Флуктуации энергии и эмиссионные явления в устье трещины

© Ф.Х. Уракаев*,**, И.А. Массалимов***

 Институт минералогии и петрографии Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия
 Новосибирский государственный университет, 630090 Новосибирск, Россия
 Институт механики Уфимского научного центра Российской академии наук, 450000 Уфа, Россия

E-mail: urakaev@uiggm.nsc.ru

(Поступила в Редакцию 4 августа 2004 г. В окончательной редакции 2 ноября 2004 г.)

> С использованием соотношений классической механики и статистической физики рассмотрены численные аспекты баланса энергии на фронте магистральной трещины применительно к сколу щелочно-галоидных кристаллов и теоретически установлена возможность эмиссии наноразмерных частиц в процессе динамического разрушения.

> Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (гранты № 02-03-32109, 03-03-32271).

Для описания развития трещины использовано понятие зоны предразрушения, подробно описанное в [1-3]. Эта область напряженного состояния охватывает большую группу межатомных связей в объеме материала у вершины трещины. Такими областями при механических воздействиях на хрупкие вещества [4-6] могут быть структурные неоднородности и участки деформированного состояния, в которых проявляются нелинейные особенности сил межатомного взаимодействия с высокой вероятностью распада напряженных связей. Согласно различным данным, линейный размер этой области оценивается величиной $l \sim 10^{-6} - 10^{-3}$ cm [1–4,6]. Скоротечность процесса разрушения или ударного воздействия, затрудняет их детальное исследование, и дополнительную информацию можно извлечь только из явления фрактоэмиссии (ФЭ) [7] — эмиссии фотонов и электронов [8], летучих продуктов механодеструкции и компонентов решетки в атомарной, ионной, молекулярной, фрактальной форме [7-12] и в виде ультрадисперсных частиц [13]. В представленной работе проведено исследование возможности ФЭ наноразмерных частиц из устья трещины в процессе раскалывания щелочногалоидных кристаллов (ЩГК) по плоскости спайности (100).

При движении трещины в окрестности l ее фронта освобождается энергия E^* , составляющая разницу между накопленной трещиной энергией E_c и следующими энергиями [14]: E_e (релаксации упругого состояния), $E_s + E_d$ (суммы энергий образования новой поверхности и пластической деформации [15,16]), E_k (кинетической энергии фрагментов скола твердого тела [14,15]), $E_f = E_a + E_t$ (ФЭ — суммы атермической E_a [8,11,12] и термической E_t [6] составляющих). Упругая энергия E_e в деформированных участках твердого тела исчезает при появлении трещины. Поэтому уравнение баланса энергии в носке трещины [14] может быть переписано

в виде

$$E^* = E_c - E_e = E_s + E_d + E_k + E_f.$$
(1)

Запись левой части уравнения (1) в виде $E_c - E_e$ подчеркивает тот факт, что не вся подведенная механическая энергия расходуется на разрушение, деформацию и Φ Э.

В связи с (1) весьма важна и необходима теоретическая оценка E_f и ее сопоставление с имеющимися экспериментальными данными. В первую очередь оценим величину E_c . Предположим, что E_c накапливается в некотором объеме $V = l^3$, где l — линейный размер области напряженного состояния в окрестности носка трещины. Учитывая, что сжимаемость определяется выражением $\beta = -V^{-1}(\partial V/\partial P)_T = 1/K$, где K — модуль объемной упругости, а дифференциал $dE_c = -PdV = \beta VPdP$ [17], находим

$$E_c = \beta P^2 V/2, \tag{2}$$

где P — давление, при котором происходит разрушение. В [15] показано, что процесс скола существенно зависит от формы твердого тела и размеров образца (рис. 1): x(y'/2) — размер в направлении движения трещины в плоскости xz, z' — ширина, 2y' — толщина. При необходимости в дальнейших оценках положим z' = 2y' = x' = 1 cm.

