# Исследования зависимостей структуры и магнитных свойств пленок FeTaN от концентрации азота

© А.С. Камзин, Фулинь Вей\*, Зхенг Янг\*, С.А. Камзин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия \* Научно-исследовательский институт магнитных материалов, Ланджоуский университет, 730000 Ланджоу, Китай

E-mail: Kamzin@pop.ioffe.rssi.ru

#### (Поступила в Редакцию 27 мая 2004 г.)

Исследованы морфологии структуры и магнитные свойства тонких пленок FeTaN с высоким содержанием Ta (10 wt.%), синтезированных отжигом соединений, осажденных методом реактивного радиочастотного магнетронного распыления в газовой смеси Ar + N. Установлены зависимости свойств пленок FeTaN от содержания в них азота и температуры отжига. Определены режимы осаждения и термической обработки соединений FeTaN, при которых синтезируются наноструктурные тонкие пленки FeTaN с высокими магнитомягкими характеристиками { $B_s = 1.6$  T,  $H_c = 0.2$  Oe и  $\mu_1(1 \text{ MHz}) = 3400$ }.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 02-02-39006) и Национального фонда науки Китая.

#### 1. Введение

Ферритовые тонкие пленки привлекают пристальное внимание исследователей, потому что являются материалами, имеющими важное прикладное значение, как например, в устройствах с высокой плотностью магнитной записи информации, магнитных сенсорах, в СВЧ приборах и др. [1-3]. Преимущества ферритов в виде тонких пленок заключаются в разнообразии их магнитных и электрических свойств, высокой химической устойчивости и механической прочности. Одним из важнейших применений магнитных пленок является их использование в устройствах записи-чтения информации со сверхвысокой плотностью. Так, пленки гексагональных ферритов типа Ва-М весьма перспективны в качестве носителей такой информации, потому что обладают большой величиной коэрцитивной силы. Использование таких носителей информации в свою очередь ужесточает требования к устройствам записи. Для качественной сверхплотной записи информации на подобных носителях поле насыщения в сердечнике записывающей головки дожно быть ~ 20 kG или больше [4,5]. Наноструктурные пленки FeXN, где X = Hf, Nb, Zr, Si, В или Al, удовлетворяют перечисленным требованиям (см., например, [6] и ссылки там). Однако, каждый из этих вводимых третьим элементом ионов поразному влияет на магнитные свойства синтезированного материала. В [7] выдвинуто предположение, что Та может быть одним из наиболее подходящих элементов, существенно улучшающих магнитомягкие характеристики пленок Fe-N. Это предположение основывалось на относительно высокой степени взаимодействия Та с ионами азота [8], приводящей к большей растворимости атомов N в пленках FeTaN и улучшению их магнитомягких свойств. В [9] синтезированы пленки FeTaN толщиной  $0.6\,\mu\text{m}$  с большим содержанием (12.5 wt.%) тантала и обнаружено, что после осаждения пленки FeTaN являются аморфными. После отжига аморфных соединений FeTaN, осажденных при парциальном давлении азота, равном 7.5%, были получены пленки с достаточно хорошими магнитомягкими характеристиками [9]. В [10] установлено, что пленки FeTaN обладают наивысшей температурной стабильностью магнитных параметров. В [11] показаны технологические возможности синтеза пленок FeTaN, обладающих достаточно высокими магнитомягкими характеристиками.

Из анализа публикаций видно, что технология получения магнитных пленок с требуемыми свойствами изучена далеко не полностью. Для получения магнитных тонких пленок используются разные методы осаждения, такие как золь-гельный, магнетронного распыления, лазерного распыления, молекулярной эпитаксии и др. (см., например [11–13]). Существенное влияние на свойства пленок FeXN оказывает соотношение компонент в соединении, а также технологический режим синтеза (режим распыления, давление газа при распылении, температура подложки). Очень важным процессом, при котором формируются свойства таких пленок, является отжиг осажденных соединений. Температура отжига может варьироваться в широких пределах и таким образом целенаправленно влиять на свойства получаемой пленки. Следовательно, процесс отжига пленок требует всестороннего изучения. В данной работе проведены исследования влияния режимов синтеза и концентрации ионов N на микроструктуру и магнитные свойства тонких ( $\sim 1000 \text{ nm}$ ) пленок FeXN при X = Ta.

