Влияние отжига на магнитные и магнитооптические свойства пленок Ni

© Е.Е. Шалыгина, Л.В. Козловский, Н.М. Абросимова, М.А. Мукашева

Московский государственный университет им. М.В. Ломоносова, 119992 Москва, Россия

E-mail: shal@magn.ru

(Поступила в Редакцию 9 марта 2004 г. В окончательной редакции 7 июля 2004 г.)

Представлены результаты исследования магнитных и магнитооптических свойств исходных и отожженных при температуре $T_{ann} = 300, 400$ и 500° С пленок Ni толщиной 50-200 nm. Объемные и приповерхностные петли гистерезиса измерены с помощью вибрационного магнитометра и экваториального эффекта Керра (ЭЭК). Обнаружено сильное влияние температуры отжига на магнитные характеристики изучаемых образцов. В частности, установлено, что с ростом температуры отжига коэрцитивная сила H_C пленок Ni увеличивается, а остаточная намагниченность уменьшается. Найденные зависимости магнитных характеристик от толщины пленок и температуры отжига объяснены микроструктурными особенностями образцов. Установлено, что для всех пленок Ni спектры ЭЭК в области энергии квантов падающего света от 1.5 до 6 eV имеют одинаковую форму, но значения ЭЭК уменьшаются с ростом T_{ann} . Этот экспериментальный факт объяснен уменьшением намагниченности насыщения отожженных образцов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 02-02-16627).

1. Введение

В последние годы большое внимание уделяется исследованию низкоразмерных магнитных материалов, особенность которых состоит в том, что один или два их размера лежат в микро- или нанометрическом диапазоне. Тонкие магнитные пленки (ТМП), толщина которых значительно меньше, чем два других размера, являются одним из примеров твердотельных низкоразмерных материалов. ТМП имеют уникальные магнитные, магнитооптические, кинетические и динамические свойства. Вследствие этого они находят широкое практическое применение. В частности, ТМП используются в качестве миниатюрных элементов в различных устройствах современной микроэлектроники [1-3], в системах магнитной памяти [4-6], в качестве интерференционных фильтров, отражающих и антиотражающих покрытий [7,8] ИТ.Л.

В 90-е годы прошлого столетия был достигнут значительный прогресс в технологии получения ТМП, что в немалой степени интенсифицировало их изучение. Некоторые результаты уже проведенных исследований позволили решить ряд проблем физики ТМП. В частности, представления о влиянии границы раздела между магнитной пленкой и подложкой на кинетические, магнитные и магнитооптические свойства были значительно расширены. Влияние морфологии, размеров кристаллитов и их кристаллографической ориентации в немагнитном слое, напыленном между магнитной пленкой и подложкой, на магнитные свойства тонкопленочных магнитных систем было исследовано детально (см., например, [9]). Получен обширный экспериментальный материал по влиянию микроструктуры и толщины немагнитных слоев (Zr, Ta, Al, Mo, Pt, Pd) на магнитные свойства пленок Fe и Co с изменяющейся в широких пределах (от 2 до 200 nm) толщиной [10–13]. Вместе с тем магнитные характеристики пленок Ni изучены не столь подробно (см., например, [14–17]), а влияние отжига на их магнитные и магнитооптические свойства не исследовалось вообще.

Целью данной работы является исследование магнитных и магнитооптических свойств пленок Ni в исходном состоянии и после отжига при температурах 300, 400 и 500°С.

Образцы и экспериментальные методики

Серии пленок Ni были получены методом магнетронного распыления с использованием сверхвысоковакуумной установки УСУ-4. Пленки напылялись на стеклянные подложки при базовом давлении в рабочей камере 10⁻⁸ Тогг. Температура подложек в момент нанесения пленок была комнатной. В процессе напыления пленок параллельно подложке было приложено магнитное поле *H*_{Sub}, равное 70 Ое. Сверхвысокий вакуум достигался с помощью магниторазрядного насоса после прогрева рабочей вакуумной камеры при температуре 200°С в течение 8 h. В качестве рабочего инертного газа использовался ксенон. Давление инертного газа было порядка 10⁻³ Torr. Толщина пленок в каждой серии варьировалась от 50 до 200 nm. Чтобы предотвратить окисление, пленки Ni были покрыты слоем углерода толщиной 10 nm. Серии пленок Ni с указанными выше толщинами были отожжены в вакууме в течение часа при температурах $T_{ann} = 300, 400$ и 500° С.

