Фемтосекундные механизмы электронного возбуждения кристаллических материалов

© В.И. Барышников, Т.А. Колесникова

Научно-исследовательский институт прикладной физики Иркутского государственного университета, 664003 Иркутск, Россия Иркутский государственный университет путей сообщения, 664074 Иркутск, Россия

E-mail: vib@api.isu.ru

(Поступила в Редакцию 5 июля 2004 г. В окончательной редакции 1 декабря 2004 г.)

Установлено, что в процессе мощного электронного $W_e < W_{eo}$) возбуждения кристаллов регулярные атомы и ионы смещаются за время 100–300 fs. Последующая релаксация кристаллической решетки в результате действия сильных локальных электрических полей, возникающих при ударном смещении ионов, происходит в течение 10–50 ns с периодом колебаний 0.5–1.5 ps.

1. Введение

Малоинерционная $(< 100 \, \text{fs})$ широкополосная (УФ–ИК) стабильная при 78–1500 К люминесценция (ШКЛ), возбуждаемая мощными электронными пучками обнаружена и исследована в кислородсодержащих, щелочно-галоидных и щелочно-земельных кристаллах [1-3]. Данный тип свечения обусловлен высокой вероятностью электронных излучательных переходов в уширенной верхней валентной зоне, образованной р-состоянием анионов [1-3]. Степень деформации р-подзон определяется напряженностью короткоживущих возмущающих электрических полей в окрестности анионов, смещенных ударным путем, и зависит от энергии электронов (*W_e*) в пучке [1–3]. Энергия электрона в пучке это его кинетическая энергия, которая определяется скоростью его движения. Поэтому с увеличением скорости и, следовательно, импульса влетающего электрона эффект уширения спектров катодолюминесценции (КЛ) в кристаллах связан с ударным возбуждением [1–3]. На основе анализа значений пороговой энергии создания стабильных дефектов (W_o) и зависимости уширения спектров КЛ от W_e расчетным путем найдены предельные (E_o) и текущие (E) значения напряженности внутрикристаллических возмущающих полей в области ударносмещенных анионов [1,2]. Так, например, для кристаллов Al_2O_3 ($W_0 = 70 \text{ eV}, W_{eo} = 400 \text{ keV}$) величина E_o составляет порядка $4 \cdot 10^9$ V/cm, а при $W_e = 150 - 250$ keV получаем $E = (0.7-2.5) \cdot 10^7 \,\text{V/cm}$ [1,2]. Вместе с тем необходимо определить, как быстро в зависимости от W_e происхолит смешение ионов и как быстро нарастает E. какое время жизни имеют локальные возмущающие поля после ударного смещения регулярных ионов и каким образом происходит релаксация ударно возбужденных ионов кристаллической решетки.

Настоящая работа посвящена исследованию динамики смещения и восстановления регулярных узлов решетки, а также изучению кинетики нарастания и времени жизни сильных локальных электрических полей в окрестности ударно-смещенных ионов при взаимодействии мощных электронных пучков с кристаллическими материалами.

2. Объекты и методы исследований

ШКЛ в щелочно-галоидных, щелочно-земельных и кислородсодержащих кристаллах имеет относительный выход ~ 10^{-3} [1,4]. Этот уровень не позволяет отнести ШКЛ к разряду интенсивных. Так, например, в Al₂O₃ при концентрациях примеси титана $10^{-2}-10^{-3}$ wt.% полосы КЛ при 780 nm (Ti³⁺) и 310 nm (Ti²⁺) скрывают ШКЛ [5]. Поэтому для исследований были отобраны кристаллы и материалы высокой и номинальной чистоты: концентрация примесей в кислородсодержащих кристаллах составляет $10^{-5}-10^{-6}$ wt.%, в остальных — $10^{-4}-10^{-5}$ wt.%. Эксперименты проводились на образцах в виде пластин (5 × 5 × 0.2 mm), выпиленных из монокристаллов.

