Оптические свойства и электронная структура редкоземельных ферроборатов

© В.Н. Заблуда, С.Г Овчинников, А.М. Поцелуйко, С.А. Харламова

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: stais@iph.krasn.ru sgo@iph.krasn.ru

(Поступила в Редакцию 17 мая 2004 г.)

Проведены измерения и интерпретация спектров оптического поглощения монокристаллов ферроборатов GdFe₃(BO₃)₄ и GdFe_{2.1}Ga_{0.9}(BO₃)₄. Обнаружено, что края поглощения и полосы поглощения *A*, *B* и *C* ниже края близки к соответствующим энергиям FeBO₃. Предложена многоэлектронная модель зонной структуры GdFe₃(BO₃)₄ с учетом сильных электронных корреляций *d*-состояний железа. Показано, что GdFe₃(BO₃)₄ имеет диэлектрическую щель с переносом заряда. С ростом давления предсказаны кроссовер высокоспинового и низкоспинового состояний иона Fe³⁺, коллапс магнитного момента, ослабление кулоновских корреляций, резкое уменьшение энергетической щели, а также переход диэлектрик–полупроводник.

Работа поддержана Российским фондом фундаментальных исследований (грант № 03-02-16286) и Программой Отделения физических наук РАН "Сильно коррелированные электроны".

1. Введение

С целью создания высокоэффективных функциональных материалов для лазерных, пьезоэлектрических и акустических устройств уже свыше 30 лет ведутся исследования монокристаллов редкоземельных оксиборатов со структурой хантита $RM_3(BO_3)_4$. Эти кристаллы наряду с высокотемпературными сверхпроводящими купратами и манганитами с колоссальным магнетосопротивлением являются примером систем с сильными электронными корреляциями (СЭК). СЭК определяют их электронную структуру, магнитные, оптические и электрические свойства.

Редкоземельный ферроборат $GdFe_3(BO_3)_4$ имеет структуру хантита с пространственной группой $R32(D_{3h}^7)$, Z = 3. Ионы резкоземельного Gd^{3+} находятся в призматическом окружении, ионы железа Fe^{3+} — в октаэдрическом [1]. Известно, что $GdFe_3(BO_3)_4$ — это антиферромагнетик (AФM) типа "легкая плоскость" с температурой Нееля $T_N = 38$ К [2,3]. При 10 К все подрешетки претерпевают переориентационный переход типа "спин-флоп" в АФМ фазу с легкой осью. При комнатной температуре это диэлектрик.

Из всей совокупности оксиборатов переходных металлов самым близким и интересным для сравнения с исследуемыми в данной работе монокристаллами GdFe₃(BO₃)₄ является ферроборат FeBO₃. Это соединение исследуется уже давно, известны его магнитные [4,5], оптические [6] и диэлектрические свойства. Недавно в нем обнаружено оптически индуцированное разрушение магнитного порядка при импульсной оптической накачке [7]. При нормальном давлении это диэлектрик с переносом заряда и с величиной оптической щели 2.9 eV [6,8]. FeBO₃ является характерным представителем систем с СЭК [9]. Недавние исследования этого соединения под действием высокого давления показали резкое изменение его магнитных и оптических свойств с переходом диэлектрикполупроводник [10–12].

До сих пор не было проведено работ по изучению спектров оптического поглощения и электронной структуры GdFe₃(BO₃)₄, это является целью настоящей работы. В разделе 2 описана образцы и методика эксперимента; в разделе 3 приведены результаты измерений спектров оптического поглощения GdFe₃(BO₃)₄ и GdFe_{2.1}Ga_{0.9}(BO₃)₄; в разделе 4 оптические свойства анализируются в рамках многозонной модели электронной структуры GdFe₃(BO₃)₄ и сравниваются с FeBO₃; в разделе 5 приводятся предсказания изменений оптических свойств и электронной структуры с ростом давления.

