Фазовое расслоение и анизотропия электрических свойств слаболегированных манганитов лантана

© Н.И. Солин, В.А. Казанцев, Л.Д. Фальковская, С.В. Наумов

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: solin@imp.uran.ru

(Поступила в Редакцию 29 ноября 2004 г.)

В монокристаллах слаболегированных манганитов лантана La_{1-x}A_xMnO₃ (A \equiv Ca, Sr, x = 0.07-0.125) с орторомбической структурой обнаружены изменения термоэдс, электро- и магнетосопротивления, коэффициентов теплового расширения и их анизотропии в области комнатных температур. Результаты обсуждаются в модели фазового расслоения в связи с анизотропией поляронов. Из-за выигрыша в обменной энергии и упругих напряжений в решетке магнитные поляроны большего размера могут образоваться путем объединения поляронов малого радиуса и содержать не один, а несколько (равный числу поляронов в кластере) электронов. Вследствие этого ближний порядок в кластере и фазовое расслоение наступает при температуре $T_{ps} \approx 250-300$ K, приблизительно равной T_C проводящих манганитов с $x \approx 0.2-0.3$.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 02-02-16429), ОФН РАН (проект № 19490) и ФЦНТП (проект № 40.012.1.1.1153).

Фазовое расслоение [1,2] и сильная электрон-фононная связь [3], обусловленная ян-теллеровским расщеплением уровней иона Mn⁺³, считаются возможными источниками колоссального магнетосопротивления в манганитах лантана. Методом малоуглового рассеяния нейтронов в монокристаллах слаболегированных манганитов лантана La_{1-x}Ca_xMnO₃ (x ≤ 0.08) при гелиевых температурах обнаружены магнитные капли размером $2R_{\rm kl} \approx 14$ Å [4] и рост их размера от $2R_{\rm kl} \approx 7-17$ до 200 Å в $La_{1-x}Sr_xMnO_3$ при увеличении концентрации Sr от 6 до 7% [5,6], причем капли являются анизотропными и имеют форму сплющенных эллипсоидов. В обычных магнитных материалах эти поляроны распадаются вблизи температуры Кюри Т_С [7], поэтому роль фазового расслоения обсуждается в области существования антиферромагнетизма. Однако некоторые результаты экспериментов в манганитах можно было трактовать как проявление начала фазового расслоения в далекой парамагнитной области. Результаты исследований электро- и магнетосопротивления, термоэдс и магнитной восприимчивости монокристалла La_{0.92}Ca_{0.08}MnO₃ и некоторых слаболегированных манганитов [8] свидетельствовали о появлении мелкомасштабного фазового расслоения — возникновении магнитных кластеров с размером порядка 8-12 Å в парамагнитной области при температуре ниже $T \approx 275 \, \mathrm{K}$, т.е. примерно в 2 раза превышающей температуры Кюри T_C и Нееля T_N образцов. Электрические и магнитные свойства манганитов ((La_{1-v}Pr_v)_{0.3}Ca_{0.3}MnO₃, Pr_{0.71}Ca_{0.29}MnO₃, La_{0.08}Mg_{0.02}MnO₃ и др.) в широкой парамагнитной области температур обсуждаются [9] на основе модели неоднородного состояния, развитой в [10], и результаты объясняются присутствием магнитных капель диаметром ≈ 30 Å.

Эффекты разделения фаз наиболее ярко должны проявляться в свойствах слаболегированных манганитов. Однако к настоящему времени свойства их мало изучены, чтобы сделать вывод о связи электрических свойств с разделением фаз. Решеточные искажения являются одним из признаков возникновения магнитных кластеров [11] и могли бы подтвердить идею фазового расслоения при высоких температурах. Орторомбическая структура, анизотропия магнитных кластеров [5] слаболегированных манганитов лантана позволяют ожидать анизотропию их электрических свойств. Анизотропия электро- и магнетосопротивления (*р* и MR) объемных манганитов в отличие от пленок [12] в настоящее время почти не исследована. В настоящей работе сообщается об обнаружении анизотропии электро- и магнетосопротивления, термоэдс и коэффициентов линейного расширения в монокристаллах La_{0.93}Sr_{0.07}MnO₃, а также магнетосопротивления в некоторых слаболегированных манганитах лантана. Анизотропия электрических свойств La0.93 Sr0.07 MnO3 возникает ниже температуры структурного перехода $T_{00'} \approx 440$ K, она увеличивается с понижением температуры и наиболее резкое увеличение анизотропии происходит в районе ≈ 300 K.

Анизотропия электрических свойств объясняется анизотропией подвижности носителей заряда как следствие анизотропии формы поляронов. В парамагнитной области при высоких (T > 300 K) температурах поляроны малого радиуса образуются вследствие ян-теллеровского искажения решетки [3]. С уменьшением температуры энергия системы понижается из-за возникновения ближнего магнитного порядка около этих поляронов. Из-за выигрыша в обменной энергии и упругих напряжений в решетке магнитные кластеры большого размера могут образоваться путем объединения поляронов малого радиуса и содержать не один, а несколько (равное числу поляронов в кластере) электронов. Вследствие этого ближний порядок в кластере и фазовое расслоение наступает при температуре $T_{ps} \approx 250-300$ K, приблизительно равной T_C проводящих манганитов с $x \approx 0.2-0.3$. Обнаруженные аномалии коэффициентов линейного и объемного расширения при этих температурах согласуются с этой моделью. Ожидается, что анизотропия поляронов способствует фазовому расслоению.

