Эффект Пула–Френкеля с учетом многофононной ионизации глубоких центров в аморфном нитриде кремния

© Ю.Н. Новиков

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

E-mail: nov@isp.nsc.ru

(Поступила в Редакцию 25 января 2005 г.)

Для описания проводимости аморфного нитрида кремния использовался механизм Пула–Френкеля без учета и с учетом многофононной ионизации глубоких центров. Рассмотрена зависимость частотного фактора от силы электрон-фононного взаимодействия. С учетом слабой электрон-фононной связи в глубоких центрах получена величина частотного фактора $\nu \approx 10^{15} \, {\rm s}^{-1}$, которая согласуется с оценками в оригинальной работе Френкеля.

Работа поддержана Интеграционным проектом № 116 СО РАН.

Аморфный нитрид кремния (Si₃N₄) обладает эффектом памяти — способностью локализовывать инжектированные в него носители в течение ~ 10 лет при 300 К. На этом свойстве Si₃N₄ основана работа электрически перепрограммируемых постоянных запоминающих устройств. В настоящее время остается нерешенным вопрос о зарядовом состоянии ловушки, ответственной за эффект памяти в Si₃N₄. В литературе обсуждается два типа ловушек: кулоновские (притягивающие, отталкивающие) и нейтральные (центры с потенциалом нулевого радиуса). Механизм ионизации притягивающих центров при высоких температурах и слабых электрических полях определяется эффектом Пула-Френкеля и многофононными эффектами [1,2]. Механизм ионизации нейтральных центров при тех же условиях определяется многофононными эффектами [2]. Эффект Пула-Френкеля заключается в понижении термической энергии ионизации кулоновских притягивающих центров в присутствии внешнего электрического поля.

В пользу того, что ловушки являются кулоновскими и эффект Пула–Френкеля может иметь место в Si₃N₄, свидетельствуют следующие факты: 1) некоторые исследователи наблюдали "спрямление" вольт-амперных зависимостей в Si₃N₄ [3–6] в координатах $\log(J) - \bar{E}^{1/2}$ (где J — ток, протекающий в образце, \bar{E} — средняя напряженность электрического поля); 2) сечение захвата составляет ~ $5 \cdot 10^{-13}$ сm², что указывает на кулоновское взаимодействие электронов и дырок с глубокими центрами в Si₃N₄ [7–9].

Однако в ряде работ при попытках описать экспериментальные данные механизмом Пула-Френкеля были получены аномально маленький частотный фактор $\nu \sim 10^5 - 10^8 \, {\rm s}^{-1}$ и небольшая энергия ионизации ловушки $W \sim 1.2 \, {\rm eV}$ [10–15]. В оригинальной работе Френкеля [1] величина частотного фактора оценивалась как $\nu \approx W/\hbar \approx 10^{15} \, {\rm s}^{-1}$, где \hbar — постоянная Планка. Кроме того, "мелкая" ловушка $W \sim 1.2 \, {\rm eV}$ без учета электрон-фононного взаимодействия не объясняет большие (~ 10 лет) времена удержания заряда в локализованном состоянии. Цель настоящей работы — экспери-

ментально и теоретически изучить проводимость нитрида кремния, основываясь на эффекте Пула–Френкеля с учетом теории многофононной ионизации.

Вероятность ионизации в единицу времени по Френкелю [1] определяется выражением

$$P_{\rm PF}(E,T) = \nu \exp\left(-\frac{W - \beta\sqrt{E}}{kT}\right),\tag{1}$$

где E — напряженность электрического поля, $\beta = \sqrt{e^3/\pi\varepsilon_\infty\varepsilon_0}$ — постоянная Френкеля, k — постоянная Больцмана, $\varepsilon_\infty = 4.0$ — высокочастотная диэлектрическая проницаемость Si₃N₄, ε_0 — электрическая постоянная, e — заряд электрона.

Эффект Френкеля имеет место в относительно слабых электрических полях, когда понижение барьера не превосходит масштаба кулоновских энергий в нитриде кремния. Необходимо, чтобы величина $\beta\sqrt{E}$ не превосходила эффективной энергии электрона в кулоновском потенциале ловушки [2] (энергии Ридберга), т.е. $\beta\sqrt{E} < e^4m/2\varepsilon_{\infty}\hbar^2$, где m — масса электрона. Оценка показывает, что таким условиям удовлетворяют электрические поля $E < 4 \cdot 10^6$ V/ст. В этом диапазоне электрических полей были проведены исследования.