2. Образцы и методика эксперимента

Монокристаллы GdFe₃(BO₃)₄ и GdFe_{2.1}Ga_{0.9}(BO₃)₄ выращены из раствора в расплаве групповым методом на затравку [13]. Полученные монокристаллы имели темнозеленый (GdFe₃(BO₃)₄) и зеленый (GdFe_{2.1}Ga_{0.9}(BO₃)₄) цвет, а также были прозрачными в видимой области света. Для оптических измерений из объемных изометричных кристаллов изготавливались образцы в форме тонких пластин параллельно и перпендикулярно кристаллографической оси третьего порядка C_3 . Толщина пластин, выбранных для оптических измерений, составляла для первого направления ~ 53 μ m, а для второго ~ 42(37) μ m, площадь в обоих случаях ~ 2 mm². Спектры оптического поглощения $D = Ln(I_0/I)$ для GdFe₃(BO₃)₄ и GdFe_{2.1}Ga_{0.9}(BO₃)₄ получены на изготовленном в Институте физики СО РАН двухлучевом спектрометре в диапазоне $10\,000-40\,000\,\mathrm{cm^{-1}}\ (1.24-4.96\,\mathrm{eV})$ при температуре 300 К. Спектральная ширина щели решеточного монохроматора $10\,\mathrm{cm^{-1}}$. Точность измерения поглощения 3%.

Спектры оптического поглощения GdFe₃(BO₃)₄ и GdFe_{2.1}Ga_{0.9}(BO₃)₄

Спектры оптического поглощения $GdFe_3(BO_3)_4$ и $GdFe_{2.1}Ga_{0.9}(BO_3)_4$ приведены на рис. 1. Для спектра $GdFe_{2.1}Ga_{0.9}(BO_3)_4$ ясно видно расщепление пика *B*. На рис. 2 спектры оптического поглощения $GdFe_3(BO_3)_4$ для двух направлений падающего светового луча относительно кристаллографической оси *C*₃ показаны в сравнении со спектром известного соединения FeBO₃ [6,8].

Энергетическая щель, определяющая край фундаментального поглощения в GdFe₃(BO₃)₄, равна $E_g = 3.1$ eV, что немного больше, чем в FeBO₃ (Eg = 2.9 eV). Выявлены три группы полос (при E = 1.4, 2.0 и 2.8 eV), которые проявляются одинаково для обоих направлений. Обнаружено, что полосы в спектрах GdFe₃(BO₃)₄ и FeBO₃ близки по энергиям с точностью до десятых долей eV. Исходя из сходства полос, мы сделали предположение, что оптические свойства FeBO₃ и GdFe₃(BO₃)₄ совпадают в диапазоне энергий 1–3.5 eV.

Возникший вопрос о влиянии редкоземельного иона Gd³⁺ на оптический спектр прояснился с помощью

Рис. 1. Спектры оптического поглощения при температуре T = 300 K: GdFe₃(BO₃)₄ (*a*) и GdFe_{2.1}Ga_{0.9}(BO₃)₄ (*b*).

Рис. 2. Спектры оптического поглощения: $GdFe_3(BO_3)_4$, *с*-направление (*a*), $GdFe_3(BO_3)_4$ *а*-направление (*b*), $FeBO_3$ (*c*).

исследования Фурье-спектров высокого разрешения. Было установлено, что ион Gd^{3+} не имеет собственных полос поглощения вплоть до $32\,264\,\mathrm{cm^{-1}}$ (4 eV) [14], поэтому полосы *A*, *B* и *C* можно идентифицировать с поглощением ионов Fe³⁺, т.е. все переходы связаны с ионом Fe³⁺ и его ближайшим окружением.

Различие локальной кристаллической структуры $GdFe_3(BO_3)_4$ и FeBO₃ состоит в следующем: в монокристалле $GdFe_3(BO_3)_4$ в отличие от FeBO₃ координационный октаэдр кислородов FeO₆ слегка искажен и имеется три попарно равных расстояния Fe–O, достаточно близкие по величине (в таблице для $GdFe_3(BO_3)_4$ приведены средние значения расстояний). Таким образом, наряду с кубической компонентой следовало бы учитывать низкосимметричную компоненту кристаллического поля, однако, ввиду ее малости в дальнейших рассуждениях мы ею пренебрегаем.