Характеристики ЩГК и их скола, каналы диссипации энергии по	(1), (2), (11)-(13)	, размеры и число наночастиц,	формирующихся
в устье трещины			

Кристалл / свойство	LiF	NaF	KF	NaCl	KCl	Примечания
$y_0(100) \cdot 10^8$, cm	1.007	1.195	1.530	1.363	1.790	РФА*
γ , erg/cm ²	374	290**	210**	310	318	[15,16]
$P \cdot 10^{-10}$, dyn/cm ²	4.73	5.00	4.12	1.60	2.66	[20]
ν	0.217	0.236	0.274	0.252	0.274	[18]
$\beta \cdot 10^{12}$, cm ² /dyn	1.43	2.06	3.13	4.02	5.62	$[18]; \beta = 1/K$
$v_c \cdot 10^{-5}$, cm/s	3.9	3.1	2.4	2.4	2.0	[10]
$v_{s} \cdot 10^{-5}$, cm/s	7.14	5.67	4.64	4.54	3.91	[18]
ρ , g/cm ³	2.640	2.804	2.526	2.163	1.988	[18]
$E_c \cdot 10^{-5}$, eV	10.0	16.1	16.6	3.21	12.4	$l = 10^{-5} {\rm cm}$
$(E_e + E_f) \cdot 10^{-5}$, eV	4.3	10	12	0.25	8.7	$l = 10^{-5} \mathrm{cm}$
u_i , eV (1 eV $\approx 1.6 \cdot 10^{-12}$ erg)	10.51	9.297	8.230	7.918	7.189	[21]
u_a , eV	8.83	7.86	7.61	6.65	6.72	[10]
$I \cdot 10^{-13}$, atom/cm ²	3.6	2.1	1.1	1.0	0.63	[10]
Μ	25.94	41.99	58.10	58.44	74.55	
$E_c M/gAl^3 \rho u_a$	0.001	0.008	0.007	0.001	0.010	$l = 10^{-5} \mathrm{cm}$
$(n/L) \cdot 10^{-22}$, cm ⁻³	12.26	8.04	5.24	4.46	3.21	[10]
$E_f = B v_c l^2 n/L$, eV $\cdot 10^{-5}$	0.30	0.16	0.078	0.067	0.040	$l = 10^{-5} {\rm cm}$
T_m, \mathbf{K}	1122	1269	1130	1074	1049	[22]
$lpha \cdot 10^4$, K ⁻¹	1.25	1.2	1.0	1.54	1.39	[19.22]
$(\beta^{-1}\alpha T) \cdot 10^{-10}$, dyn/cm ²	2.62	1.7	1.0	1.50	0.742	$T = 300 \mathrm{K}$
$C_V \cdot 10^{-6}$, erg/g · K ⁻¹	16.16	11.15	8.382	8.641	6.909	[22]
$\langle \delta E_2 angle = (ho V C_V k)^{0.5} T,$	453	389	325	301	258	$T = 300 \mathrm{K}$
eV (при $l = 10^{-5} \mathrm{cm}$)	1699	1645	1224	1076	901	$T = T_m$
$\langle \delta E_1 angle = (eta^{-1} lpha T + P) (eta V k T)^{0.5},$	353	390	360	355	324	$T = 300 \mathrm{K}$
eV (при $l = 10^{-5} \mathrm{cm}$)	1350	1470	1070	870	935	$T = T_m$
$\langle \delta E_1 angle / E_f \; ($ при $T = 300 { m K})$	0.012	0.024	0.046	0.053	0.081	$l = 10^{-5} \mathrm{cm}$
$\langle \delta E_1 angle / E_f$ (при $T=T_m$)	0.045	0.092	0.14	0.13	0.23	$l = 10^{-5} \mathrm{cm}$
$R_p \approx y_0 (\langle \delta E_1 \rangle / u_a)^{0.5}$, nm	0.64	0.84	1.1	1.0	1.2	$T = 300 \mathrm{K}$
(при $l = 10^{-5} \mathrm{cm}, N pprox 10^{10})$	1.2	1.2	1.8	1.6	2.1	$T = T_m$
$R_p(l = 10^{-6} \mathrm{cm})$, nm	0.11	0.15	0.19	0.18	0.22	$T = 300 \mathrm{K}$
$(N \approx 10^{12})$	0.22	0.29	0.32	0.28	0.37	$T = T_m$
$R_p(l = 10^{-4} \mathrm{cm})$, nm	3.6	4.7	5.9	5.6	7.0	$T = 300 \mathrm{K}$
$(N pprox 10^8)$	7.0	9.2	10	8.8	12	$T = T_m$
$R_p(l = 10^{-3} \mathrm{cm}), \mathrm{nm}$	20	27	33	31	39	$T = 300 \mathrm{K}$
$(N \approx 10^6)$	39	52	57	49	67	$T = T_m$