Для облучения кристаллических материалов использовался пикосекундный (10 ps, 1000 ps) сильноточный ускоритель ($W_e = 7-300 \text{ keV}; j = 0.05-1000 \text{ kA/cm}^2$), в котором при использовании эффекта взаимодействия ускоренных электронов с собственным магнитным полем достигнут режим однородного сжатия пучка [6]. Возбуждение кристаллов производилось импульсами генератора сверхмощного (0.1-10 TW/cm²) мягкого рентгеновского излучения (энергия квантов 1-3 keV). Принцип действия пикосекундного (10 ps) рентгеновского источника основан на использовании излучения горячей плазмы, которая формируется за счет высокого темпа ввода энергии (> 10¹³ A/s) в вакуумный сильноточный разряд [6]. При этом электронная температура плазмы достигает 10⁷ К. Для исследования малоинерционной фотолюминесценции кристаллов в режиме трех фотонного возбуждения использовалась вторая (360-450 nm), третья (240-300 nm) и четвертая (205-225 nm) гармоники мощного (1-10 GW) перестраиваемого фемтосекундного (110 fs) $Ti^{3+}:Al_2O_3$ лазера.

Излучение кристаллов регистрировалось скоростным (разрешение 10 ps) ВУФ-ИК (150–1200 nm) комплексом, дополненным запоминающими каналами регистрации. Модернизированный ФЭУ-31ЭЛУ-ФМ и осциллограф Tektronix TDS3032В являются ключевыми

элементами канала с субнаносекундным разрешением (0.5 ns). Другой канал представляет собой уникальную высокочувствительную аналого-цифровую камеру на основе стробируемого микроканального электроннооптического преобразователя (ЭОП), сочлененного посредством светосильного объектива с ПЗС линейкой или ПЗС матрицей. Эта система позволяет регистрировать с десяти-наносекундным разрешением кинетику и пространственное распределение спектров однократных оптических импульсов. Погрешность измерения амплитуды и кинетики излучения не превышает 5%. Все импульсные устройства данного комплекса синхронизованы с наносекундной точностью. Кроме того, кинетика спектров фотолюминесценции регистрировалась скоростным (разрешение 1 ps) оптоэлектронным преобразователем (Streak Camera C5680, Hamamatsu).

Кинетика преобразования энергии электронного удара в кристаллических структурах

В щелочно-галоидных кристаллах (ЩГК) NaCl, KI, RbBr, CsI, CsBr и щелочно-земельных (ЩЗК) BaF₂ независимо от температуры (от 78 К вплоть до точки плавления) и плотности тока (0.01-2.0 kA/cm²) при уменьшении We от 45 до 7 keV наблюдается плавное сжатие спектра ШКЛ в полосу КЛ ($\tau < 10 \, \mathrm{ps}$) с максимумом при 370 nm в NaCl, 360 nm в KI, 350 nm в RbBr, 650 nm в CsI, 250 и 350 nm в CsBr, 220 и 310 nm в BaF₂ [3]. В оксидных соединениях это явление имеет место при уменьшении W_e от 100 до 15 keV [1,2]. В оксидах, ЩГК и ЩЗК при $W_e = 7 \text{ keV}$ спектры КЛ с $\tau < 10 \, {\rm ps}$ совпадают с исходным распределением плотности состояний валентной р-зоны [1-3]. Это указывает на возможность наблюдать в данных кристаллах малоинерционную люминесценцию при ионизации анионов с глубоких уровней валентной р-оболочки. Действительно при мощном пикосекундном электронном, рентгеновском и фемтосекундном лазерном возбуждении монокристаллов Al₂O₃ спектры катодо-($\tau < 10 \, \mathrm{ps}$), рентгено- $(\tau < 1 \text{ ns})$ и фотолюминесценции $(\tau < 1 \text{ ps})$

Рис. 1. Нормированные спектры КЛ (I-3) с $\tau < 10$ ps, PL (4) с $\tau < 1$ ns и ФЛ (5) с $\tau < 1$ ps кристаллов сапфира: I — при энергии электронов в пучке 110, 2 — 60 и 3 — 7 keV. Измерено при 300 К.