Таким образом, можно интерпретировать наблюдаемые в GdFe_e(BO₃)₄ группы полос *A*, *B*, *C*, (как и в FeBO₃, рис. 2, *c*) как *d*-*d* переходы иона железа из основного состояния со спином S = 5/2 в возбужденное состояние S = 3/2, а именно ${}^{6}A_{1g}({}^{6}S) \rightarrow {}^{4}T_{1g}({}^{4}G)$ — *A*-группа полос, ${}^{6}A_{1g}({}^{6}S) \rightarrow {}^{4}T_{2g}({}^{4}G)$ — *B*-группа и ${}^{6}A_{1g}({}^{6}S) \rightarrow {}^{4}A_{1g}, {}^{4}E_{g}({}^{4}G)$ — *C*-группа. Кроме того, расстояния Fe–O и B–O (см. таблицу) для GdFe₃(BO₃)₄ и

Расстояния B–Fe, Fe–O; величина энергетической щели в FeBO3 и GdFe $_3(BO_3)_4$

	B–O,Å	Fe−O, Å	E_g, eV
FeBO ₃	1.3790	2.028	2.9
GdFe ₃ (BO ₃) ₄	1.3676	2.029	3.1

FeBO₃ практически идентичны, что позволяет сделать вывод о сходстве электронных структур этих двух кристаллов в диапазоне энергий до 4 eV в окрестности уровня Ферми.

Анализ оптических свойств GdFe₃(BO₃)₄ в рамках многоэлектронной модели зонной структуры оксиборатов: сравнение с FeBO₃

В настоящем разделе проведен анализ свойств $GdFe_3(BO_3)_4$ в рамках многоэлектронной модели зонной структуры FeBO₃, рассчитанной в [15], которая в диапазоне энергий до 4 eV справедлива и для $GdFe_3(BO_3)_4$.

Диэлектрик GdFe₃(BO₃)₄ имеет локализованные *d*-электроны Fe³⁺ в октаэдрах FeO₆ и локализованные *f*-электроны Gd³⁺ в треугольной призме GdO₆. Внутри группы BO₃ имеет место сильная *sp*-гибридизация орбиталей бора и кислорода. Как показали расчеты зонной структуры FeBO₃, гибридизация *d*-электронов Fe с *sp*-электронами группы BO₃ ничтожно мала. Потолок заполненной валентной зоны E_v и дно пустой зоны проводимости E_c образованы *sp*-орбиталями группы BO₃, определяя щель $E_g = E_c - E_v$.

В одноэлектронном подходе, основанном на расчетах из первых принципов, частично заполненные d⁵-термы Fe³⁺ и f⁷-термы Gd³⁺ приводили бы к частично заполненным зонам и, следовательно, к металлическому состоянию. Но благодаря СЭК как d-, так и f-электроны находятся в режиме диэлектрика Мотта-Хаббарда. Поэтому для адекватного описания электронной структуры и оптических свойств GdFe₃(BO₃)₄ необходим многоэлектронный подход с учетом СЭК. Ввиду близости расстояний внутри группы ВО3 к соответствующим расстояниям в FeBO₃ (см. таблицу) мы полагаем, что запрещенная щель $E_g = E_c - E_v$ близка для обоих кристаллов. Некоторое уменьшение длины В-О связи в GdFe₃(BO₃)₄ приводит к усилению В-О гибридизации и росту E_g до 3.1 eV по сравнению с 2.9 eV в FeBO3. На одноэлектронную схему валентной зоны и зоны проводимости накладываются одночастичные d- и f-электронные резонансы с энергиями

$$\Omega_d = E(d^{n+1}) - E(d^n), \quad \Omega_f = E(f^{n+1}) - E(f^n), \quad (1)$$

где $E(d^n)$ и $E(f^n)$ — энергии многоэлектронных термов железа и гадолиния. Эти энергии вычисляются с учетом

эффектов СЭК. Ввиду малости гибридизации Fe–O и Gd–O уровни Ω практически не взаимодействуют с *sp*-зонами BO₃ группы.