* РФА — рентгенофазовый анализ.

** — наш расчет.

Часть энергии E_c расходуется на [15,16]: $E_s = \gamma s$ создание новой поверхности $s(xz) = 2l^2$, $\gamma(xz) = = 3a^2/\pi^2\beta(1-2\nu)y_0$ — удельная поверхностная энергия, ν — коэффициент Пуассона, y_0 — равновесное межплоскостное расстояние в направлении y, a — "радиус взаимодействия" сил притяжения; $E_d = 9\gamma l^2 \times \ln[3(1-2\nu)/2\pi\sigma_y\beta(1+\nu)]$ — энергия пластической деформации на поверхности l^2 раскрытия трещины, где σ_y — напряжение в носке трещины в направлении y; $E_k \approx E_c(v_c/v_s)^2$, где v_c — скорость трещины, $v_s = [\rho\beta(1-2\nu)]^{-0.5}$ — скорость продольных звуковых волн, ρ — плотность кристалла.

Для численных оценок по (1) и (2) рассмотрим наиболее изученный процесс скола кристалла LiF, включая и опытные данные по ФЭ [9,10], с использованием следующих значений (см. таблицу):

 $\beta = 1/K = 1.43 \cdot 10^{-12} \text{ cm}^2/\text{dyn}$ и $\nu = 0.217$ [18,19], $\gamma(100) = 374 \,\mathrm{erg/cm^2}$ [15], $v_c = 3.9 \cdot 10^5 \,\mathrm{cm/s}$ [10], $v_s = 7.143 \cdot 10^5 \text{ cm/s}$ [18], $P = 4.73 \cdot 10^{10} \text{ dyn/cm}^2$ [20]. Примем $P \approx \sigma_{100}$. Полагая $l = 10^{-5}$ ст и используя (2), получаем (в erg · 10⁷): $E_c \approx 16$, $E_s \approx 0.374$, $E_d \approx 4$ и $E_k \approx 0.3 ~ E_c \approx 5$. Из (1) следует $E_e + E_f \approx 7 \cdot 10^{-7} \, {\rm erg}$ $\approx 4 \cdot 10^5$ eV. Положим в первом приближении $E_e = 0$ и соотнесем E_f с энергией и диссоциации LiF на ионы (Li⁺ + F⁻: $u_i = 10.51 \text{ eV}$ [21]) или атомы (Li+F: $u_a = 8.83 \,\mathrm{eV} \, [10])$ для грубой численной оценки интенсивности ФЭ. Вычисляя отношение $p = E_f/u$, получим число пар атомов Li и F $p_a = E_f/u_a \approx 5 \cdot 10^4$ или $5 \cdot 10^{14} \, {\rm cm}^{-2}$, подвергающихся эмиссии с окрестности *l* носка трещины. В эксперименте же наблюдается значение $p_a \approx I \sim 10^{13} \operatorname{atom/cm}^2$ (по мнению авторов [9-11]), это нижний предел для LiF, обусловленный высокой химической активностью атомов относительно материала измерительной системы).