одинаковы (рис. 1). При трехфотонном возбуждении (16.6-18.2 eV) этих кристаллов достигается селективная ионизация анионов с 2р-валентных уровней. Поэтому в оксидах излучательные валентные электронные 2*p*-переходы при радиационном и сверхплотном лазерном возбуждении происходят в ионах кислорода. Кроме того, в ЩГК и ЩЗК спектры пикосекундной КЛ при энергии электронов 7 keV [7] и спектры ФЛ, возбуждаемой мощными фемтосекундными лазерными импульсами [8], совпадают. Следовательно, в ЩГК и ЩЗК, как и в оксидах, излучательные малоинерционные переходы происходят в валентной р-оболочке ионизованных анионов. Их вероятность не зависит от температуры в области 78-900 К. С учетом этих особенностей справедливо соотношение $\Delta t \sim h/\Delta E$. Ширина спектров малоинерционной люминесценции находится в интервале: $\Delta E = 1.0 - 6.0 \,\text{eV}$ (рис. 1 и [3]). Следовательно, в оксидах, ЩГК и ЩЗК излучательное время ($\Delta t = \tau$) *р*-валентной ШКЛ–КЛ, РЛ, ФЛ не превышает 100 fs.

Спектральные параметры *p*-валентной люминесценции связаны с распределением плотности состояний *p*-валентной зоны, которое определяется распределением плотности *p*-валентных состояний исходного кристалла, величиной W_o и значением W_e и как следствие зависимостью от *E*. Таким образом, необходимо установить взаимосвязь *E* с W_o и W_e . Данное соотношение можно определить при условии упругого ударного взаимодействия, используя закон сохранения импульса, а также баланс энергии влетающего в кристалл электрона и энергии возмущающего электрического поля в окрестности ударно-смещенного иона. Для кристаллов оксидной группы условие преобразования энергии удара по упругому механизму имеет вид

$$-\Delta W_{O^{2-}} = \frac{m_e M_{O^{2-}}}{2(m_e + M_{O^{2-}})} \left(\sqrt{\frac{2W_e}{m_e}} - \sqrt{\frac{2W_e m_e}{M_{O^{2-}}^2}} \right)^2 \times (1 - k^2) = 0, \qquad W_e < W_{eo}. \tag{1}$$

Из (1) следует, что при k = 1 удар считается вполне упругим. При этом изменение внутренней энергии иона составляет $\Delta W_{O^{2-}} = 0$. В наших экспериментах установлено, что при плотности тока электронного пучка 0.05 kA/cm² ($W_e = 250$ keV, $\tau = 5$ ns) КЛ в полосе при 310 nm кристалла Al₂O₃ затухает с $\tau = 220$ ns, а при 2 kA/cm² с $\tau = 170$ ns. Это означает, что за один импульс облучения кристалл сапфира нагревается на $\Delta T = 18-20$ K (рис. 2). Относительная доля выделившейся тепловой энергии на один ударно-смещенный регулярный O^{2–}-ион в ходе релаксации кристаллической решетки равна

$$\delta = \frac{emc\Delta T}{jW_e St} (1 - \eta), \qquad (2)$$

где m — масса, c — удельная теплоемкость, S — площадь кристалла Al_2O_3 , j — плотность тока, t — длительность импульса электронного пучка, e — заряд электрона, η — выход ШКЛ. В результате получаем $\delta = 0.99$.

Рис. 2. Температурная зависимость времени затухания КЛ в полосе с максимумом 310 nm кристалла Al₂O₃. Плотность тока электронного пучка 0.05 kA/cm².

Тогда $\Delta W_{O^{2-}} = Q_{O^{2-}}(1-\delta) \rightarrow 0$ и по условию (1) k = 1. Таким образом, в кристаллах преобразование энергии электронного удара происходит по упругому механизму. Отсюда по изложенной выше методике находим зависимость E от W_{eo} и W_e

$$E = \frac{4\pi\varepsilon\varepsilon_0}{q^3} W_e^2 \left(\frac{m_e}{m_i}\right)^2, \quad W_e < W_{eo}, \tag{3}$$