Поскольку для иона Gd^{3+} в диапазоне энергий $\hbar\omega \leq 4 \,\mathrm{eV}$ поглощение отсутствует, заполненный уровень $\Omega_{fv} = E(f^7) - E(f^6)$ лежит глубоко внизу, а пустой $\Omega_{fc} = E(f^8) - E(f^7)$ расположен высоко вверху. Это означает, что внутрь запрещенной зоны E_g попадают только *d*-состояния железа. Таким образом, приходим к выводу о сходстве электронной структуры FeBO₃ и GdFe₃(BO₃)₄ в изучаемом диапазоне энергий. Более того, из-за близости расстояний Fe–O в октаэдрах FeO₆ для FeBO₃ и GdFe₃(BO₃)₄ можно ожидать сходства параметров Рака *A*, *B*, *C* и кубической компоненты кристаллического поля $\Delta = \varepsilon_d(e_g) - \varepsilon_d(t_{2g})$ для иона железа. Энергии основных термов *dⁿ*-конфигураций с учетом СЭК выражаются через эти параметры следующим образом [15,16]:

$$E({}^{5}E_{1}, d^{4}) = 4\varepsilon_{d} + 6A - 21B - 0.6\Delta,$$

$$E({}^{6}A_{1}, d^{5}) = 5\varepsilon_{d} + 10A - 35B,$$

$$E({}^{5}T_{2}, d^{6}) = 6\varepsilon_{d} + 15A - 21B - 0.4\Delta.$$
 (2)

Здесь ε_d — одноэлектронная энергия d-электрона в атоме; в кубическом кристаллическом поле этот уровень расщепляется следующим образом: $\varepsilon_d(t_{2g}) = \varepsilon_d - 0.4\Delta$, $\varepsilon_d(e_g) = \varepsilon_d + 0.6\Delta$. Параметры Рака и кристаллическое поле зависят от числа d-электронов в конфигурации d^n , однако, эта зависимость довольно слабая и для простоты мы ею пренебрегаем. Как и в FeBO₃, в соединении GdFe₃(BO₃)₄ d-d переходы внутри Fe³⁺ с энергиями

$$\varepsilon_A = E({}^4T_1) - E({}^6A_1), \quad \varepsilon_B = E({}^4T_2) - E({}^6A_1),$$

 $\varepsilon_C = E({}^4E_1) - E({}^6A_1),$ (3)

определяют спектр поглощения при $\hbar\omega < E_g$. Из диаграмм Танабе–Сугано по экспериментальным значениям энергий d-d-переходов определены параметры Рака: $B = 0.084 \text{ eV}, C = 0.39 \text{ eV}, \Delta = 1.57 \text{ eV},$ которые почти не отличаются от параметров Рака для FeBO₃. Параметр A и одноэлектронные энергии ε_d определяются ионом Fe и были взяты такими же, как для FeBO₃ в [15], а именно A = 3.42 eV и $\varepsilon_d = -14.84 \text{ eV}.$

Большая интенсивность полосы поглощения *C* в спектре GdFe₃(BO₃)₄, как и в FeBO₃, объясняется наложением дополнительного механизма поглощения с переносом заряда, т.е. процессом $p^6d^5 - p^5d^6$. Рождение дополнительного электрона, т.е. переход Fe³⁺ \rightarrow Fe²⁺ (рис. 3), требует энергии

$$\Omega_c = E({}^5T_2, d^6) - E({}^6A_1, d^5). \tag{4}$$

Аналогично уничтожение электрона связано с переходом $Fe^{3+} \to Fe^{4+}$ и требует энергии

$$\Omega_v = E({}^6A_1, d^5) - E({}^5E_1, d^4).$$
(5)

Рис. 3. Схема термов Fe^{4+} , Fe^{3+} и Fe^{2+} ; крестом отмечен заполненный при T = 0 нижний терм ${}^{6}A_{1g}$.