1. Образцы и методики

Образец La_{0 93}Sr_{0 07}MnO₃¹ является скошенным антиферромагнетиком с углом скоса $\theta \approx 25^\circ$, $T_C = 128$ K, *T_N* = 121 К и температурой структурного перехода $T_{00'} \approx 450 \,\mathrm{K}$ [6]; он имеет параметры c = 7.753, a = 5.58и b = 5.549 Å орторомбической кристаллической решетки [14]. По нейтронным данным [6], исследованный монокристалл La_{0.93}Sr_{0.07}MnO₃ является в основном однодоменным, как и La_{0.94}Sr_{0.06}MnO₃ [5], а ось с направлена почти вдоль оси роста кристалла. По рентгеновским данным монокристаллы La_{0 93}Sr_{0 07}MnO₃ при комнатной температуре являются однофазными, но показывают наличие (следы) двойниковой структуры. Монокристаллы La_{0.9}Ca_{0.1}MnO₃ и La_{0.875}Ca_{0.125}MnO₃² также являются скошенными антиферромагнетиками с $T_C = 138 \,\mathrm{K}, \ T_N = 112 \,\mathrm{K}, \ T_{00'} \approx 450 \,\mathrm{K}$ и $T_C = 155 \,\mathrm{K},$ $T_N = 112 \,\mathrm{K}, \ T_{00'} \approx 320 \,\mathrm{K}, \ T_{0'0''} \approx 80 \,\mathrm{K}$ соответственно и имеют, по нейтронным данным [16], двойниковую структуру.

Анизотропия электро-, магнетосопротивления и термоэдс La_{0 93}Sr_{0 07}MnO₃ измерена на цилиндрах с $d = 0.9 - 1.5 \,\mathrm{mm}, \ L = 5 - 7 \,\mathrm{mm},$ вырезанных вдоль направлений b и c. Ток направлен вдоль оси цилиндра, а магнитное поле перпендикулярно оси цилиндра. Анизотропия магнетосопротивления кальциевых образцов измерена на монокристаллах, на которых ранее были проведены нейтронные исследования [4,5,16] цилиндрах с диаметром $d \approx 4 \,\mathrm{mm}$ и длиной $L \approx 10 \,\mathrm{mm}$. Ориентировка образцов проведена рентгеновским методом. Измерения электросопротивления на постоянном токе проведены обычным четырехконтактным методом. Термоэдс измерена четырехконтактным методом при разности температуры $\approx 4-8 \,\mathrm{K}$ между термопарами. Образец находился в вакууме, а тепловой градиент был направлен вдоль осей **b** или **c**. Коэффициенты линейного расширения La_{0.93}Sr_{0.07}MnO₃ исследованы на кварцевом дилатометре ULVAC-SINKU RIKO (Japan) в температурном интервале от 77 до 600 К в динамическом режиме при скорости изменения температуры 2 К/min. Образец имел форму куба с $L \approx 5 \,\mathrm{mm}$ и был ориентирован вдоль основных кристаллографических направлений. Магнитные измерения были проведены в центре магнитометрии Института физики металлов УрО РАН на сквидмагнитометре MPMS-5XL (Quantum Design).

2. Результаты

По результатам исследований термоэдс La_{0.93}Sr_{0.07}MnO₃ является полупроводником *р*-типа. Значения электросопротивления на постоянном токе ρ_0 и термоэдс S монокристалла La_{0.93}Sr_{0.07}MnO₃ при $T \approx 400 \, \mathrm{K}$ вблизи температуры структурного перехода $T_{00'} \approx 440 \, {\rm K}$ незначительно различаются от направления тока и градиента температуры по отношению к кристаллографическим осям и становятся заметно анизотропными с понижением температуры (рис. 1). На вставке рис. 1 показано, что при $T \approx T_C = 128 \,\mathrm{K}$ значение электросопротивления ρ_c вдоль оси с примерно в 4 раза меньше, чем вдоль оси **b**, а термоэдс S_c вдоль оси **c** примерно в 1.4 раза больше, чем вдоль оси b. Видно также, что и анизотропия электросопротивления ρ_b/ρ_c и анизотропия термоэдс S_c/S_b увеличивается с понижением температуры. Более резкое изменение анизотропии свойств происходит вблизи ≈ 300 К. В интервале температур $T = 400 - 300 \,\mathrm{K}$ термоэдс и электросопротивление (рис. 1) хорошо описываются характерными для полупроводников активационными выражениями [17]

$$S = k/e \left(\Delta E_S / kT + S_0 \right), \tag{1}$$

$$\rho_0(T) = (1/\sigma^0) \exp(\Delta E_{\rho}/kT)$$
$$= (1/\sigma^0) \exp\left[(\Delta E_S + W_1)/kT\right], \qquad (2)$$

где e — заряд электрона, k — постоянная Больцмана, σ^0 — предэкспоненциальный коэффициент электропроводности, S_0 — кинетический коэффициент. Видно (см. таблицу), что значения энергий активации термоэдс ΔE_S , электросопротивления ΔE_ρ и прыжка W_1 зависят от кристаллографического направления.

Ниже 270–300 К характер температурных зависимостей электросопротивления и термоэдс в обоих направлениях меняется. Значения ΔE_S , ΔE_ρ , σ^0 и S_0 (см. таблицу) испытывают скачок вблизи ~ 300 К. Поведение

Рис. 1. Температурные зависимости электросопротивления (ρ_b, ρ_c) и термоэдс (S_c, S_b) монокристалла La_{0.93}Sr_{0.07}MnO₃ вдоль осей **b** и **c**. На вставке показаны температурные зависимости анизотропии электросопротивления ρ и термоэдс *S* La_{0.93}Sr_{0.07}MnO₃.

¹ Выращен А.М. Балбашовым [13] в Московском энергетическом институте.

² Выращены Л. Пинсард (L. Pinsard) и др. [15] в лаборатории химии твердого тела Парижского университета.