В настоящей работе исследовался перенос заряда в структуре металл-нитрид-оксид-полупроводник (МНОП). Образцы МНОП-структур изготавливались на кремниевой подложке *n*-типа с сопротивлением 7.5 Ω · ст, выращенной методом Чохральского. Тонкий, туннельно-прозрачный окисел толщиной 1.8 nm выращивался при температуре 750°С. Нитрид кремния толщиной 53 nm был получен при температуре 760°С методом осаждения в реакторе пониженного давления. Соотношение SiH₂Cl₂/NH₃ составляло 0.1. Алюминиевые электроды площадью 5 · 10⁻³ cm² напылялись через маску.

Рассматривалась только стационарная проводимость, обусловленная электронами, инжектированными из кремниевой подложки при положительном потенциале на алюминии (рис. 1). Рассмотрение монополярной

Рис. 1. Энергетическая диаграмма для монополярной модели проводимости МНОП-структуры при положительном потенциале на алюминиевом электроде.

проводимости (электронов) в данном случае уместно, поскольку туннельный оксид усиливает инжекцию электронов из кремниевой подложки, в то же время инжекция дырок из алюминия мала [6] из-за большого барьера для дырок на границе Al/Si₃N₄, равного 2.5 eV [16]. Перенос заряда описывается с помощью одномерного однозонного уравнения Шокли–Рида–Холла

$$\frac{\partial n_t(x,t)}{\partial t} = \frac{\sigma J}{e} (N_t - n_t(x,t)) - n_t(x,t) P_{\rm PF}(x,t)$$
(2)

и уравнения Пуассона [10–13,17], учитывающего неоднородное распределение электрического поля в нитриде кремния,

$$\frac{\partial E(x,t)}{\partial x} = -\frac{en_t(x,t)}{\varepsilon_N \varepsilon_0},\tag{3}$$

где σ — сечение захвата ($\sigma = 5 \cdot 10^{-13} \text{ cm}^2 [7-14]$), N_t — концентрация ловушек ($N_t = 3 \cdot 10^{19} \text{ cm}^{-3} [8-10]$), n_t — концентрация заполненных ловушек, $\varepsilon_N = 7.5$ низкочастотная диэлектрическая проницаемость Si₃N₄, J — плотность тока (далее просто ток).

Для описания проводимости нитрида кремния в ряде работ [10–14] уравнения (2), (3) решаются самосогласованным методом. При этом на границе рассчитывается инжекционный ток — как правило, по механизму Фаулера–Нордгейма. Для этого необходимо знание некоторых параметров: туннельной массы, высоты барьера.

Здесь использован другой способ, предложенный в [17]. В стационарном режиме производная по времени в уравнении (2) обращается в нуль. Тогда $n_t(E, T) = N_t \left(1 + \frac{e}{I\sigma} P_{\rm PF}(E, T)\right)^{-1}$. Из уравнения Пуассона (3) можно получить два выражения [17]

$$\int_{E(0)}^{E(D_N)} \frac{dE}{n_t(E,T)} = \frac{D_N e}{\varepsilon_N \varepsilon_0},$$
(4)

$$\int_{E(0)}^{E(D_N)} \frac{EdE}{n_t(E,T)} = \frac{U_g^* e}{\varepsilon_N \varepsilon_0},$$
(5)

где D_N — толщина Si₃N₄, $U_g^* = U_g - E_{ox}D_{ox}$ — падение напряжения на Si₃N₄, U_g — напряжение на МНОП-

структуре, E_{ox} — электрическое поле в туннельнотонком SiO₂ с толщиной D_{ox} , $E(D_N)$ — поле на границе Si₃N₄/Al. Электрическое поле на границе SiO₂/Si₃N₄ в нитриде кремния определяется из равенства $E(0) = E_{ox}\varepsilon_{ox}/\varepsilon_N = \varepsilon_{ox}(U_g - U_{FB})/L_{ox}\varepsilon_N$ [12,13], где $L_{ox} = D_{ox} + \varepsilon_{ox}D_N/\varepsilon_N$, U_{FB} — напряжение плоских зон. Падением напряжения на полупроводнике пренебрегалось, так как инжекция электронов происходит из полупроводника *n*-типа в режиме обогащения (рис. 1).