Рис. 4. Схема плотности состояний $GdFe_3(BO_3)_4$. Уровень Ферми лежит выше потолка валентной зоны ε_v .

Уровни Ω_c и Ω_v через параметры Рака могут быть записаны в виде

$$\Omega_c = \varepsilon_d + 5A + 14B - 0.4\Delta, \tag{6}$$

$$\Omega_v = \varepsilon_d + 4A - 14B + 0.6\Delta; \tag{7}$$

они имеют смысл верхней и нижней хаббардовских подзон. Их разность определяет эффективный параметр Хаббарда

$$U_{\text{eff}} = \Omega_c - \Omega_v = A + 28B - \Delta = 4.2 \,\text{eV}.$$
 (8)

Такое значение U_{eff} типично для *d*-ионов середины 3*d*-ряда. Например, можно сравнить это значение U_{eff} с величиной $kT^* = 4.92 \text{ eV}$ корреляционной энергии, определенной по температурной зависимости сопротивления из закона Эфроса–Шкловского в кристалле Fe_{1.91}V_{0.09}BO₄ [17].

Заметим, что бораты имеют разные температуры магнитного упорядочения (для $GdFe_3(BO_3)_4 T_{N1} = 38 \text{ K}$, а для $FeBO_3 T_{N2} = 348 \text{ K}$). Влияние магнитного порядка на оптические свойства проявляются различно в трех интервалах температуры: а) при температуре ниже температуры магнитного упорядочения $T < T_{N1}$ электронные структуры обоих боратов имеют качественное сходство, но отличаются количественно из-за

величины расщепления полос *A*, *B* и *C* в молекулярном поле, поскольку их T_N отличаются на целый порядок; б) в области $T_{N1} < T < T_{N2}$ электронные структуры боратов должны отличаться благодаря разным магнитным свойствам; в) в парамагнитной фазе, т.е. при $T > T_{N2}$, электронные структуры обоих боратов имеют как качественное, так и количественное сходство. Последний вывод является правильным тогда, когда нет вклада от *f*-электронов гадолиния Gd³⁺, который проявляется только при энергиях возбуждений $\hbar \omega \approx 4 \text{ eV}$ и выше. По этой же причине замещение гадолиния на неодим сразу привносит дополнительные линии в спектр поглощения и усложняет электронную структуру замещенных кристаллов Gd_{1-x}Nd_xFe₃(BO₃)₄.

В результате учета всех рассуждений и экспериментальных данных приходим к модели электронной структуры GdFe₃(BO₃)₄, показанной на рис. 4.

5. Предсказание свойств GdFe₃(BO₃)₄ при высоком давлении в рамках многоэлектронной модели

Исходя из описанных выше рассуждений и расчетов, а также сходства электронной структуры $GdFe_3(BO_3)_4$ и FeBO₃, можно предположить в $GdFe_3(BO_3)_4$: кроссовер высокоспинового и низкоспинового состояний иона Fe^{3+} , коллапс магнитного момента, ослабление кулоновских корреляций, резкое уменьшение энергетической щели, а также переход диэлектрик-полупроводник.

Согласно [18], при увеличении давления основное изменение электронной структуры инициируется ростом кристаллического поля Δ

$$\Delta(P) = \Delta(0) + \alpha P. \tag{9}$$

В результате, как видно из диаграмм Танабе–Сугано для Fe³⁺ [19], высокоспиновый ${}^{6}A_{1}(S = 5/2)$ и низкоспиновый ${}^{2}T_{2}(S = 1/2)$ термы Fe³⁺ сближаются (рис. 5, *a*).

Таким образом, при $P = P_{cr}$ в GdFe₃(BO₃)₄ также возможен кроссовер, в результате которого происходит коллапс магнитного момента (рис. 5, *b*)

$$\langle S^z \rangle = 5/2 \cdot n_{5/2} + 1/2 \cdot n_{1/2},$$
 (10)

где $n_{5/2}$ и $n_{1/2}$ — вероятности нахождения иона Fe³⁺ в состоянии S = 5/2 и S = 1/2. При T = 0 вероятность $n_{5/2} = 1$ вплоть до точки кроссовера, выше P_{cr} она равна нулю, а вероятность $n_{1/2} = 0$ при $P < P_{cr}$ и $n_{1/2} = 1$ при $P > P_{cr}$.