Значение энергии активации электросопротивления ΔE_{ρ} , термоэдс ΔE_S , прыжка W_1 и коэффициентов проводимости σ^0 и термоэдс S_0 монокристалла La_{0.93}Sr_{0.07}MnO₃ вдоль разных кристаллографических направлений

<i>Т</i> , К	Ось	$\Delta E_{ ho},$ meV	$\sigma^{0}, \ \Omega^{-1} \mathrm{cm}^{-1}$	ΔE_S , meV	W ₁ , meV	S_0
400 > T > 300	b c	275 185	18 000 2000	125 95	150 90	-2.4 -1.7
270 > <i>T</i> > 175	b c	$\approx 155 \\ \approx 150$	≈ 250 ≈ 300	$pprox 50 \ pprox 80$	100 70	$^{+0.1}_{-0.4}$
160 > T > 77	b c	130 125	10 40	- -	— —	_ _

 $\rho_0(T)$ и S(T) имеет вид, характерный для неупорядоченных (стеклообразных) полупроводников, и может быть описано зависящими от температуры и направления значениями ΔE_S , ΔE_ρ , σ^0 и S_0 (см. таблицу). Термоэдс достигает максимума вблизи T_C и уменьшается при дальнейшем понижении температуры.

Температурная зависимость магнитной восприимчивости χ_0 La_{0.93}Sr_{0.07}MnO₃ в парамагнитной области температур 200-300 К приблизительно описывается законом Кюри-Вейсса с эффективным моментом $\mu_{\rm eff} \approx 5.75 \,\mu_B$, превышающим теоретическое значение $\mu_{\rm eff} = 4.80 \, \mu_B$. Дифференциальная магнитная восприимчивость χ_{ac} La_{0.93}Sr_{0.07}MnO₃, измеренная на частоте 80 Hz с амплитудой 4 Oe, имеет приблизительно такой же вид, как и для La_{0.92}Sr_{0.08}MnO₃ [8]. Именно вблизи $T_{ps} \approx 270 \, \mathrm{K}$ характер полевой зависимости магнитной восприимчивости резко меняется: при температурах выше $\approx 270 \,\mathrm{K} \,\chi_{ac}$ не зависит от напряженности постоянного магнитного поля, а ниже $\approx 270\,\mathrm{K}$ зависит (рис. 2). При $T < 270 \,\text{K}$ значение χ_{ac} резко уменьшается в области слабых магнитных полей до $H_0 \approx 500 \,\mathrm{Oe}$, далее слабо меняется до 3-5 kOe и остается почти постоянным в полях выше $\approx 10 \, \mathrm{kOe}$. Такое поведение χ_{ac} обычно наблюдается при внедрении магнитных наночастиц в парамагнитную среду [18].

Отметим, что в целом ряде монокристаллов слаболегированных манганитов лантана $La_{1-x}A_xMnO_3$ (A \equiv Ca, Ce, Sr, x = 0.07 - 0.1), в том числе и в нелегированном LaMnO₃, в районе комнатной температуры T = 270-300 K, примерно в 2 раза превышающей температуры Кюри и Нееля ($T_C \approx T_N \approx 120-150$ K), существенно ниже температуры структурных переходов этих образцов [19], мы обнаружили такие же изменения электрических свойств (энергий активации электросопротивления ΔE_{ρ} и термоэдс ΔE_{S} , предэкспоненциального коэффициента электропроводности σ^0 и кинетического коэффициента S₀ термоэдс, возникновение магнетосопротивления и др.). Эти результаты показывают, что аномалии физических свойств вблизи комнатной температуры являются общим свойством слабогелированных манганитов.

На рис. 3 показаны температурные зависимости коэффициентов объемного $\alpha_V = (\alpha_a + \alpha_b + \alpha_c)/3$ и линейного α_i ($i \equiv a, b, c$) расширения вдоль трех орторомбических осей. Хорошо видны их аномалии в трех областях температур:

1) вблизи температуры Кюри и Нееля $T = T_C \approx T_N$ $\approx 125 - 128$ K;

2) вблизи температуры структурного перехода орторомбической O'-фазы в псевдокубическую, значение которой для исследуемого образца можно полагать (по температуре экстремума α_V) равным $T_{00'} \approx 440$ К. При нагреве выше этой температуры наблюдался гистерезис в температурных зависимостях α_i и χ_{ac} ;

3) в области комнатных температур $T_{ps} \approx 300$ К.

Значения коэффициентов линейного расширения в плоскости **ab** во всей исследованной температурной

Рис. 2. Зависимости относительной дифференциальной магнитной проницаемости $\chi_{ac}(H)/\chi_{ac}(H=0)$ монокристалла La_{0.93}Sr_{0.07}MnO₃ от напряженности постоянного магнитного поля при разных температурах. Сплошные кривые *1* и *2* — расчет вклада в $\chi_{ac}(H)$ от кластеров с магнитным моментом $M_{\rm kl} = 10^4$ и $3 \cdot 10^4 \mu_B$ соответственно.

Рис. 3. Температурные зависимости коэффициентов объемного (v) и линейного (a-c) расширения вдоль разных кристаллических осей монокристалла La_{0.93}Sr_{0.07}MnO₃ (для наглядности значение α_b увеличено на величину $5 \cdot 10^{-6}$ K⁻¹).

области положительны и близки друг другу (для наглядности значение α_b увеличено на величину $5 \cdot 10^{-6} \text{ K}^{-1}$), что согласуется с симметрией кристалла. Значения α_c в широкой температурной области отрицательны, $\alpha_c < 0$, т. е. размер образца вдоль оси с уменьшается при его нагревании, причем ниже $\approx 300 \text{ K}$ значения $|\alpha_c|$ существенно меньше, чем α_a и α_b . Выше $\approx 550 \text{ K}$ значения α_i не зависят от кристаллографического направления. Хорошо видны аномалии α_i около T_C , причем изменения коэффициента линейного расширения здесь также являются анизотропными: α_c увеличивается, а α_a и α_b уменьшаются вблизи T_C . Коэффициент объемного расширения испытывает скачок в области $\approx 300 \text{ K}$, почти не меняется до T_C , ниже которой уменьшается с понижением температуры.