Экспериментально при заданных напряжении U_g и температуре T на МНОП-структуре измерялись ток J и напряжение плоских зон U_{FB} (рис. 2). Таким образом, из эксперимента определялись U_g^* , J и E(0). В уравнениях (4), (6) остаются неизвестными W, v и $E(D_N)$. Задавая величину W, можно найти $E(D_N)$ и v [17], что и было проделано в данной работе. Было выполнено численное интегрирование уравнений (4), (5) (методом трапеций) для точек, приведенных на рис. 2, и построены зависимости v(W) (рис. 3).

Полученные зависимости качественно описываются выражением $\ln(v(W)) = \ln(P(E, T) - \beta \sqrt{E}/kT) + W/kT$, которое следует из уравнения (1). Для разных температур зависимости v(W) имеют различный наклон. Отношение между $v_1(W_k)$ и $v_2(W_k)$ составило $v_1(W_k)/v_2(W_k) \approx 1.04$ (где W_k — фиксированная точка на рис. 3), т.е. близко к единице. Поэтому зависимости v(W) на рис. 3 для разных электрических полей при T = const практически совпадали. Отметим, что подстановка найденных значений $W, v, E(D_N)$ и полученных из эксперимента значений $J, U_g^*, E(0)$ для каждой точки рис. 2 в нелинейные уравнения, приведенные в работе [17], давала тождество (с относительной погрешностью < 0.1%).

Рис. 2. Экспериментальные вольт-амперные характеристики в стационарном режиме, измеренные при 423 (1), 380 (2) и 327 К (3). Для всех точек приведены также напряжения плоских зон $U_{\rm FB}$.

Рис. 3. Зависимости частотного фактора от энергии ионизации ловушки, рассчитанные для экспериментальных точек рис. 2. *T*, K: *1* — 423, *2* — 380, *3* — 327.

Рис. 4. Зависимость частотного фактора от силы электронфононного взаимодействия в эффекте Пула–Френкеля. На вставке показана конфигурационная диаграмма для случая слабой электрон-фононной связи $(U_1, U_2, U_{2\varepsilon})$ — адиабатические потенциалы для дефекта с захваченным электроном, без электрона и без электрона в электрическом поле соответственно, a_1, a_2 — точки поворота, x_c — точка встречи термов).

Как видно из рис. 3, все полученные зависимости $\nu(W)$ в выбранном масштабе пересекаются в одной точке. Если предположить, что при изменении температуры и напряженности локального электрического поля в Si₃N₄ энергия ионизации и частотный фактор ловушки не меняются, то из рис. 3 видно, что этому условию удовлетворяет точка (W = 1.15 eV, $\nu = 2 \cdot 10^5 \text{ s}^{-1}$). Найденные W и ν близки к значениям, полученным в работах [10–15].

В работах [2,18] было показано, что учет теории многофононной ионизации для кулоновских центров должен приводить к замене в формуле (1) 1/kT на

$$\frac{1}{kT^*} = \frac{1}{kT} \pm \frac{2\tau_1}{\hbar} = \frac{\tau_2}{\hbar},\tag{6}$$

где T^* — эффективная температура; τ_1 , τ_2 определяют [2,18] в конфигурационном пространстве времена туннелирования дефекта под соответствующими адиабатическими потенциалами (вставка на рис. 4). Знак плюс соответствует случаю слабой электрон-фононной связи, а минус — сильной.

Расчеты с использованием эффективной температуры T^* вместо T показали, что усиление электронфононной связи соответствует уменьшению частотного фактора, а ослабление электрон-фононной связи его увеличению (рис. 4). При этом энергия ловушки остается неизменной: $W \approx 1.15$ eV. Качественно этот же результат можно получить, исследовав наклон зависимостей $\ln(\nu(W))$, описываемых выражением (1). Для $2\tau_1/\hbar \sim 50$ eV⁻¹ получается $\tau_1 = 1.6 \cdot 10^{-14}$ s, соответствующий частотный фактор $\nu \sim 10^{15}$ s⁻¹. Отметим, что полученное время туннелирования τ_1 по порядку величины согласуется с τ_1 для глубоких примесей со слабой электрон-фононной связью в германии Ge:Au и Ge:Hg, где $\tau_1 = 4.1 \cdot 10^{-14}$ s [2].