где q — эффективный заряд иона, m_e — масса электрона, m_i — масса иона, ε_0 — диэлектрическая постоянная, є — диэлектрическая проницаемость среды. Значение W_{ρ} в кислородсодержащих кристаллах больше, чем в ЩГК и ЩЗК, и поэтому величина Е короткоживущих возмущающих полей в окрестности ударносмещенных анионов в кислородсодержащих кристаллах выше, чем в ЩГК. Так, для ЩГК $W_o = 6 - 9 \, \text{eV}$ [9] $(W_{eo} = 30-50 \text{ keV})$ и при $W_e = 50-250 \text{ keV}$ величина Е_о в окрестности ударно-смещенных ионов соответствует 0.5 · 107 V/ст. В кислородсодержащих кристаллах $W_o = 60-75 \,\mathrm{eV}$ ($W_{eo} = 350-450 \,\mathrm{keV}$) и при $W_e = 250 \text{ keV}$ величина E достигает $2.5 \cdot 10^7 \text{ V/cm}$. Отсюда степень деформации подзон валентной зоны в оксидных материалах больше, и в эксперименте наблюдается более широкий спектр ШКЛ, чем в ЩГК и ЩЗК.

Измерения показали, что в ЩГК при энергии электронов, превышающей порог создания стабильных интерстициалов ($W_e > W_{eo} = 40-50 \text{ eV}$) ширина спектров КЛ ($\tau < 10 \text{ ps}$) не изменяется (рис. 3). Тогда согласно выражению

$$t = \frac{A_o}{\sqrt{2W_o/m_i}},\tag{4}$$

где t, W_o , A_o — соответственно время, пороговая энергия и дистанция ударного смещения иона, находим, что при $W_o = 6-8 \text{ eV}$ ударное смещение анионов происходит в интервале ~ 100 fs. Этот результат, а также полученное значение < 100 fs для излучательного времени ШКЛ–КЛ свидетельствуют, что локальные возмущающие поля в окрестности ударно-смещенных анионов нарастают в течение времени ~ 100 fs.

В процессе ударного смещения узлов решетки в их окрестности возникают возмущающие электрические поля и, следовательно, на смещенные ионы действуют квазиупругие силы ($F_k = -ku$). Это означает, что при ударном допороговом (*W_e* < *W_{eo}*) смещении регулярных ионов неизбежна колебательная релаксация, время которой соответствует времени восстановления кристаллической решетки. Колебательный процесс восстановления регулярных позиции ионов затухающий, поскольку ~ 99% энергии удара при электронной бомбардировке $(W_e < W_{eo})$ номинально чистых кристаллов переходит во внутреннюю энергию решетки. Следовательно, в данном колебательном механизме существует сила сопротивления ($F_r = -rdu/dt$), обусловленная свойствами кристаллической среды. Таким образом, механизм колебательной релаксации ударно-смещенного узла *N*-мерной решетки можно описать классической системой уравнений

$$n_i \frac{d^2 u_n}{dt^2} + r_n \frac{d u_n}{dt} + k_n u_n = 0, \qquad (5)$$

где k — коэффициент квазиупругой силы, r — коэффициент сопротивления кристаллической среды, u — вектор смещения иона. Для составления реальной системы (5) и нахождения кинетических параметров затухающих колебаний ударно-смещенных ионов применен следующий подход. Известно, что при допороговой энергии ударного возбуждения кислородсодержащих кристаллов наводятся короткоживущие дефекты — связанные пары в виде электрических $F^{2+}O^{2-}$ -диполей (анионная вакансия-смещенный узел решетки). Очевидно, что поля короткоживущих электродиполей эквивалентны локальным внутрикристаллическим возмущающим полям. В кристаллах сапфира в процессе подпорогового электронного облучения короткоживущие дефекты (F^+O^{2-} -пары) создаются и залечиваются по реакции [10]

ł

$$e \to R \Rightarrow (F^+)^* \mathcal{O}^{2-} \Rightarrow (hv_{F^+} + F^+ \mathcal{O}^{2-}) - e \Rightarrow R, \quad (6)$$

где R — регулярный узел, $(F^+)^*$ — возбужденный F^+ центр, hv_{F^+} — энергия фотона, излучаемого F^+ -центром. Представленные на рис. 4 спектры КЛ, РЛ и ФЛ

Рис. 3. Зависимость уширения полосы *p*-валентной катодолюминесценции ($\tau < 10 \text{ ps}$) кристаллов LiF (*I*), RbBr (*2*), KI (*3*), Al₂O₃ (*4*) от энергии электронов возбуждающего пучка. Измерено при 300 К.