О резком возрастании магнетосопротивления $MR_H \equiv [\rho(H) - \rho(H = 0)]/\rho(H)$ монокристалла $La_{0.93}Sr_{0.07}MnO_3$ на постоянном токе в области $T \approx 270 \text{ K}$ от значений $MR_H \approx -0.1\%$ до $MR_H \approx -(2.0 \pm 0.5)\%$ в поле H = 17 кOe сообщалось ранее [8].

Зависимость магнетосопротивления от направления магнитного поля по отношению к кристаллографическим осям в La_{0.93}Sr_{0.07}MnO₃ обнаружена ниже T_C , когда ток **ј** направлен вдоль оси **b** и **H** \perp **b**. При 77 К зависимость магнетосопротивления $MR_H \equiv [\rho(H) - \rho(H = 0)]/\rho(H)$ от направления магнитного поля в плоскости bc имеет одноосный характер и достаточно хорошо описывается выражением MR $\sim \sin 2\theta$ (рис. 4, *a*), где θ — направление магнитного поля в плоскости bc. Максимальное и минимальное значения магнетосопротивления, по-видимому, соответствует направлениям магнитного поля вдоль осей с и b. В исходном образце La_{0.93}Sr_{0.07}MnO₃ анизотропия MR не обнаружена, когда ток ј направлен вдоль оси с, а поле вращается в плоскости аb (светлые точки на рис. 4, b). После охлаждения монокристалла La0.93Sr0.07MnO3 от 500 К до комнатной температуры под давлением $\approx 25 \, \text{kg} \cdot \text{cm}^{-2}$ в направлении оси с обнаружено возникновение анизотропии MR типа одноосной (темные точки на рис. 4, b).

Анизотропия поперечного магнетосопротивления $(\mathbf{j} \perp \mathbf{H})$ обнаружена и в других исследованных слаболегированных манганитах (рис. 4, c и 4, d), причем анизотропия MR также появляется вблизи T_C. Этот результат показывает, что анизотропия MR обусловлена намагниченностью кристалла. В La_{0.875}Ca_{0.125}MnO₃ ниже $T \approx 100 \,\mathrm{K}$ магнетосопротивление резко уменьшается $(MR_H \approx -0.25$ при 100 К и $H = 17 \, \text{kOe})$, оно меняет знак от направления магнитного поля и при 77 К имеет одноосный характер и хорошо описывается выражением $MR \sim -K_1 + \cos 2\theta$, где $K_1 \approx 0.5 - 0.55$ (сплошные линии на рис. 3, с). Эта температура близка к температуре $T_B \approx 80$ K, при которой, как предполагается [16], начинается переход в квазикубическую фазу $T_{O'O}$. В анизотропии магнетосопротивления La_{0.9}Ca_{0.1}MnO₃ обнаружен кроме вклада симметрии второго порядка и вклад четвертого порядка: MR ~ $K_1 \sin 2\theta + K_2 \sin 4\theta$ (сплошная линия на рис. 3, d — расчет MR по этой формуле). В La_{0.875}Ca_{0.125}MnO₃ можно выделить кроме "трудного" направления, где магнетосопротивление мало и положительно ($\theta = 90^\circ$ на рис. 4), и "промежуточное" направление ($\theta \approx 55-60^\circ$ и 120–125° на рис. 4), где магнетосопротивление почти не зависит от напряженности магнитного поля.

Зависимость магнетосопротивления от напряженности магнитного поля MR(H) при 77 K для $La_{0.93}Sr_{0.07}MnO_3$ и $La_{0.9}Ca_{0.1}MnO_3$ имеет приблизительно одинаковый характер для всех направлений: MR_H монотонно увеличивается с увеличением напряженности

Рис. 4. Угловые зависимости поперечного ($\mathbf{j} \perp \mathbf{H}$) магнетосопротивления монокристаллов слаболегированных манганитов лантана при 77 К. Цифры над кривыми — значение магнитного поля в kOe. *a* — ток направлен вдоль оси **b**, а магнитное поле вращается в плоскости **bc**. Сплошная кривая — MR ~ cos 2 θ . *b* — ток направлен вдоль оси **c**, а магнитное поле вращается в базисной плоскости **ab**. Светлые точки — магнетосопротивление исходного (as grow) монокристалла. Темные точки — магнетосопротивление монокристалла, предварительно охлажденного от 500 K до комнатной температуры под давлением 25 kg/cm² в направлении оси **c**. *c* — ток направлен вдоль оси **g**, близкой к оси (112). Сплошная кривая — MR ~ cos 2 θ . *d* — сплошная кривая — MR ~ K₁ cos 2 Θ + K₂ cos 4 Θ .

Рис. 5. Зависимости магнетосопротивления монокристаллов La_{0.93}Sr_{0.07}MnO₃, La_{0.9}Ca_{0.1}MnO₃ и La_{0.875}Ca_{0.125}MnO₃ от напряженности магнитного поля при 77 К для разных направлений магнитного поля к кристаллическим осям. Значения углов на кривых соответствуют рис. 4.

магнитного поля для двух крайних ("трудного" и "легкого") направлений магнитного поля по отношению к кристаллическим осям (рис. 5, a и 5, b). Иной характер имеет зависимость MR(H) в La_{0.875}Ca_{0.125}MnO₃. Видно (рис. 5, c), что вдоль "легкого" направления магнетосопротивление монотонно увеличивается с магнитным полем, а вдоль "трудного" направления оно меняется немонотонно. Вдоль "промежуточного" направления наблюдается слабая зависимость MR от напряженности магнитного поля, которая может быть обусловлена некоторой неточностью ориентировки образца.