Исследование микроструктуры изучаемых образцов было выполнено с помощью Х-лучевого дифракционного анализатора (XRD). Объемные магнитные характеристики никелевых пленок измерялись на вибрационном магнитометре. Информация о приповерхностных магнитных характеристиках образцов была получена с помощью магнитооптического магнитометра, подробно описанного в [18]. Известно, что магнитооптический эффект Керра чувствителен к намагниченности приповерхностного слоя определенной толщины tpen, соответствующей "глубине проникновения света в среду". Величина tpen определяется с помощью соотношения $t_{\rm pen} = \lambda/4\pi k$, где λ — длина волны падающего света, а k — коэффициент поглощения среды. Согласно существующим экспериментальным данным [13], значение t_{pen} для металлических ферромагнетиков не превышает 10-30 nm в области энергии квантов падающего света $0.5 < \hbar \omega < 5 \, \text{eV}$. В данном случае величина t_{pen} составляла $\simeq 15$ nm. Измерение приповерхностных петель гистерезиса было выполнено с помощью экваториального эффекта Керра (ЭЭК) δ . Здесь $\delta = (I - I_0)/I_0$, где Iи I₀ — интенсивности света, отраженного от намагниченного и ненамагниченного образцов соответственно. Фактически для изучаемых образцов измерялись зависимости $\delta(H)/\delta_S \propto M(H)/M_S$ (δ_S — значение ЭЭК при $M = M_S, M_S$ — намагниченность насыщения) при циклическом изменении (от +H до -H и от -H до +H) внешнего магнитного поля, приложенного параллельно поверхности образца и перпендикулярно плоскости падения света. Спектральные зависимости ЭЭК были измерены в области энергии квантов падающего света $1.5 < \hbar \omega < 6 \,\mathrm{eV}$. Угол падения света на образец был равен 65°. Все измерения выполнялись при комнатной температуре.

3. Результаты эксперимента и их обсуждение

С помощью вибрационного и магнитооптического магнитометров для всех изучаемых пленок Ni были измерены объемные и приповерхностные петли гистерезиса. Измерения выполнялись при двух ориентациях внешнего магнитного поля H, приложенного в плоскости образцов. В одном случае направление H совпадало с ориентацией магнитного поля, приложенного в процессе напыления пленок (обозначим это направление как D_1), а в другом было перпендикулярно данному направлению (D_2).

Было обнаружено, что для исходных и отожженных при 300°С пленок никеля в поле, приложенном вдоль D_1 , петли гистерезиса (как приповерхностные, так и объемные) имеют форму, близкую к прямоугольной, а в поле, приложенном вдоль D_2 , петли наклонные. Для отожженных при 400 и 500°С пленок такого различия магнитных свойств не наблюдалось. Для иллюстрации на рис. 1 и 2 приведены петли гистерезиса, полученные для исходной и отожженной при температуре $T_{\rm ann} = 400°$ С пленок никеля толщиной 200 nm. Зависимости приповерхностных и объемных значений коэрцитивной силы H_C и приведенных значений остаточной намагниченности M_R/M_S от толщины пленок Ni представлены на рис. 3 и 4.

Обнаруженное различие петель гистерезиса для исходных и отожженных при 300°С пленок никеля свидетельствует о наличии наведенной магнитной анизотропии в плоскости образцов, обусловленной, согласно существующим представлениям (см., например, [19]), магнитным полем H_{Sub}, приложенным в процессе напыления пленок. Известно [19], что для тонких однодоменных магнитных пленок с осью легкого намагничивания (ОЛН), лежащей в плоскости образца, в поле, параллельном ОЛН, наблюдаются петли гистерезиса прямоугольной формы, а в перпендикулярном направлении — безгистерезисные петли с нулевым значением коэрцитивной силы и остаточной намагниченности. С помощью биттеровской техники наблюдения доменных структур было установлено, что изучаемые пленки Ni являются многодоменными. Вследствие этого в исходных и отожженных при 300°C пленках никеля в поле, приложенном вдоль D_1 (параллельном H_{Sub}), петли гистерезиса имеют форму, близкую к прямоугольной (значения приведенной остаточной намагниченности $M_R^{
m Sur}/M_S \sim 0.94{-}0.97,~M_R^{
m Vol}/M_S \sim 0.9),$ а в поле, приложенном вдоль D2, наблюдаются наклонные петли с отличной от нуля коэрцитивной силой. Анализ зависимостей приповерхностных и объемных значений коэрцитивной силы Н_С и приведенных значений остаточной намагниченности M_R/M_S от толщины пленок Ni показал, что для всех изучаемых систем коэрцитивная сила H_C возрастает с увеличением толщины пленок Ni t_{Ni} . В поле, приложенном вдоль D_1 , приведенная остаточная намагниченность исходных и отожженных при 300°С образцов практически не зависит от t_{Ni}. Для серии образцов Ni, отожженных при 400 и 500°C, как приповерхностные, так и объемные значения приведенной остаточной намагниченности уменьшаются с увеличением толщины пленок, объемные значения $M_R^{\rm Vol}/M_S$ вдоль D_1 и D_2 одинаковы, а поверхностные различаются. Таким образом, в результате отжига при температуре $T_{ann} = 400$ и 500°C пленки никеля становятся практически изотропными и более магнитожесткими. Наконец, из рис. 3 и 4 видно, что для всех образцов приповерхностные и объемные значения H_C и M_R/M_S различаются, причем $H_C^{\text{Sur}} > H_C^{\text{Vol}}$ и $M_R^{\text{Sur}}/M_S > M_R^{\text{Vol}}/M_S$. Известно [19], что такие соотношения приповерхностных и объемных значений H_C и M_R/M_S характерны для магнитных пленок толщиной 50-200 nm. По аналогии с существующими данными [19] этот факт может быть объяснен различной доменной структурой приповерхностного слоя и внутреннего объема пленки.