Расчеты (см. таблицу) позволяют не только численно оценить каналы диссипации энергии в носке трещины, но и определить величину упругой составляющей Е_e, доля которой превышает, за исключением случаев NaCl и LiF, половину полной энергии трещины E_c. Вклад энергий E_d и E_k в (1) также значителен, причем (за исключением KF и KCl) $E_d \sim E_k$. Энергия трещины, расходуемая на ФЭ, по известным экспериментальным данным [10] незначительна и близка к поверхностной энергии кристаллов: $E_f \sim E_s$. Следует отметить, что точность вычислений в значительной мере определяется как постулируемым равенством $P \approx \sigma_v$, так и величиной давления разрушения Р, которая в существенной мере зависит от дефектности кристалла (происхождение, предыстория получения, чистота, свойства примесей и др.) [1–3,8,14,15,20].

В то же время для оценки возможности образования наноразмерных частиц необходимо рассмотрение процесса эмиссии совокупности атомов (молекул) в виде единого образования — кластера. Решение такой задачи требует выделения в системе значительных порций энергии одноактным способом, и наилучшим способом решения представляется рассмотрение флуктуаций энергии в системе. Поэтому анализ возможности расхода части энергии E_c на формирование наночастиц в вершине трещины проведен при помощи соотношений равновесной статистической механики для флуктуации энергии δE [17].

Физическими предпосылками для возможности расчета флуктуации энергии δE являются следующие аспекты протекания процессов в устье трещины. Сначала рассмотрим подробнее зону предразрушения (на рисунке она выделена черным цветом). Эту область можно рассматривать как подсистему, в которой в результате импульсной механической нагрузки аккумулируется энергия Е. Остальную часть твердого тела, в которой эта энергия отсутствует или по крайней мере значительно меньше, чем в выделенной области, можно рассматривать как среду. Энергию E_c , отнесенную на число связей в объеме l^3 , можно рассматривать как малое возмущение, если ее значение мало по сравнению с энергией и, связывающей атомы или ионы в единое целое. Из значений отношения $E_c M/Al^3 \rho u_a$, где $A = 6.02 \cdot 10^{23}$ — число Авогадро, М — молекулярная масса рассматриваемых соединений, видно (см. таблицу), что даже при $u = u_a$ и очень малом значении $l = 10^{-5} \, \mathrm{cm}$ для достаточно пластичных кристаллов ЩГК [15,23] они не превышают 0.01. Это позволяет рассматривать наличие Ес в подсистеме как малое возмущение. Систему, в которую внесено малое возмущение, можно рассматривать двумя способами. Первый способ предполагает решение кинетических уравнений методами термодинамики необратимых процессов [24]. В основу другого способа, использованного нами, положена гипотеза Онзагера, согласно которой макроскопическое неравновесное состояние вблизи состояния равновесия можно рассматривать как некоторую флуктуацию. Изменение во времени состояний макроскопической неравновесной системы и микроскопической системы, испытавшей флуктуацию, происходят по одинаковым законам. Пусть, например, в макроскопической системе создано неравномерное распределение концентрации и температуры. При этом в системе возникнут потоки, описывающиеся соответствующими макроскопическими законами переноса. Если в равновесной системе происходит флуктуация температуры или концентрации, в результате которых создается такое же распределение концентраций и температур, то, согласно гипотезе Онзагера, релаксация этих флуктуаций будет происходить по тем же законам, по каким происходит выравнивание концентрации или температуры в неравновесной макроскопической системе. Также как и в процессе теплопередачи, когда происходит передача энергии от горячего (содержащего избыток энергии) к холодному, в нашем случае будет происходить процесс диссипации энергии из области с избытком энергии. В этом случае в процессе изменения энергии в системе "среда-подсистема" по механизму флуктуаций будет превалировать процесс выделения энергии, и в этом смысле флуктуации не являются обратимыми.