3. Обсуждение

Анизотропия электросопротивления (т. е. зависимость его от направления тока по отношению к кристаллографическим осям) свойственна в той или иной мере всем некубическим кристаллам. Известно, что металлы [19], полупроводники [20] и гексаферриты [21] обладают значительной анизотропией электросопротивления. Эта анизотропия обычно объясняется анизотропией подвижности (массы или времени релаксации) носителей тока. По нейтронным и рентгеновским данным исследованные образцы имеют двойниковую структуру. Двойникование является следствием фазового перехода в состояние с более низкой симметрией при росте кристалла. Очевидно, при равномерном распределении доменов анизотропии свойств не должно быть. Обнаруженная анизотропия свойств исследованных образцов, по-видимому, свидетельствует о том, что вследствие особенностей технологии приготовления кристаллов появляется выделенное направление и рост доменов в некоторых направлениях является предпочтительным. В исследованном в настоящей работе кристалле La_{0.93}Sr_{0.07}MnO₃ ось с направлена близко к направлению роста кристалла. В La_{0.875}Ca_{0.125}MnO₃ направление роста кристалла было близко к оси (112). Кроме того, по-видимому, объемами доменов в определенной мере можно управлять внешними воздействиями. Появление небольшой анизотропии магнетосопротивления в плоскости (**ab**) в охлажденном под давлением La_{0.93}Sr_{0.07}MnO₃ (рис. 4, *b*) является тому доказательством.

Активационный характер температурных зависимостей электросопротивления и термоэдс, разные значения энергий активации электросопротивления и термоэдс в одинаковых кристаллографических направлениях в La_{0.93}Sr_{0.07}MnO₃ (см. таблицу) свидетельствуют [17] об отсутствии вклада нелокализованных носителей в исследованной области температур. Малую проводимость образца при концентрации акцепторов меньше порога протекания $x < x_{per} \approx 0.16$ можно объяснить тем, что носители заряда захватываются либо в локализованные состояния в "хвостах" валентной зоны, либо локализуются на ионе Mn⁺⁴ с образованием поляронов. Оба механизма могут давать активационное поведение электросопротивления и термоэдс, описываемые выражениями (5) и (7) [17,22]. Доводом в пользу поляронной проводимости могут служить [22] высокие значения множителя $\sigma^0 = 2 - 10 \cdot 10^3 \, \Omega^{-1} {
m cm}^{-1}$ в (2) и характерные для поляронной проводимости потери типа Дебая, $\sigma(\omega) \sim \frac{\omega^2 \tau}{1+\omega^2 \tau^2}$, обнаруженные на температурной [23] и частотной зависимостях проводимости на переменном токе [24] (ω — частота тока, 1/т — частота прыжка полярона) монокристаллов La_{1-x}Sr_xnO₃, x = 0.07 - 0.075. Захваченный на ионе Mn⁺⁴ электрон связывает шесть ионов Mn⁺³ его ближайшего окружения, образуя полярон с радиусом $R_{\rm pol} = R_{\rm Mn-Mn} = 1a \approx 4 \,\text{\AA}$ (*a* — параметр решетки). Энергия активации прыжков W1, характеризующая подвижность носителей заряда $\mu \sim 1/T \exp(-W_1/kT)$, в основном определяется кулоновским потенциалом [17] $W_1 = W_p/2 \approx e^2/(2\varepsilon'_p R_{\rm pol})$, где $\varepsilon'_p \approx 10$ — эффективная диэлектрическая проницаемость. Оценки размера полярона из энергии активации прыжка $W_1 \approx 150 - 100 \text{ meV}$ (см. таблицу) дают значения $R_{\rm pol} = 4 - 6 \,{\rm \AA} \approx 1 - 1.5 a$. В орторомбической структуре этот полярон, повидимому, представляет вытянутый вдоль оси с эллипсоид. Вследствие этого энергия активации прыжка W₁ вдоль оси с меньше (см. таблицу), подвижность дырок больше, а значение электросопротивления меньше, чем вдоль других осей. Таким образом, природа анизотропии электросопротивления может объясняться анизотропией формы полярона.

В [8] предполагалось, что появление магнитных кластеров в La_{0.92}Ca_{0.08}MnO₃ при \approx 300 K будет сопровождаться решеточными искажениями и может быть доказательством начала фазового расслоения в парамагнитной области. Результаты температурных исследований коэффициентов линейного расширения La_{0.93}Sr_{0.07}MnO₃ ясно демонстрируют наличие аномалий вблизи 300 K и подтверждают это предположение. Малые значения $\alpha_C \ll \alpha_a \approx \alpha_b$ ниже 250 К могут быть объяснены компенсацией теплового расширения при увеличении размеров магнитных кластеров. Это предположение согласуется с увеличением анизотропии электросопротивления с понижением температуры (рис. 1).