## 2. Условия эксперимента

Тонкие пленки FeTaN синтезированы методом реактивного радиочастотного (PЧ) магнетронного распыления композитной мишени в смеси газов Ar и  $N_2$  на

Условия осаждения FeTaN пленок

| Давление в камере                         | $5 	imes 10^{-7}$ Torr  |
|-------------------------------------------|-------------------------|
| Давление при распылении                   | $2 \times 10^{-3}$ Torr |
| Парциальное давление азота в смеси Ar + N | 0-10%                   |
| Напряжение РЧ распыления                  | 2.8 kV                  |
| Температура подложки                      | 20°C                    |
| Толщина пленки                            | 400 nm                  |
| Скорость осаждения                        | 20-28 nm/min            |
|                                           |                         |

подложки в виде стеклянных пластинок. Композитные мишени представляли собой пластинки чистого железа, часть которых накрывалась фольгой из высокоочищенного Та. Содержание ионов Та в осаждаемых пленках можно регулировать изменением площади, закрываемой фольгой из Та, на пластинке из Fe. Эксперименты показали, что, если накрывать 20% площади пластинки из железа фольгой Та, можно получить соединение FeTaN, в котором 10 wt.% ионов Fe замещены ионами Та. Количество ионов N в соединении FeTaN определялось величиной парциального давления азота в смеси газов Ar + N<sub>2</sub> в камере распыления при осаждении пленок. Условия, при которых осаждались пленки FeTaN, приведены в таблице. Пленки отжигались в вакуммной печи при давлении ~ 1 × 10<sup>-5</sup> Torr.

Структурный анализ синтезированных пленок проводился с использованием рентгеновского дифракционного спектрометра (РДС). Фазовая идентификация осуществлялась с помощью РДС и мессбауэровской спектроскопии (МС) с регистрацией конверсионных и Оже-электронов (конверсионная электронная МС). Электронный микроскоп в геометрии пропускания и атомный силовой микроскоп (АСМ) были использованы для изучения морфологии пленок. Намагниченность насыщения  $M_s$  и коэрцитивная сила  $H_c$  пленок измерялись высокочувствительным ( $10^{-3}$  emu) магнитометром с вибрирующим образцом. Энергия анизотропии рассчитывалась из B-H-петель гистерезиса, как это описано в [14].

# 3. Результаты экспериментов и обсуждение

На рис. 1, *а* представлены рентгеновские дифрактограммы (РД), полученные после осаждения пленок FeTaN при различных величинах парциального давления азота  $P(N_2)$  при распылении в газовой смеси Ar + N<sub>2</sub>. Безазотные пленки FeTa, как это следует из анализа дифрактограмм, показанных на рис. 1, *а*, состоят из *α*-Fe кристаллитов, межплоскостное расстояние в которых d(110) = 2.073 Å превышает эту величину для чистого *α*-Fe (2.026 Å). Этот факт позволяет предположить, что ионы Ta замещают в решетке *α*-Fe ионы Fe, и формируется замещенный твердый раствор *α*-Fe(Ta). При повышении парциального давления  $P(N_2)$  линия (110) состояния *α*-Fe расширяется и смещается в сторо-

ну меньших угловых величин. Эти изменения можно объяснить тем, что атомы азота внедряются в решетку  $\alpha$ -Fe, занимая межузловые положения, и расширяют ее. Пленки, осажденные в области давлений  $P(N_2) \ge 3\%$ , не обладают кристаллической структурой, т.е. практически аморфны. Это подтверждается в области температур



**Рис. 1.** Рентгеновские диффрактограммы, снятые после осаждения пленок (a) и после их отжига при температуре 450°С (b) в зависимости от величины парциального давления азота в камере распыления  $P(N_2)$ .



**Рис. 2.** Индукция насыщения  $B_s(1)$  и коэрцитивная сила  $H_c(2)$  пленок, осажденных при  $P(N_2) = 5\%$ , измеренные в области температур ниже комнатной.



**Рис. 3.** Индукция насыщения  $B_s$  (1,2) и коэрцитивная сила  $H_c$  (3,4) пленок в зависимости от парциального давления азота  $P(N_2)$ , измеренные после осаждения пленок (2,4) и после их отжига при температуре 450°C (1,3) соответственно.

ниже комнатной данными измерений магнитных характеристик пленок, осажденных при  $P(N_2) = 5\%$  и показанных на рис. 2. Если бы пленка состояла только из наноразмерных кристаллитов  $\alpha$ -Fe, то коэрцитивная сила  $H_c$  была бы меньше значений, наблюдаемых при комнатной температуре, или же оставалась постоянной, потому, что величина  $H_c$  зависит от обменного взаимодействия между частицами и должна быть обратно пропорциональна намагниченности  $M_s$  [15]. Однако, из рис. 2 видно, что как  $M_s$ , так и  $H_c$  при понижении температуры до  $-173^{\circ}$ С монотонно увеличиваются.