Далее для выяснения правомерности применения соотношений равновесной термодинамики для системы, в которой происходит эмиссия частиц, необходимо выяснить, насколько в результате эмиссии меняется число частиц и энергия в выделенном объеме. Для этого примем Ес за энергию системы, а величину флуктуации энергии δE (см. далее формулу (11)) будем считать той частью энергии, которая удаляется из выделенного объема. Отношение $\delta E/E_c$ примем за параметр малости. Если $\delta E/E_c \ll 1$, то это будет означать, что энергия, выделяемая системой вследствие флуктуаций, мала по сравнению с энергией системы, и тогда систему можно рассматривать как равновесную. Рассмотрим число частиц в выделенном объеме и сравним его с числом частиц, покидающих рассматриваемый объем в результате флуктуации энергии. В этом случае в качестве параметра малости будет служить величина $\delta EM/Al^3\rho u_a$. Если $\delta EM/Al^3 \rho u_a \ll 1$, то процессы в этой системе можно описывать подходами равновесной термодинамики, в которой число частиц сохраняется. Приведенные ниже оценки (см. таблицу) позволяют утверждать, что изменения параметров системы (энергия и числа частиц) в результате флуктуаций очень малы, и потому к исследуемой задаче применимы соотношения равновесной термодинамики.

Энергия зависит в общем случае от трех термодинамических величин: объема V, температуры T и давления P. Запишем полный дифференциал флуктуации энергии, выбрав независимыми переменными объем V и температуру T. Для этой цели используем выражение для флуктуации энергии [17]

$$\delta E = \Delta V (\partial E / \partial V)_T + \Delta T (\partial E / \partial T)_V$$
$$= \Delta V (\partial E / \partial V)_T + C_V \Delta T, \qquad (3)$$

где δE — флуктуация энергии, обусловленная флуктуацией объема ΔV и флуктуацией температуры ΔT в си-

стеме с объемом V и температурой T, а $(\partial E/\partial T)_V = C_V$ по определению теплоемкость при постоянном объеме. Далее используем выражения для дифференциалов полной энергии E и свободной энергии F

$$dE = TdS - PdV, (4)$$

$$dF = -SdT - PdV$$
 или $(\partial F/\partial T)_V = -S$
и $d^2F//dV dT = -(dS/dV)_T$. (5)

Поскольку как dF/dV = -P, то, если взять производные от *F* сначала по объему, а затем по температуре, используя (5), получим следующее отношение:

$$d^{2}F/dT dV = -(dP/dT)_{V} = -(dS/dV)_{T}.$$
 (6)

Тогда в (3), используя (4), можно записать

$$(\partial E/\partial V)_T = T(dS/dV)_T - P, \tag{7}$$

$$\delta E = \left[T(\partial P/\partial T)_V - P \right] \Delta V + C_V \Delta T.$$
(8)

Отметим, что средние значения флуктуаций равны нулю, т.е. $\langle \Delta T \rangle = 0$ и $\langle \Delta V \rangle = 0$, а в (3) представлены мгновенные значения δE , ΔV и ΔT . В экспериментах наблюдаются только средние значения физических величин. Поэтому необходимо δE возвести в квадрат для усреднения. Поскольку флуктуации температуры и объема статистически независимы, среднее значение произведения $\langle \Delta V \Delta T \rangle = 0$. При возведении в квадрат (8) перекрестные члены, содержащие произведение $\Delta T \Delta V$, будут равны нулю

$$\langle \delta E \rangle^2 = \left[T(\partial P/\partial T)_V - P \right]^2 \langle \Delta V^2 \rangle + C_V^2 \langle \Delta T^2 \rangle.$$
(9)

Используя полученные в [17] выражения для средних значений квадратов флуктуаций T (измерение в градуcax) $\langle \Delta T^2 \rangle = kT^2/C_V$ и объема $\langle \Delta V^2 \rangle = -kT(\partial V/\partial P)_T$, находим

$$\langle \delta E \rangle^2 = -\left[T(\partial P/\partial T)_V - P\right]^2 k T(\partial V/\partial P)_T + C_V k T^2, \quad (10)$$