Оценка времени хранения заряда $t_{\rm ret}$ в МНОПструктуре с учетом слабой электрон-фононной связи по формуле $t_{\rm ret} = \nu^{-1} \exp\left((W - \beta \sqrt{E})/nT^*\right)$ из [11] в электрическом поле $E = 2 \cdot 10^6$ V/ст при T = 300 K, $2\tau_1/\hbar \sim 50 \,{\rm eV}^{-1}$, $\nu \sim 10^{15} \,{\rm s}^{-1}$ и $W = 1.15 \,{\rm eV}$ дает $t_{\rm ret} \sim 4 \cdot 10^8 \,{\rm s} \sim 10$ лет.

Отсюда можно сделать вывод, что ловушка в Si₃N₄ с захваченным электроном должна быть слабо связана с колебаниями решетки. При этом возможно, что за эффект памяти (хранение заряда в локализованном состоянии ~ 10 лет при 300 K) в Si₃N₄ может быть ответственна достаточно мелкая ловушка $W \sim 1$ eV.

Таким образом, проводимость аморфного нитрида кремния в области высоких температур и слабых электрических полей описывается механизмом Пула–Френкеля. С учетом теории многофононной ионизации и слабого электрон-фононного взаимодействия получена энергия ионизации глубокого центра в Si₃N₄, равная 1.15 eV, и частотный фактор $\nu \sim 10^{15} \, {\rm s}^{-1}$.

Автор выражает благодарность В.А. Гриценко и С.С. Шаймееву за предоставленные экспериментальные результаты и полезное обсуждение.

Список литературы

- [1] Я.И. Френкель. ЖЭТФ 8, 12, 1292 (1938).
- [2] В.Н. Абакумов, В.И. Перель, И.Н. Яссиевич. Безызлучательная рекомбинация в полупроводниках. Изд-во ПИЯФ РАН, СПб. (1997). 375 с.

- [3] S.M. Sze. J. Appl. Phys. 38, 7, 2951 (1967).
- [4] B.M. Tao, D. Park, S.N. Mohammad et al. Phil. Mag. 73, 4, 723 (1996).
- [5] А.С. Гиновкер, В.А. Гриценко, С.П. Синица. Микроэлектроника 2, 4, 283 (1973).
- [6] В.А. Гриценко, Е.Е. Меерсон. Микроэлектроника 17, 6, 532 (1988).
- [7] P.C. Arnett, B.H. Yun. Appl. Phys. Lett. 26, 3, 94 (1974).
- [8] C.M. Svensson. J. Appl. Phys. 48, 1, 329 (1977).
- [9] В.М. Масловский, А.П. Нагин, Ю.Р. Чернышев. Микроэлектроника **14**, *3*, 239 (1985).
- [10] K.A. Nasyrov, V.A. Gritsenko, M.K. Kim et al. IEEE Electron. Dev. Lett. 23, 336 (2002).
- [11] В.А. Гриценко, Е.Е. Меерсон, И.В. Травков и др. Микроэлектроника **16**, *I*, 42 (1987).
- [12] H. Bachhofer, H. Reisinger, E. Bertagnolli et al. J. Appl. Phys. 89, 5, 2791 (2001).
- [13] S. Manzini. J. Appl. Phys. 62, 3278 (1987).
- [14] Ross A. Williams, Moiz M.E. Beguwala. IEEE Trans. Electron. Dev. ED-25, 1019 (1978).
- [15] В.А. Гуртов, А.И. Назаров, П.А. Райкерус. Микроэлектроника 16, 3, 269 (1987).
- [16] V.A. Gritsenko, E.E. Meerson, Yu.N. Morokov. Phys. Rev. B 57, R 2081 (1998).
- [17] P.C. Arnett. J. Appl. Phys. 46, 12, 5236 (1975).
- [18] В.Н. Абакумов, В. Карпус, В.И. Перель, И.Н. Яссиевич. ФТП **22**, *2*, 262 (1988).