На рис. З показаны зависимости индукции насыщения  $B_s$  и коэрцитивной силы  $H_c$  пленок от величины парциального давления азота, измеренные после их осаждения. Как видно из рис. 3, неотожженные пленки не обладают нужными для создания магнитных головок свойствами. В [15] показано, что основным условием для формирования требуемых магнитомягких характеристик в таких материалах является небольшая или очень малая магнитная анизотропия (несколько  $J/m^3$ ). В  $\alpha$ -Fe с размером зерен порядка 10 nm магнитная анизотропия составляет несколько J/m<sup>3</sup> вследствие обменного взаимодействия между наноразмерными α-Fe кристаллитами. В поликристаллических безазотных пленках размер α-Fe-частиц превышает длину обменного взаимодействия между ними. В этом случае процесс намагничивания зависит от магнитокристаллической анизотропии этих гранул, как это происходит в объемном образце железа ( $H_c = \sim 50 \,\text{Oe}$ ).

Как отмечено выше, наиболее эффективным способом синтеза наноструктурных сплавов является термоуправляемая кристаллизация аморфных соединений. Поэтому были проведены исследования зависимостей магнитных характеристик от температуры отжига  $T_{ann}$  для пленок, осажденных при  $P(N_2) = 5\%$ . Полученные экспериментальные данные приведены на рис. 4. При

отжиге в области низких температур значения индукции насыщения  $B_s$  пленок, как видно из рис. 4, невелики, тогда как коэрцитивная сила  $H_c$  большая, она совпадает с величинами  $H_c$  для аморфных пленок. Повышение температуры отжига приводит к монотонному увеличению индукции насыщения  $B_s$  и плавному уменьшению коэрцитивной силы  $H_c$ . Резкое изменение величин  $B_s$  и  $H_c$ наблюдается в области температур  $T_{ann} = 350-400^{\circ}$  С. При дальнейшем повышении температуры отжига величины  $B_s$  и  $H_c$  не меняются, что указывает на завершение в пленке процесса кристаллизации наночастиц  $\alpha$ -Fe. Таким образом, оптимальной температурой для кристаллизации пленок является область 400–450°С. Поэтому осажденные аморфные соединения были отожжены в вакуумной печи при 450°С.

На рис. 1, *b* представлены рентгеновские дифрактограммы пленок, снятые после их отжига, в зависимости от величины парциального давления азота  $P(N_2)$ . На дифрактограммах, показанных на рис. 1, *b*, не наблюдается каких-либо явных различий между РД пленок, осажденных в области давлений  $P(N_2) < 3\%$ , снятых до и после их отжига. Однако, при синтезе в области давлений  $P(N_2) \ge 3\%$  формируются наноразмерные кристаллиты, которые внедряются в оставшуюся аморфной матрицу. Продукты кристаллизации в пленках, осажденных при различных  $P(N_2)$ , отличаются.

На рис. З приведены зависимости индукции насыщения  $B_s$  и коэрцитивной силы  $H_c$  пленок в зависимости от величины парциального давления азота  $P(N_2)$ , измеренные после отжига осажденных соединений. Как видно из рис. З, отжиг приводит к увеличению значений индукции насыщения  $B_s$  пленок, но наибольший рост  $B_s$ наблюдается в пленках, осажденных при высоких давлениях  $P(N_2)$ . Значение  $B_s$  в пленках, осажденных в области давлений  $P(N_2) < 5\%$ , практически не меняется. В пленках, полученных при давлениях  $P(N_2) \ge 5\%$ , наблюдается монотонное уменьшение  $B_s$ . Зависимость



**Рис. 4.** Индукция насыщения  $B_s$  (1) и коэрцитивная сила  $H_c$  (2) пленок, осажденных при  $P(N_2) = 5\%$ , приведенные в зависимости от температуры отжига  $T_{ann}$ .



**Рис. 5.** Конверсионные электронные мессбауэровские спектры пленок, a — осажденные при  $P(N_2) = 5\%$ ; b — осажденные при  $P(N_2) = 5\%$  и затем отожженные при  $450^{\circ}$ С; c — осажденные при  $P(N_2) = 7\%$  и отожженные при  $450^{\circ}$ С.