Наблюдаемое увеличение коэрцитивной силы H_C при возрастании толщины $t_{\rm Ni}$ и температуры отжига можно объяснить, используя результаты микроструктурных исследований пленок Ni. В настоящее время доказано, что магнитополевое поведение тонких пленок зависит в основном от размера кристаллитов, формирующих

Рис. 1. Петли гистерезиса, полученные с помощью вибрационного магнитометра (VSM) и магнитооптического экваториального эффекта Керра (MOKE) для исходной пленки Ni толщиной 200 nm в магнитном поле, параллельном и перпендикулярном направлению поля H_{Sub} , приложенного параллельно подложке в процессе напыления пленок (соответственно направления D_1 и D_2).

Рис. 2. То же, что на рис. 1, для отожженной при $T_{ann} = 400^{\circ}$ С пленки Ni толщиной 200 nm.

Рис. 3. Зависимости приповерхностных и объемных значений коэрцитивной силы H_C от толщины пленок Ni, полученные для исходных и отожженных образцов.

Рис. 4. Зависимости приповерхностных и объемных значений остаточной намагниченности от толщины пленок Ni, полученные для исходных и отожженных образцов.

Рис. 5. Спектральные зависимости ЭЭК от энергии квантов падающего света, полученные для исходных и отожженных пленок Ni.

массив пленки, и их кристаллографической ориентации. Было обнаружено, что все изучаемые пленки имеют поликристаллическую структуру с размером кристаллитов, сравнимым с толщиной пленки. Анализ рентгеноструктурных данных показал, что в XRD-спектрах, полученных для изучаемых пленок, наблюдаются только линии {111}, что свидетельствует о преимущественной (111)-ориентации кристаллитов параллельно поверхности образца. Кроме того, было найдено, что с увеличением температуры отжига интенсивность линий {111} возрастает (см. таблицу), что согласно существующим данным [20], связано с усилением текстуры образцов.

В работе [20] было показано, что в более (111)-текстурированных образцах (при прочих равных условиях, например при одинаковых толщине и составе) значение коэрцитивной силы увеличивается. Кроме того, в соответствии с данными, приведенными в [12,13], значение H_C возрастает с увеличением толщины магнитных пленок, что обусловлено ростом размера кристалли-

Интенсивность линий {111}, наблюдаемых для исходных и отожженных пленок Ni

	$T_{\mathrm{ann}},^{\circ}\mathrm{C}$			
t _{Ni} , nm	0	300	400	500
50	48	152	2130	3040
70	180	2280	2400	3488
100	260	3600	3680	3980
200	1808	3760	4800	5640

тов, формирующих объем пленок. Мы действительно наблюдали такую корреляцию между магнитными и микроструктурными свойствами пленок Ni.

Увеличение приповерхностных значений H_C^{Sur} , а вследствие этого и объемных значений H_C^{Vol} с ростом температуры отжига может быть также объяснено усиливающейся шероховатостью поверхности отожженных образцов, о чем свидетельствуют данные, полученные нами с помощью атомного силового микроскопа. Например, для исходной и отожженных при температурах 300, 400 и 500°С пленок никеля толщиной 70 nm средней (максимальный) размер шероховатостей равен 0.45 (0.65), 0.53 (1), 0.68 (1.07) и 0.72 (1.12) nm соответственно.