Физика твердого тела, 2005, том 47, вып. 10

Рис. 4. Спектры поглощения (1-3), ФЛ (1'-3') и КЛ (1''-3'') кристаллов сапфира: 1 -особо чистый после электронной бомбардировки, 2 -после F⁺ подсветки (4 ω :YAG:Nd) лазер) образца 3, аддитивно окрашенный (3). Измерено при 300 К.

указывают на то, что в процессе электронной бомбардировки особо чистых кристалов сапфира в соответствии с (6) также создаются короткоживущие F^+O^{2-} дефекты через возбужденное состояние F^+ -центров. Диаграмма направленности излучения возбужденного F⁺-центра перпендикулярна вектору дипольного момента F^+ -центра, направление которого совпадает с вектором дипольного момента F^+O^{2-} -диполя. В эксперименте за характером затухающих колебаний ударносмещенных ионов велось наблюдение люминесцентным методом. В этом случае кинетика затухания КЛ F^+ -центра должна содержать временные компоненты, соответствующие параметрам колебаний вектора дипольного момента F^+O^{2-} -диполя, отнесенного к одной из координат колебаний О²⁻-иона. Отсюда систему уравнений (5) для колебательной релаксации ударносмещенного узла *N*-мерной решетки можно привести к одному уравнению вида (5) для координаты смещения и, соответствующей колебаниям вектора дипольного момента F^+O^{2-} -диполя. Решение этого уравнения в виде

$$u = A_o e^{-\alpha t} \cos \omega t \tag{7}$$

дает необходимую систему параметров

$$\alpha = \frac{r}{2m_i}, \qquad \omega_o = \sqrt{\frac{k}{m_i}},$$
$$\omega = \sqrt{\frac{k}{m_i} - \frac{r^2}{4m_i^2}} = \sqrt{\omega_o^2 - \alpha^2}, \qquad (8)$$

где A_o , α , ω — соответственно максимальная амплитуда (дистанция ударного смещения), коэффициент затухания и угловая частота затухающих колебаний иона, ω_o — собственная частота при отсутствии сопротивления среды. Эти параметры определим путем исследования квазиупругой силы и силы сопротивления решетки колебательному движению ударно-возбужденных регулярных

ионов. Зная предельные значения E_o [2] и W_o [11] с учетом (3) получим выражение для квазиупругой силы

$$F_{k} = -ku = -qE_{o} = -\frac{W_{o}}{A_{o}} = -\frac{4\pi\varepsilon\varepsilon_{o}}{q^{2}}W_{eo}^{2}\left(\frac{m_{e}}{m_{i}}\right)^{2},$$
$$W_{e} < W_{eo}.$$
(9)

Из (9) при $u = A_o$ находим k

$$k = \frac{q^2 E_o^2}{W_o}.$$
 (10)

Для определения времени жизни короткоживущих $F^+ O^{2-}$ -пар и, следовательно, коэффициента затухания α , в кристаллах Al₂O₃ исследована зависимость кинетических параметров катодолюминесценции F⁺-центров от We. Экспериментально установлено, что при увеличении энергии электронов в пучке время затухания КЛ F^+ -центров ($\lambda_{\rm max} = 327 \, {\rm nm}$) возрастает с $\sim 5 \, {\rm ns}$ (кривая 3 на рис. 5) до 10 ns (кривая 2 на рис. 2) и при $W_e = 250 - 300 \,\text{keV}$ достигает $18 - 22 \,\text{ns}$ (кривая 1 на рис. 5). Излучательное время люминесценции F^+ -центров 3.8 ns [12]. Поэтому можно считать, что при $W_e = 250 \,\mathrm{keV}$ время жизни короткоживущих $F^+\mathrm{O}^{2-}$ -пар, наводимых электронным ударом, в Al₂O₃ составляет 15 ns. Таким образом, в кристаллах сапфира амплитуда колебаний ударно-возбужденного иона О²⁻ за время 15 ns уменьшится в *е* раз. Тогда из (7) получаем