коэрцитивной силы  $H_c$  пленок от величины  $P(N_2)$ , как видно из рис. 3, несколько другая. При повышении давления  $P(N_2)$  величина  $H_c$  резко уменьшается, достигает минимального значения при  $P(N_2) = 5\%$  и затем плавно увеличивается. Такие изменения магнитных свойств можно объяснить кристаллизацией в пленках соединений, по-разному влияющих на величину коэрцитивной силы. Так, в пленках, осажденных при давлениях  $P(N_2) < 5\%$ , причиной увеличения  $B_s$  является то, что при отжиге в таких пленках кристаллизуются в основном наноразмерные частицы α-Fe. При отжиге пленок, осажденных в области давлений  $P(N_2) > 5\%$ , в них одновременно кристаллизуются наночастицы α-Fe и соединение TaN. На рис. 5 показаны мессбауэровские спектры пленок, осажденных при парциальном давлении азота  $P(N_2) = 5\%$  (рис. 5, *a*) и затем отожженных при 450°С (рис. 5, b), а также пленки, осажденной при  $P(N_2) = 7\%$  и отожженной при 450°С (рис. 5, *c*). Спектр пленки, осажденной при  $P(N_2) = 5\%$  (рис. 5, *a*), не имеет зеемановской структуры линий и состоит из широких линий, указывающих на то, что исследуемое соединение является аморфным.

Мессбауэровские спектры пленок, осажденных при  $P(N_2) = 5\%$  и затем отожженных при 450°С (рис. 5, *b*), состоят из зеемановского секстиплета с ширинами линий  $0.30 \pm 0.03$  mm/s и величиной эффективного магнитного поля на ядрах ионов железа  $333.8 \pm 0.4$  kOe. Площади линий зеемановского секстиплета относятся как 3:4:1:1:4:3. Это означает, что магнитные моменты ионов железа в пленке ориентированы перпендикулярно волновому вектору гамма-излучения, направленного по нормали к плоскости поверхности пленок. Отсюда следует, что магнитные моменты ионов железа располагаются в плоскости пленок. На спектре в области "нулевой" скорости допплеровского движения мессбауэровского источника наблюдаются линии, указывающие на то, что в пленках имеется небольшое количество соединения, в котором железо находится в парамагнитном состоянии. Параболическая форма фоновой линии спектра указывает на присутствие в пленках небольшого количества соединений железа в аморфном состоянии. По данным атомной силовой микроскопии пленки, полученные при  $P(N_2) = 5\%$  и  $T_{ann} = 450^{\circ}$ С, состоят из  $\alpha$ -Fe зерен размером  $\sim 5-10\,\mathrm{nm}$ , что меньше длины ферромагнитного обменного взаимодействия. Доля нанокристаллитов в объеме этих пленок самая высокая. Таким образом, из данных АСМ, РД (рис. 1, b) и мессбауэровской спектроскопии (рис. 5, b) следует, что при отжиге пленок, осажденных при  $P(N_2) = 5\%$ , в них главным образом формируются наночастицы  $\alpha$ -Fe, кристаллизующиеся в аморфной матрице, причем плоскость (110) этих  $\alpha$ -Fe-гранул преимущественно ориентирована параллельно поверхности пленок.

Как видно из рис. 5, с мессбауэровский спектр пленки, осажденной при  $P(N_2) = 7\%$  и затем отожженной при 450°С, состоит из широких линий ( $\sim 2 \, \text{mm/s}$ ) зеемановского секстиплета. Анализ спектра показал, что он является суперпозицией линий, принадлежащих состоянию  $\alpha$ -Fe и соединениям типа Ta<sub>x</sub>N<sub>y</sub>. Суммарные площади линий секстиплета относятся приблизительно как 3:4:1:1:4:3, указывая на то, что магнитные моменты ионов железа расположены в плоскости пленки. В области "нулевой" скорости в спектре наблюдаются линии, свидетельствующие, что в пленках имеется небольшое количество соединений железа в парамагнитном состоянии. Следовательно, данные мессбауэровской спектроскопии являются прямым подтверждением результатов исследований с использованием АСМ и РД, что при отжиге пленок, осажденных в области давлений  $P(N_2) > 5\%$ , в них одновременно кристаллизуются наночастицы  $\alpha$ -Fe и соединения типа TaN.