На рис. 5 приведены спектральные зависимости ЭЭК от энергии квантов падающего света ћа, полученные для изучаемых пленок никеля при $H > H_S$, где H_S поле насыщения исследуемого образца. Из рис. 5 видно, что для всех изучаемых пленок форма кривых $\delta(\hbar\omega)$ практически одинакова, а для пленок одной серии величина ЭЭК не зависит от толщины образца, что в соответствии с приведенным выше описанием магнитооптической методики обусловлено тем, что толщина изучаемых образцов $t_{\rm Ni} > t_{\rm pen}$. Максимальное значение ЭЭК (δ^{\max}) для всех образцов наблюдается в области $\hbar\omega = 3.7 \,\mathrm{eV}$. Значения δ^{max} равны $4.6 \cdot 10^{-3}$, $3.9 \cdot 10^{-3}$, $3.6 \cdot 10^{-3}$ и $3.2 \cdot 10^{-3}$ для исходных и отожженных при 300, 400 и 500°C пленок никеля соответственно. Видно, что с ростом температуры отжига величина ЭЭК уменьшается. Этот факт можно объяснить следующим образом. Согласно данным, полученным с помощью вибрационного магнитометра, значение намагниченности насыщения M_S отожженных при 300, 400 и 500°С пленок никеля уменьшается примерно в 1.2, 1.3 и 1.4 раза соответственно по сравнению с M_S исходных образцов. Соотношение максимальных значений ЭЭК δ^{max} для отожженных и исходных пленок практически такое же. Известно, что магнитооптические эффекты в первом приближении имеют линейную зависимость от намагниченности ($\delta \propto M$). Таким образом, можно предположить, что уменьшение ЭЭК в отожженных образцах обусловлено уменьшением M_S .

4. Заключение

Изучено влияние температуры отжига на магнитные и магнитооптические свойства пленок Ni толщиной 50-200 nm. Обнаружено существенное увеличение коэрцитивной силы изучаемых образцов с ростом температуры отжига. Найденные зависимости магнитных свойств от толщины пленок и температуры отжига хорошо коррелируют с микроструктурными изменениями образцов. Установлено, что величина ЭЭК с ростом температуры отжига уменьшается. Показано, что причиной такого изменения ЭЭК является уменьшение значения намагниченности насыщения M_S в отожженных образцах. Полученные экспериментальные данные могут найти применение при разработке многослойных систем для современных устройств спиновой микроэлектроники.

Список литературы

- M. Xu, T.M. Liakopoulos, C.H. Ahn, S.H. Han, H.J. Kim. IEEE Trans, Magn. 34, 4, 1369 (1998).
- [2] K.H. Shin, M. Inoue, K.I. Arai. Smart Mater. Struct. 9, 357 (2000).
- [3] I. Fergen, K. Seemann, A.V.D. Weth, A. Schüppen. J. Magn. Magn. Mater. 242–245, 146 (2002).
- [4] Y.M.H. Kryder. Thin Solid Films **216**, *1*, 174 (1992).
- [5] H. Kanai, K. Yamada, K. Aoshima, Y. Ohtsuka, J. Kane, M. Kanamine, J. Toda, Y. Mizoshita. IEEE Trans. Magn. 32, 5, 3368 (1996).
- [6] Z. Wang, Y. Nakamura. J. Appl. Phys. 79, 8, 6639 (1996).
- [7] H. Lessoff, D.C. Webb. Thin Solid Films **39**, 185 (1976).
- [8] H.D. Buckley. Prog. Surf. Sci. 12, 1 (1982).
- [9] Proc. Int. Magnetic conf. IEEE Trans. Magn. 35, 2517; 2520; 2628; 2643; 2661; 2667 (1999).
- [10] Е.Е. Шалыгина, А.А. Корендясев, Л.В. Козловский. Письма в ЖТФ 22, 3, 63 (1996).
- [11] E.E. Shalyguina, N.I. Tsidaeva, S. Khudaykova, R. Iskhakov, J. Moroz. J. Magn. Soc. Jap. 21, Suppl. S2, 181 (1997).
- [12] J.A. Barnard, M. Tan, A. Waknis, E. Haftek. J. Appl. Phys. 69, 5298 (1991).
- [13] E.E. Shalyguina, K.H. Shin. J. Magn. Magn. Mater. 220, 167 (2000).
- [14] C.Y. Shin, C.L. Bauer, J.O. Artman. J. Appl. Phys. 64, 10, 5428 (1988).
- [15] T. Otiti, G.A. Niklasson, P. Svedlindh, C.G. Granqvist. Thin Solid Films **307**, 247 (1997).

- [16] Y.V. Kudryavtsev, V.V. Nemoshkalenko, Y.P. Lee, K.W. Kim, C.G. Kim, B. Szymanski. J. Appl. Phys. 88, 5, 2430 (2000).
- [17] O. Kohmoto, N. Mineji, Y. Isagawa, F. Ono, O. Kubo. J. Magn. Magn. Mater. 239, 36 (2000).
- [18] Е.Е. Шалыгина, В.В. Молоканов, М.А. Комарова. ЖЭТФ 122, 3(9), 593 (2002).
- [19] Г.С. Кринчик. Физика магнитных явлений. Изд-во МГУ, М. (1985).
- [20] C.J. Lin, G.L. Gorman, C.H. Lee, R.F.C. Farrow, E.E. Marinero, H.V. Do, H. Notarys. J. Magn. Magn. Mater. 93, 194 (1991).