Eu^{3+} , принадлежащих одной, в нашем случае f^n конфигурации, запрещены по четности [4,8]. Под действием кристаллического поля

этот запрет частично снимается. При $\alpha = 23$ величина $\Delta_{\rm Eu^{3+}} \sim 4.3 \cdot 10^{-2}$ для полосы 395 nm (для других полос европия $\Delta_{\rm Eu^{3+}}$ еще больше). Поэтому при всех длинах волн, меньших красной границы пропускания образца, интенсивности полос резонансного возбуждения Eu³⁺ в СВЛ при переходе из кристаллического в аморфное состояние должны уменьшиться более, чем в $\eta = \Delta_{\rm Eu^{3+}}/\Delta \sim 4 \cdot 10^3$ раз. Поскольку в наших экспериментах в аморфное состояние переводятся микрокристаллические зерна размером $d_0 \sim 2 \cdot 10^{-3}$ сm, следует ожидать уменьшения указанных выше полос в $\eta = d_0/\Delta \sim 200$ раз. Поэтому полосы резонансного возбуждения Eu³⁺ с длиной волны, меньшей чем 395 nm, в СВЛ аморфного ЕМО не наблюдаются.

Как видно из рис. 3, соотношение между интенсивностями свечения при возбуждении светом с $\lambda_{max} = 395$ и 466 nm существенно изменяется при переходе из кристаллического в аморфное состояние — интенсивность полосы 395 nm уменьшается в 5 раз по отношению к полосе 466 nm. Это уменьшение связано, скорее всего, с тем, что свет с $\lambda_{max} = 395 \, \text{nm}$ поглощается аморфным образцом, так как эта полоса находится вблизи края пропускания. Оценим коэффициент поглощения свечения с $\lambda_{\text{max}} = 395 \,\text{nm}$ (α_{395}). Уменьшение интенсивности этой полосы в СВЛ аморфного образца в 5 раз свидетельствует о том, что глубина проникновения света с $\lambda_{max} = 395 \, nm ~(\Delta_{395})$ в 5 раз меньше, чем Δ для излучения с $\lambda_{max} = 466$ nm. Как отмечалось выше, величина **Δ** в области прозрачности ЕМО (значит и для $\lambda_{\text{max}} = 466 \,\text{nm})$ определяется размером частиц порошка, поэтому $\Delta_{395} = (2-3) \, 10^{-3} \, \text{cm}/5 = (4-6) \, 10^{-4} \, \text{cm}$. Поскольку $\alpha \Delta = 1, \ \alpha_{395} \sim 2 \cdot 10^3 \, {\rm cm}^{-1}$. Достаточно высокое значение коэффициента поглощения для света с $\lambda_{\text{max}} = 395 \,\text{nm}$ свидетельствует о том, что красная граница пропускания аморфного ЕМО находится вблизи этой полосы и проведенная выше оценка для фундаментального поглощения $\lambda_r \sim 395 \,\mathrm{nm}$ является корректной.

Согласно приведенным выше данным, красная граница поглощения молибдата европия при переходе из кристаллического в аморфное состояние сдвигается от 3.97 до 3.14 eV на 0.83 eV в область меньших энергий. Уменьшение оптической щели — смещение в область меньших энергий красной границы поглощения — наблюдалось также при аморфизации кремния и As₂Se₃ [11,12]. В этих материалах при переходе из кристаллического в аморфное состояние оптическая щель (E_r) уменьшалась от 1.1 до 0.83 eV для Si и от 1.95 до 1.6 eV для As₂Se₃ [11,12] — на 0.27 и 0.35 eV для Si и As₂Se₃ соответственно.

Таким образом, при аморфизации оптическая щель ЕМО уменьшается, также как и при аморфизации кремния и халькогенидов, однако изменение E_r в ЕМО заметно больше. Возможно, наблюдаемое смещение красной границы поглощения в ЕМО, как и в исследованных ранее полупроводниковых соединениях, связано с возникновением "хвостов" плотности состояний на краях валентной зоны и зоны проводимости. Значительная величина уменьшения E_r позволяет предположить, что

ближний порядок в аморфном состоянии иной, чем в исходной кристаллической β' -фазе, о чем также свидетельствует сдвиг максимума в спектре люминесценции аморфного состояния по сравнению с максимумами наиболее интенсивных линий кристаллической фазы. Однако для более надежных выводов требуются дополнительные структурные исследования аморфного ЕМО, которые ведутся нами в настоящее время.

Авторы благодарят Н.Ф. Прокопюка за помощь в проведении эксперимента, Н.В. Классена, Б.К. Пономарева за плодотворные дискуссии.

Список литературы

- L.N. Brixner, J.R. Barkley, W. Jeitschko. In: Handbook on the Physics and Chemistry of Rare Earth / Eds. K.A. Gschneidner, jr., L. Eyring. North-Holland Publishing Company (1979).609 p.
- [2] Е.Г. Понятовский, В.В. Синицын, Р.А. Диланян, Б.С. Редькин. Письма в ЖЭТФ 61, 3, 217 (1995).
- [3] V. Dmitriev, V. Sinitsyn, R. Dilanin, D. Machon, A. Kuznetsov, E. Ponyatovsky, G. Lucazeau, H.-P. Weber, J. Phys. Chem. Sol. 64, 307 (2003).
- [4] М.А. Ельяшевич. Спектры редких земель. ГИТТЛ, М. (1953). 456 с.
- [5] S.Z. Shmurak, G.K. Strukova, I.M. Shmit'ko, N.V. Klassen, N.P. Kobelev, S.E. Derenso, M.J. Weber. Nucl. Instrum. Meth. A 537, 149 (2005).
- [6] Физика и химия соединений А²В⁶ / Под ред. С.А. Медведева. Мир, М. (1970).
- [7] А.М. Гурвич. Введение в физическую химию кристаллофосфоров. Высш. шк., М. (1982). 376 с.
- [8] М.И. Гайдук, В.Ф. Золин, Л.С. Гейгерова. Спектры люминесценции европия. Наука, М. (1974). 195 с.
- [9] Y.H. Zhou, J. Lin, S.B. Wang, H.J. Zhang. Optical Materials 20, 13 (2002).
- [10] J. Dexpert-Ghys, R. Mauricot, M.D. Faucher. J. Lumin. 69, 203 (1996).
- [11] Аморфные полупроводники / Под ред. М. Бродски. Мир, М. (1982). 416 с.
- [12] Аморфные полупроводники и приборы на их основе / Под ред. И. Хамакавы. Металлургия, М. (1986). 376 с.