$$e^{-\alpha t} = \left(\frac{A_o}{A(t)}\right)^{-1} = e^{-1},\tag{11}$$

где $\alpha t = 1$, $t = \tau = 15 \cdot 10^{-9}$ s, $\alpha = 6.7 \cdot 10^7$ s⁻¹. Подставляя в (10) при $W_e = W_{eo}$ полученные экспериментальным путем значения $W_o = 70$ eV, $E_o = 4 \cdot 10^9$ V/cm, q = 6e находим для сапфира k = 1.3 N/cm. Используя (8) и (11), получаем $v = \sqrt{\omega_o^2 - \alpha^2}/2\pi = 1.2 \cdot 10^{12}$ s⁻¹ — частота затухающих колебаний ударно-возбужденных O²⁻ в кристаллах Al₂O₃. Отсюда период затухающих колебаний ионов O²⁻ равен ~ 800 fs, а их время смещения с регулярных позиций около 200 fs. В кристаллах Al₂O₃ для $W_e < W_{eo}$

Рис. 5. Спектры КЛ (1-4) особо чистых кристаллов сапфира: 1 — при энергии электронов в пучке 250, 2 — 60, 3 — 30 и 4 — 7 keV. Временное разрешение импульсов КЛ 1 пs. Измерено при 300 K.

эффективное время нарастания возмущающих полей в окрестности ударно-смещенных ионов кислорода составляет ~ 150 fs. Параметры анионов, а также внутрикристаллических полей сапфира и других кристаллов группы диэлектриков и металлов таковы, что для каждого типа решетки при ($W_e < W_{eo}$) время ударного смещения атомов и ионов с регулярных позиций будет в интервале 100–300 fs, а продолжительность их колебательной релаксации произойдет в течение 10–50 ns с периодом колебаний 0.5–1.5 ps. Таким образом, при электронной бомбардировке ЩГК, ЩЗК и кислородсодержащих кристаллов напряженность полей возмущения в окрестности ударно-смещенных анионов при $W_e < W_{eo}$ нарастает в течение 100–300 fs и колебательно затухает с периодом 0.5–1.5 ps в течение 10–50 ns.

Список литературы

- В.И. Барышников, Л.И. Щепина, Т.А. Колесникова, Е.Ф. Мартынович. ФТТ **32**, *6*, 1888 (1990).
- [2] В.И. Барышников, Т.А. Колесникова. ФТТ **39**, *2*, 286 (1997).
- [3] В.И. Барышников. В сб. тр. VI Всерос. школы-семинара "Люминесценция и сопутствующие явления". Иркутск (2001). С. 56.
- [4] Д.И. Вайсбурд, Б.И. Семин, Э.Г. Таванов, С.Б. Матлис, И.Н. Балычев, Г.И. Геринг. Высокоэнергетическая электроника твердого тела. Наука, Новосибирск (1982). 223 с.
- [5] В.И. Барышников, Т.А. Колесникова, И. Квапил. ФТТ 36, 9, 2788 (1997).
- [6] V.I. Baryshnikov, V.L. Papeny. J. Appl. Phys. D 28, 512 (1995).
- [7] V.I. Baryshnikov, T.A. Kolesnikova. Int. Conf. ICL'99. Osaka, Japan (1999). PD1–22.
- [8] T. Sekikawa, T. Ohnj, Y. Nabekaw, S. Watanabe. Int. Conf. ICL'99. Osaka, Japan (1999). BO2–4
- [9] Ч.Б. Лущик, А.Ч. Лущик. Распад электронных возбуждений с образованием дефектов в твердых телах. Наука, М. (1989). 263 с.
- [10] В.И. Барышников, Е.Ф. Мартынович, Т.А. Колесникова, Л.И. Щепина. ФТТ **30**, *5*, 1505 (1988).
- [11] G.P. Pells, D.C. Phillips. J. Nuclear Materials 80, 207 (1979).
- [12] E.D. Evans, M. Stapelbroek. Phys. Rev. B 18, 7089 (1978).