Зависимость дифференциальной магнитной восприимчивости χ_{ac} от магнитного поля (рис. 2), повышенное значение эффективной парамагнитной проницаемости $\mu_{\rm eff}$, особенности коэффициентов линейного и объемного расширения в области $T \approx 300 \, \text{K}$ (рис. 3), находящейся вдали от температуры магнитных и структурных переходов образца, но близко к температуре Кюри сильнолегированных манганитов с x = 0.2 - 0.3, можно объяснить возникновением магнитных кластеров. Размеры этих магнитных капель грубо можно оценить из магнитных измерений. Намагниченность магнитных кластеров в парамагнитной матрице описывается формулой Ланжевена $L(x) \sim \operatorname{cth} x - 1/x$, где $x = M_{\mathrm{kl}}H/kT$ [19]. Дифференциальная магнитная восприимчивость такого кластера $\chi_{ac} \sim dL/dH \sim -csch^2 x + 1/x^2$. Резкое уменьшение χ_{ac} в полях порядка до 500 Ое при T = 200-250 К (рис. 2) можно объяснить большими значениями магнитного момента M_{kl} кластера, содержащего около $N_{\rm kl} = 10^3 - 10^4$ ионой Mn (сплошные кривые на рис. 2 расчет $\chi_{ac} \sim dL/dH$ при $N_{
m kl} = 3 \cdot 10^3$ и $8 \cdot 10^3$ ионов Мп в кластере), что соответствует в сферической модели кластерам радиуса $R_{\rm kl} \approx 25 - 50 \,\text{\AA} = 6 - 12a$. В предположении, что увеличение эффективного момента $\mu_{\rm eff}$ $La_{0.93}Sr_{0.07}MnO_3$ на $\approx 1 \mu_B$ от теоретического значения обусловлено только этими кластерами из выражения для магнитной восприимчивости магнитных кластеров $\chi(T)$ [9] оценены значения их концентрации $n \approx 10^{15} \,\mathrm{cm}^{-3}$. Такая концентрация соответствует расстоянию между кластерами $\approx 10^3$ Å. Более медленное изменение χ_{ac} до полей $\approx 5-7 \, \mathrm{kOe}$ можно объяснить наличием кластеров меньшего размера, концентрация которых из данных по $\mu_{\rm eff}$ может быть оценена величинами порядка $10^{19} - 10^{20} \text{ cm}^{-3}$.

Таким образом, результаты по магнитным, электрическим свойствам и коэффициентам линейного и объемного расширения $La_{0.93}Sr_{0.07}MnO_3$ могут быть объяснены возникновением при $T < \approx 300$ К анизотропных кластеров разных размеров — с радиусом от 4 до 50 Å. Причем, как показывают магнитные исследования, чем крупнее кластер, тем меньше их концентрация, больше расстояние между ними, и наоборот. Вследствие этого туннелирование, прыжки и перескоки носителей тока между крупными кластерами затруднены. Поэтому на электрические свойства сильнее влияют капли небольших (4–8 Å) размеров в согласии с оценками из энергии активации прыжка.

В парамагнитной области при высоких (*T* > 300 K) температурах поляроны малого радиуса могут образоваться вследствие ян-теллеровского искажения решетки [3]. С понижением температуры энергия системы может быть понижена за счет фазового расслоения —

возникновения ферромагнитных капель около этих поляронов. Можно указать на две причины возникновения таких капель. При такой сравнительно большой концентрации ионов Sr (x = 7%) вследствие статистического распределения акцепторов либо особенностей технологии имеются скопления акцепторов, около которых возникают магнитные капли с $R_{\rm kl} \approx 25-40$ Å и $T_C \approx 250-300$ K.

Другая, по-видимому, наиболее вероятная причина возникновения магнитных капель появляется при учете анизотропии формы поляронов. Среднее расстояние между акцепторами-ионами Sr — в La_{0.93}Sr_{0.07}MnO₃ составляет менее 10 Å. Даже небольшой ($\approx 25\%$) анизотропии полярона уже достаточно для перекрытия соседних поляронов с $2R_{\rm Mn-Mn} \approx 8$ Å. Из-за выигрыша в обменной энергии и упругих напряжений решетки происходит объединение поляронов малого радиуса в магнитный полярон большого радиуса с несколькими носителями заряда, вследствие чего ближний порядок в кластере и фазовое расслоение наступают при температуре $T_{ps} \approx 250-300$ K, приблизительно равной T_C проводящих манганитов с $x \approx 0.2-0.3$.

Методом малоуглового рассеяния нейтронов было показано [16], что в $La_{0.9}Ca_{0.1}MnO_3$ при гелиевых температурах размер кластеров превышает расстояние между ними и происходит срастание кластеров, при этом сохраняется полупроводниковый характер проводимости. По-видимому, такая картина наблюдается и в $La_{0.93}Sr_{0.07}MnO_3$ при комнатной температуре.

Феноменологические теории, объясняющие анизотропию магнетосопротивления и других четных эффектов в ферромагнетиках [19], связывают ее с зависимостью компонент тензора электросопротивления от соответствующих компонент тензора деформации. Для проводника, находящегося во внешнем магнитном поле **H**, связь между плотностью тока j_i и напряженностью электрического поля E_k , дается соотношением [25]

$$j_i = \sigma_{ik},\tag{3}$$

где компоненты тензора проводимости σ_{ik} являются функциями напряженности магнитного поля. Диагональные компоненты тензора проводимости σ_{ii} , которые и определялись на эксперименте, являются четной функцией магнитного поля [25]

$$\sigma_{ii} = \sigma_{ii}^{(0)} + \sum_{l,m=x,y,z} \beta_{iilm} H_l H_m + \dots \qquad (4)$$

Анализ показывает, что в орторомбической системе разложение (4) приводит к выражению для магнетосопротивления

$$\mathrm{MR}_{H} \sim A_0 H^2 + A_1 H^2 \cos 2\Theta + A_2 H^4 \cos 4\Theta, \qquad (5)$$

где Θ — угол, который составляет магнитное поле с осью кристалла. Видно (рис. 4), что обнаруженные угловые зависимости магнетосопротивления хорошо описываются выражением (5). Отметим, что

и в некоторых тетрагональных проводящих пленках La_{0.67}Ca_{0.33}MnO₃ также обнаружены [12] угловые зависимости магнетосопротивления, описываемые выражением (5). В La_{0.9}Ca_{0.1}MnO₃ наблюдается (рис. 4, *d*) анизотропия магнетосопротивления, близкая к кубической, вместо ожидаемой одноосной в соответствии с симметрией кристалла. Исследованные кристаллы имеют двойниковую структуру, и для объяснения магнетосопротивления нужно учитывать особенности антиферромагнитной доменной структуры. Из близости MR(θ) в La_{0.9}Ca_{0.1}MnO₃ к кубической симметрии можно предположить, что здесь вклад в MR(θ), по-видимому, вносят два домена примерно равного объема, но сдвинутые на 90°.