В [16] выдвинуто предположение, что в случае плотного сосредоточения (сегрегации) вещества TaN происходит блокирование обменного взаимодействия между частицами  $\alpha$ -Fe и магнитомягкие свойства пленок разрушаются. Это подтверждается данными измерений магнитных характеристик этих пленок, приведенных на рис. 3. Пленки, в которых кристаллизуются только наноразмерные частицы  $\alpha$ -Fe, имеют высокие магнитомягкие характеристики, потому что эффективная анизотропия в этом случае должна существенно подавляться за счет обменного взаимодействия наночастиц  $\alpha$ -Fe [14]. Необходимо отметить, что, как показали эксперименты, отжиг осажденных при  $P(N_2) = 5\%$  пленок приводит к формированию в них главным образом наночастиц  $\alpha$ -Fe, кристаллизовавшихся в аморфной матрице, причем плоскость (110) этих  $\alpha$ -Fe гранул преимущественно ориентирована параллельно поверхности пленок.

## 4. Заключение

В результате исследований установлены условия синтеза магнитомягких тонких пленок FeTaN с содержанием тантала 10 wt.% с использованием управляемой кристаллизации осажденных аморфных соединений. Определены зависимости микроструктуры и магнитных свойств от величины парциального давления азота в камере распыления. Показано, что в безазотных пленках ионы Та замещают ионы Fe в α-Fe-решетке и образуется хорошо кристаллизующийся твердый раствор  $\alpha$ -Fe(Ta). При повышении парциального давления азота структура осажденных пленок становится практически аморфной. В процессе отжига в пленках формируются нанокристаллическая  $\alpha$ -Fe и другие фазы типа TaN, встраивающиеся в оставшуюся аморфной матрицу. Установлено, что высокие магнитомягкие свойства имеют пленки, осажденные при парциальном давлении азота  $P(N_2) = 5\%$ . Этот факт объясняется тем, что полученные пленки состоят главным образом из наноразмерных кристаллитов  $\alpha$ -Fe, распределенных в аморфной матрице, причем размеры гранул *α*-Fe меньше 10 nm. Структура пленок кластерная. Они обладают наведенной одноосной анизотропией, формируемой ионами N, занимающими октаэдрические положения в решетке  $\alpha$ -Fe.

#### Список литературы

- [1] X. Sui, M.H. Kryder. Appl. Phys. Lett. 63, 1582 (1993).
- [2] T. Kiyomura, Y. Maruo, M. Gomi. J. Appl. Phys. 88, 4768 (2000).
- [3] B.Y. Wong, X. Sui, D.E. Laughlin, M.H. Kryder. J. Appl. Phys. 75, 5966 (1994).
- [4] O. Kohomoto. IEEE Trans. Magn., MAG-27, 3640 (1991).
- [5] S. Wang, M.H. Kryder. J. Appl. Phys. 69, 5625 (1991).
- [6] D. Zheng, Y. Ma, D.Wu, T. Xie, F. Wei, Z. Yang. Phys. Stat. Sol. (a) **193**, 61 (2002). B. Ma, F.L. Wei, X.X. Liu, C.T. Xiao, Z. Yang. Mater. Sci. Eng. B **57**, 96 (1999).
- [7] R.D. Pehkle, F. Elliott. IEEE Trans 218, 1088 (1960).
- [8] K. Nakauishi, O. Shimiz, S. Yoshida. IEEE Trans. Magn., MAG-28, 7128 (1992).
- [9] W.C. Chang, D.C. Wu, J.C. Lin, C.J. Chen. J. Appl. Phys. 79, 5159 (1996).
- [10] M.K. Minor, B. Viala, J.A. Barnard. J. Appl. Phys. 79, 5005 (1996).

- [11] Y. Ma, X. Li, T. Xie, F. Wei, Z. Yang. Mater. Sci. Eng. B 103, 233 (2003).
- [12] F. Chen, Z. Zhigan, Z. Xu, C. Liao, C. Yan. Thin Solid Films 339, 109 (1999).
- [13] S.A. Chambers, R.F.C. Farrow, S. Maat, M.F. Toney, L. Folks, J.G. Catalano, T.P. Trainor, G.E. Brown. Jr. J. Magn. Magn. Mater. 246, 124 (2002).
- [14] K.H.J. Buschow. Handbook of Magnetic Materials. Vol. 10. D. Elesevier Science (1997). P. 433.
- [15] G. Herzer. IEEE Trans. Magn. 26, 1937 (1990).
- [16] N. Hasegawa, M. Saito. IEEE Trans. Magn. Japan, MAG-6, 91 (1991).