где $k = 1.38 \cdot 10^{-16} \text{ erg/K}$ — постоянная Больцмана. Если ввести $\beta = -V^{-1}(\partial V/\partial P)_T$, коэффициент объемного теплового расширения $\alpha = V^{-1}(\partial V/\partial T)$ и использовать удельную теплоемкость в качестве C_V [22], (10) перепишется в виде

$$\langle \delta E \rangle^2 = \langle \delta E_1 \rangle^2 + \langle \delta E_2 \rangle^2$$

= $(\beta^{-1} \alpha T + P)^2 \beta V k T + \rho V C_V k T^2.$ (11)

Член $C_V k T^2$ дает величину флуктуации энергии для массы $\rho V = \rho l^3$ носка трещины, находящейся в тепловом равновесии при температуре *T*. Выражение в квадратных скобках вносит вклад флуктуаций температуры и давления *P* в искомую величину флуктуации энергии. Представляется интересным оценить не только значения $\langle \delta E_1 \rangle$ и $\langle \delta E_2 \rangle$ слагаемых в (11), но и их предельные температурные характеристики. Кристаллическое состояние вещества (в том числе и импульс температуры в носке трещины [23,25,26]) ограничивается температурой плавления T_m кристалла. Поскольку $P \sim \beta^{-1} \alpha T$ (см. таблицу), вклады слагаемых близки: $\langle \delta E_1 \rangle \approx \langle \delta E_2 \rangle$. Равновесная составляющая энергии флуктуации $\langle \delta E_2 \rangle$ расходуется на колебания решетки (фононное рассеяние) в объеме кристалла, повышая его среднюю температуру на величину $\langle \Delta T \rangle = \langle \delta E_2 \rangle 2l/y' \rho V C_V = 2 \langle \delta E_2 \rangle /y' \rho l^2 C_V \sim 10^{-6}$ К при $l = 10^{-5}$ ст и y' = 1 ст (см. рисунок). Поэтому далее рассматривается только первое слагаемое $\langle \delta E_1 \rangle$ в уравнении (11), которое имеет три равные по порядку величины (см. таблицу), составляющие флуктуации энергии: термическую — $\beta^{-1} \alpha^2 V k T^3$, смешанную — $2\alpha VP kT^2$ и механическую — $\beta V P^2 k T$.

Сопоставим величины $\langle \delta E_1 \rangle$ с экспериментальными значениями E_f . Корреляция характеристик кристаллов и интенсивность ФЭ I определяется выражением $I = Bv_c n/uL \approx hv_c n/uL$ [10]. Здесь $n \, [\mathrm{cm}^{-2}]$ — число разорванных (и/или возбужденных) связей на поверхности скола, $L \approx y_0 \, [\mathrm{cm}]$ — характерная длина химических связей в кристалле [10], $u \, [\mathrm{erg/molecule(atom)}]$ — энергия единичной ФЭ, $B = 10^{-26} \, \mathrm{erg} \cdot \mathrm{s}$ — эмпирический параметр корреляции, близкий (равный [12]) постоянной Планка $h = 6.63 \cdot 10^{-27} \, \mathrm{erg} \cdot \mathrm{s}$. Если принять $u = u_a$, произведение Iu на поверхности раскрытия трещины $V^{2/3} = l^2$ дает измеряемую в опытах энергию E_f

$$E_f = Bv_c l^2 n/L \approx h v_c l^2 n/L.$$
(12)

Анализ отношения (11) и (12) дает информацию о механизме явления $\Phi \Im$

$$\langle \delta E_1 \rangle / E_f \approx (\beta^{-1} \alpha T + P) (\beta \, kT/l)^{0.5} [Bv_c(n/L)]^{-1}.$$
(13)

Если $\langle \delta E_1 \rangle / E_f \gg 1$, флуктуации энергии велики, и только доля их реализуется в виде ФЭ, а оставшаяся часть расходуется на другие каналы диссипации энергии. При $\langle \delta E_1 \rangle / E_f \approx 1$ энергия флуктуаций в основном расходуется на явление ФЭ, а при $\langle \delta E_1 \rangle / E_f \ll 1$ флуктуации энергии малы, и только доля полной интенсивности ФЭ или определенный вид явления ФЭ может осуществляться за счет флуктуационного механизма. В результате расчетов установлено, что при любой допустимой температуре кристалла *T* имеет место последний вариант и по мере увеличения межплоскостных расстояний (размеров ионов) величина энергии флуктуации растет, в то время как интенсивность ФЭ монотонно уменьшается.