Обнаруженную анизотропию магнетосопротивления La_{0.9}Ca_{0.1}MnO₃ и La_{0.93}Sr_{0.07}MnO₃ можно объяснить и влиянием магнитной кристаллографической анизотропии, которая для одноосного кристалла имеет вид: $H_{A1} = 2K_1/M \cos 2\theta$ [19], где K_1 — энергия магнитной кристаллографической анизотропии, М намагниченность. Поле анизотропии $H_{A1} \approx 1-2 \,\mathrm{kOe}$ может качественно объяснить полевую зависимость анизотропии магнетосопротивления La0.9Ca0.1MnO3 и La0.93Sr0.07MnO3 вдоль разных осей, приведенных на рис. 5. Эти значения поля анизотропии согласуются с оценками поля анизотропии манганитов [26]. Однако для La_{0.875}Ca_{0.125}MnO₃ такое объяснение не проходит, в противном случае надо предположить очень высокие поля анизотроии для объяснения изменения знака MR. Согласно [27], в La $_{0.875}$ Ca $_{0.125}$ MnO₃ ниже ≈ 100 K происходит зарядовое упорядочение, т.е. ионы Mn⁺³ и Mn⁺⁴ упорядочиваются вдоль определенных кристаллографических направлений. Это проявляется в том, что орторомбичность уменьшается при этой температуре [16]. Резкое уменьшение магнетосопротивления и его положительные значения в некоторых направлениях ниже 100 К, по-видимому, связаны с зарядовым упорядочением в La_{0.875}Ca_{0.125}MnO₃.

Анизотропия термоэдс — явление довольно редкое, условия ее возникновения были исследованы в нескольких работах [20,28]. Анизотропия термоэдс полуметаллов и полупроводников может возникнуть при одном типе носителей заряда и нескольких механизмов рассеяния с анизотропным временем релаксации, либо при одном механизме рассеяния и нескольких типах носителей тока, а также при фононном увлечении. В настоящее время природа анизотропии термоэдс $La_{0.93}Sr_{0.07}MnO_3$ неясна. Можно только отметить, что в тетрагональном рутиле TiO₂, в котором проводимость объяснена поляронами малого радиуса, также наблюдалась анизотропия и электросопротивления и термоэдс [29].

В заключение отметим, что изменения электросопротивления манганитов от температуры обусловлены не только подвижностью, но и концентрацией носителей заряда. Предполагается [7], что из-за большой массы поляроны запиннингованы на примесях, т.е. локализованы. Вследствие этого концентрация участвующих в проводимости носителей тока значительно меньше числа акцепторов, она будет определяться выражением вида $n \sim \exp(-\Delta E_S/kT)$ [22]. В настоящее время неясно, на каких примесях локализованы поляроны и чем определяется значение энергии активации термоэдс. Однако эксперименты и в La_{0.9}Ca_{0.1}MnO₃ [8] и в La_{0.93}Sr_{0.07}MnO₃ (см. таблицу) указывают на уменьшение ΔE_S при возникновении магнитных кластеров ниже 270 К. Это свидетельствует о том, что возникновение ближнего магнитного порядка и увеличение размера кластеров уменьшает энергию локализации поляронов и приводит к увеличению проводимости из-за увеличения концентрации носителей заряда. Нейтронными исследованиями показано [6], что при увеличении легирования от x = 0.06 до 0.07 в La_{0.93}Sr_{0.07}MnO₃ происходит переход от мелкомасштабного $(2R \approx 17 \text{ \AA})$ к крупномасштабному фазовому расслоению: при 4.2К средний линейный размер магнитных кластеров увеличивается до $2R_{\rm kl} \approx 200$ Å, занимая около 10% объемной доли кристалла. Известно, что термоэдс в области прыжковой проводимости описывается формулой Морина [30]

$$S = k/eLn(N_0/n), \tag{6}$$

где N_0 — плотность электронных состояний, n — число носителей тока. Полагаем, что уменьшение термоэдс при подходе к T_C (рис. 1) является следствием начала крупномасштабного фазового расслоения и соответствует, согласно выражению (6), увеличению концентрации носителей заряда.

Таким образом, слаболегированные монокристаллы манганитов лантана орторомбической симметрии проявляют значительную анизотропию электрических свойств. Электро- и магнетосопротивление, термоэдс, коэффициенты линейного расширения La_{0.93}Sr_{0.07}MnO₃, а также магнетосопротивление в монокристаллах некоторых слаболегированных манганитов лантана зависят от направления тока, напряженности магнитного поля и градиента температуры по отношению к кристаллическим осям. Анизотропия электрических свойств La_{0 93}Sr_{0 07}MnO₃ возникает ниже температуры структурного перехода $T_{00'} \approx 440 \, {\rm K}$ и увеличивается с понижением температуры. Анизотропия магнетосопротивления слаболегированных манганитов возникает ниже температуры Кюри и ее угловая зависимость при фиксированной температуре и напряженности магнитного поля удовлетворительно описывается выражением $MR \sim K_1 \cos 2\Theta + K_2 \cos 4\Theta$, полученным из соображений симметрии кристалла. Проводимость при высоких $(T > 300 \,\mathrm{K})$ температурах объясняется в рамках поляронной проводимости. В манганитах поляроны в парамагнитной области образуются вследствие сильной электрон-фононной связи и ян-теллеровского искажения решетки [3] и, по-видимому, являются локализованными. Анизотропия электрических свойств объясняется анизотропией подвижности носителей заряда, обусловленной анизотропией поляронов.