Выделения энергии $\langle \delta E_1 \rangle$ в объеме V недостаточно для реализации элементарного акта сублимации ЩГК. Поэтому разумно использовать ее для оценки характеристик эмиссии наноразмерных частиц на фронте трещины. За счет выигрыша в энергиях связей между атомами в кластере при некотором количестве связей энергия флуктуации становится достаточной для выброса частицы с числом пар разноименных атомов *p* и радиусом R_p из решетки кристаллов. Вычисления для приведенных ЩГК (см. таблицу) представлены для интервала изменения $l = 10^{-3} - 10^{-6}$ ст при допущении равенства в энергиях межатомных связей в кристалле и кластере. Расчет покажем на примере LiF при $l = 10^{-5}$ сm и температуре кристалла T = 300 К. Для разрыва одной связи требуется энергия u_a , при этом образуется поверхность разрыва в кристалле $s_a \approx \pi (y_0/2)^2$. Если допустить, что вся энергия $\langle \delta E_1 \rangle$ расходуется на разрыв связей, то площадь поверхности кластера составит $s_p \approx \langle \delta E_1 \rangle s_a/u_a \approx 4\pi R_p^2$. Следовательно, $R_p \approx y_0 (\langle \delta E_1 \rangle / u_a)^{0.5} \approx 0.64$ nm, а число N таких частиц при сколе реального кристалла составит $N \approx x' z'/l^2 \approx 10^{10}$, что примерно в 1000 раз меньше, чем число эмиссии нейтральных атомов на фронте трещины.

Поскольку $\langle \delta E_1 \rangle \sim l^{1.5}$, из данных таблицы легко найти размеры кластеров при величинах l, отличающихся or $l = 10^{-5}$ cm: $R_p(l) \approx R_p(l = 10^{-5} \text{ cm})(l/10^{-5} \text{ cm})^{0.75}$. В качестве необходимого и последнего комментария к таблице отметим зависимости диаметра $(2R_p = 0.2 - 130 \text{ nm})$ и числа кластеров $(N = 10^{12} - 10^6)$ от линейного размера l — области напряженнодеформированного состояния на фронте трещины в процессе разрушения ЩГК. Величина *l* трудно поддается корректной теоретической или экспериментальной оценке. Поэтому одновременное экспериментальное измерение R_p и N при сколе ЩГК могло бы послужить одним из методов определения этой величины. Например, можно применить двухволновой когерентнооптический [27], масс-спектрометрический [11] или электронно-микроскопический методы [28].

В заключение отметим, что при анализе явлений в носке трещины уже привлекались методы квантовой теории [29] и дискретных решеток [30], но ни в одном из этих подходов не рассматривалось явление Φ Э. Проведенные оценки показывают, что учет явления Φ Э, несмотря на незначительность ее энергетического вклада в общий баланс энергии при динамическом разрушении твердых тел, не только дополняет число явлений и процессов в носке трещины, но и является новым методом изучения особой области напряженного состояния в окрестности фронта трещины.

Проблема эмиссии субнаноразмерных [11] и наноразмерных [13] частиц в носке трещины обсуждается впервые. Возможность протекания этого процесса предсказывается нами на следующих основаниях: а) имеют место достаточно большие значения P и T в некоторой окрестности l носка трещины; b) согласно законам статистической физики [17], динамическое изменение P и Tприводит к флуктуациям энергии в объеме l^3 ; c) анализ величины одноактного выделения энергии флуктуации показывает, что она может быть сопоставлена с энергией образования нанокристаллических частиц на фронте трещины.

Список литературы

- [1] J.E. Field. Contemporary Phys. 12, 1, 1 (1971).
- [2] Г.П. Черепанов. Механика хрупкого разрушения. Наука, М. (1974). 640 с.

- [3] В.Р. Регель, А.И. Слуцкер, Э.Е. Томашевский. Кинетическая природа прочности твердых тел. Наука, М. (1974). 560 с.
- [4] Ф.Х. Уракаев, В.В. Болдырев. ЖФХ 74, 8, 1478 (2000).
- [5] C. Suryanarayana. Prog. Mater. Sci. 46, 1–2, 1 (2001).
- [6] Г. Хайнике. Трибохимия. Мир, М. (1987). 582 с.
 [G. Heinicke. Tribochemistry. Akadem-Verl., Berlin (1984)].
- [7] J.T. Dickinson. In: Non-Destructive Testing of Fibre-Reinforced Composites / Ed. J. Summerscales, Elsevier, London–N.Y. (1990). Vol. 2. P. 429.
- [8] V.A. Zakrevskii, A.V. Shuldiner. Phil. Mag. B 71, 2, 127 (1995).
- [9] T.E. Gallon, J.H. Higginbotham, M. Prutton, H. Tokutaka. Surface Sci. 21, 224 (1970).
- [10] Ф.Х. Уракаев, В.В. Болдырев. ЖФХ 74, 8, 1483 (2000).
- [11] J.T. Dickinson, L.C. Jensen, S.C. Langford. Phys. Rev. Lett. 66, 2120 (1991).
- [12] F.Kh. Urakaev, I.A. Massalimov. Mendeleev Commun. 13, 4, 172 (2003).
- [13] О.Ф. Поздняков, Б.П. Редков. Тез. докл. VIII Всес. симп. по механоэмиссии и механохимии твердых тел. АН СССР, Таллин (1981). С. 86.
- [14] Г. Румпф. Тр. Европ. совещ. по измельчению. Стройиздат, М. (1966). С. 7.
- [15] Дж.Дж. Гилман. В кн.: Атомный механизм разрушения. ГосНТИЛ по черной и цветной металлургии, М. (1960). С. 220.
- [16] R. Shuttleworth. Proc. Phys. Soc. London A 62, 167 (1949).
- [17] Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. Наука, М. (1976). Ч. 1. С. 363.
- [18] О. Андерсон. В кн.: Динамика решетки. Физическая акустика / Под ред. У. Мэзона, Мир, М. (1968). Т. III. Ч. Б. С. 62.
- [19] Справочник физических констант горных пород / Под ред. С. Кларка мл. Мир, М. (1969). 543 с.
- [20] Н. Макмиллан. В кн.: Механика. Мир, М. (1987). Т. 40. С. 35.
- [21] Ч. Китель. Введение в физику твердого тела. Наука, М. (1978). С. 137.
- [22] Таблицы физических величин / Под ред. И.К. Кикоина. Атомиздат, М. (1976).
- [23] M.I. Molotskii. Sov. Sci. Rev. Series. Sect. B: Chem. Rev. 13, 1 (1989).
- [24] Р. Кубо. В кн.: Вопросы квантовой теории необратимых процессов. ИИЛ, М. (1961). С. 39.
- [25] F.P. Bowden, P.A. Persson. Proc. Roy. Soc. London A 260, 433 (1961).
- [26] F.Kh. Urakaev, V.V. Boldyrev. Powder Technology 107, 3, 197 (2000).
- [27] F.Kh. Urakaev, L.Sh. Bazarov, I.N. Meshcheryakov, V.V. Feklistov, T.N. Drebushchak, Yu.P. Savintsev, V.I. Gordeeva, V.S. Shevchenko. J. Cryst. Growth 205, 1–2, 223 (1999).
- [28] S.C. Langford, M. Zhenyi, L.C. Jensen, et al. J. Vac. Sci. Technol. A 8, 4, 3470 (1990).
- [29] Р. Томсон. В кн.: Атомистика разрушения. Мир, М. (1980). № 40. С. 104.
- [30] Дж. Нотт. В кн.: Атомистика разрушения. Мир, М. (1980). № 40. С. 145.