Вблизи комнатной температуры $T \approx 270 - 300 \, \text{K}$ происходят изменения магнитных (дифференциальной χ_{ac} и парамагнитной эффективной µ_{eff} проницаемости), электрических (энергий активации электросопротивления и термоэдс, энергии активации прыжка, магнетосопротивления и др.) и решеточных (коэффициентов линейного и объемного расширения) свойств. Предполагается, что эти изменения обусловлены возникновением ближнего магнитного порядка и увеличением размера поляронов. Из-за выигрыша в обменной энергии и упругих напряжений решетки происходит объединение поляронов малого радиуса в магнитный полярон большого радиуса с несколькими носителями заряда. Вследствие этого ближний порядок в кластере и фазовое расслоение наступает при температуре $\hat{T}_{ps} \approx 250 - 300$ K, приблизительно равной T_C проводящих манганитов с $x \approx 0.2 - 0.3$. Магнитные исследования показывают присутствие достаточно крупных (порядка 30-50 Å) кластеров, но на проводимость в парамагнитной области температур в основном влияют (по оценкам из энергий активации прыжка поляронов) кластеры с $R_{\rm kl} \approx 4-6$ Å.

Авторы благодарны А.В. Королеву за проведение магнитных измерений, В.А. Сазоновой за рентгеновские исследования и ориентировку образцов, а также М. Аньон (М. Hennion), Л. Пинсард (L. Pinsard) и А.М. Балбашову за предоставление монокристаллов.

Список литературы

- [1] Э.Л. Нагаев. УФН 166, 6, 833 (1996).
- [2] A. Moreo, S. Yunoki, E. Dagotto. Science 283, 5410, 2034 (1999).
- [3] A.J. Millis, P.B. Littlewood, B.I. Shraiman. Phys. Rev. Lett. 74, 25, 5144 (1995).
- [4] M. Hennion, F. Mussa, G. Biotteau, J. Rodrriguez, L. Pinsard. Phys. Rev. B 81, 9, 1957 (1998).
- [5] M. Hennion, F. Mussa, G. Biotteau, J. Rodrriguez, L. Pinsard. Phys. Rev. B 61, 14, 9513 (2000).
- [6] С.Ф. Дубинин, В.Е. Архипов, С.Г. Теплоухов, В.Д. Пархоменко, Н.Н. Лошкарева, Н.И. Солин. ФТТ 43, 12, 2192 (2003).
- [7] М.Ю. Каган, К.И. Кугель. УФН 171, 6, 577 (2001).
- [8] Н.И. Солин, В.В. Машкауцан, А.В. Королев, Н.Н. Лошкарева. Письма в ЖЭТФ 77, 5, 275 (2003).
- [9] К.И. Кугель, Ф.Л. Рахманов, А.О. Сбойчаков, М.Ю. Каган, И.В. Бродский, А.В. Клопцов. ЖЭТФ 125, 3, 648 (2004).
- [10] А.О. Сбойчаков, А.Л. Рахманов, К.И. Кугель, М.Ю. Каган, И.В. Бродский. ЖЭТФ 122, 4, 869 (2002).
- [11] J.M. De Teresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Margulna, Z. Arnold. Nature **386**, *3*, 256 (1997); Л.И. Королева, Р.В. Демин, А.М. Балбашов. Письма в ЖЭТФ **65**, *6*, 449 (1997).
- [12] J.N. Eckstein, I. Bozovic, J. O'Donnell, M. Onellin, M.S. Rzchowski. Appl. Phys. Lett. 69, 1312 (1996); B.I. Belevtsev, V.B. Krasovitsky, D.G. Naugle, A. Parasiris, S. Surthi, M. Rom. Phys. Stat. Sol. (a) 188, 3, 1187 (2001).
- [13] A.M. Balbashov, S.G. Karabashev, Ya.M. Mukovskii. J. Cryst. Growth. 167, 365 (1996).

- [14] Н.Н. Лошкарева, Ю.П. Сухоруков, Э.А. Нейфельд. ЖЭТФ
 117, 1, 440 (2000).
- [15] F. Mussa, M. Hennion, J. Rodriguez-Carvajal, L. Pinsard. Phys. Rev. B 54, 15149 (1996).
- [16] G. Biotteau, M. Hennion, F. Mussa, J. Rodrriguez, L. Pinsard, Y.M. Mukovskii, D. Shulyatev. Phys. Rev. B 64, 104421 (2001).
- [17] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1982). Гл. 2–4, 6.
- [18] C.P. Bean, J.D. Divingston. J. Appl. Phys. 30S, 120 (1959).
- [19] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
- [20] П.И. Баранский, И.С. Буда, И.В. Даховский. Электрические и гальваномагнитные явления в анизотропных полупроводниках. Наукова думка, Киев (1977). 270 с.
- [21] K. Zaveta. Phys. Stat. Sol. 3, 11, 2111 (1963).
- [22] I.G. Austin, N.F. Mott. Adv. Phys. 18, 41 (1969).
- [23] Н.И. Солин, С.В. Наумов. ФТТ 45, 3, 460 (2003).
- [24] A. Seeger, P. Lunkenheimer et al. J. Phys.: Condens. Matter 11, 3273 (1999).
- [25] Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплошных сред. Наука, М. (1982). 620 с.
- [26] A.V. Korolyov, V.Ye. Arkhipov, V.S. Gaviko. J. Magn. Magn. Mater. 213, 63 (2000); S.E. Loffland, V. Ray, P.H. Kim, S. Karabashev, Y.M. Mukovskii, D. Shulyate, A. Arsenov. J. Phys.: Condens. Matter 9, L633 (1997).
- [27] В.Е. Найш. ФММ 92, 5, 16 (2001).
- [28] А.Г. Самойлович, И.С. Буда, И.В. Даховский. ФТП 7, 4, 859 (1973).
- [29] В.Н. Богомолов, Е.К. Кудинов, Ю.А. Фирсов. ФТТ 9, 11, 3173 (1967).
- [30] F.J. Morin. Phys. Rev. 93, 1195 (1954); Α.Π. Эфрос. ΦΤΤ 9, 1152 (1967).