Для FeBO₃ критическое давление $P_{cr} \approx 47$ GPa [11]. Для GdFe₃(BO₃)₄ можно ожидать аналогичный переход, причем критическое давление должно быть близким, поскольку расстояние Fe–O и критическое поле Δ близки к таковым в FeBO₃. В фазе высокого давления из-за кроссовера энергии нижней и верхней хаббардовских зон [18] меняются. Так, для ${\rm Fe}^{3+}$ имеем

$$\hat{\Omega} = E({}^{1}A_{1}, d^{6}) - E({}^{2}T_{2}, d^{5}), \qquad (11)$$

$$\tilde{\Omega} = E(^2T_2, d^5) - E(^3T_1, d^4).$$
(12)

В результате уменьшается (рис. 6) эффективный параметр корреляций Хаббарда, т.е. щель между хаббардовскими подзонами

$$U_{\rm eff} = \Omega_c - \Omega_v = A + 9B - 7C \approx 1.45 \,\mathrm{eV}. \tag{13}$$

Таким образом, происходит резкое (почти в 3 раза) уменьшение СЭК, и вместо диэлектрика Мотта– Хаббарда имеем полупроводниковое состояние (рис. 7).

Рис. 5. a — фрагмент диаграммы Танабе-Сугано для кроссовера термов железа из высокоспинового ${}^{6}A_{1}(S = 5/2)$ в низкоспиновый ${}^{2}T_{2}(S = 1/2)$; b — вероятность нахождения иона Fe³⁺ в состоянии S = 5/2 и S = 1/2; c — коллапс магнитного момента.

Рис. 6. Кроссоверы термов для конфигураций d^4 , d^5 , d^6 и скачок эффективного параметра Хаббарда.

Рис. 7. Схема плотности состояний $GdFe_3(BO_3)_4$ в многоэлектронной p-d модели в фазах низкого и высокого давлений.

Дальнейший рост давления за счет увеличения малой ширины *d*-зоны может привести к закрытию полупроводниковой щели и дальнейшему переходу в металлическое состояние.

6. Заключение

Исследованы оптические свойства выращенных монокристаллов GdFe₃(BO₃)₄ и GdFe_{2.1}Ga_{0.9}(BO₃)₄. Экспериментально и теоретически доказано, что в парамагнитной фазе электронная структура и оптические спектры GdFe₃(BO₃)₄ и FeBO₃ схожи в области энергий до 4 eV в окрестности энергии Ферми. Предложена многоэлектронная модель зонной структуры GdFe₃(BO₃)₄ с учетом СЭК *d*-состояний железа. Установлено, что при нормальных условиях GdFe₃(BO₃)₄ является диэлектриком с переносом заряда в режиме СЭК. В рамках многоэлектронной модели в ростом давления для GdFe₃(BO₃)₄ предсказаны кроссовер высокоспинового и низкоспинового состояний иона Fe³⁺, коллапс магнитного момента, ослабление кулоновских корреляций, резкое уменьшение энергетической щели, а также переход диэлектрик-полупроводник.

Список литературы

- [1] N.I. Leonyuk, L.I. Leonyuk. Cryst. Growth Charact. **31**, 179 (1995).
- [2] A.D. Balaev, L.N. Bezmaternykh, I.A. Gudim, S.A. Kharlamova, S.G. Ovchinnikov, V.L. Temerov. J. Magn. Magn. Mater. 258–259, 532 (2003).
- [3] A.D. Balaev, L.N. Bezmaternykh, S.A. Kharlamova, V.L. Temerov, S.G. Ovchinnikov, A.D. Vasi'ev. J. Magn. Magn. Magn. 286–287, 332 (2003).
- [4] J.C. Joubert, T. Shirk, W.B. White, R. Roy. Mat. Res. Bull. 3, 671 (1968). [B
- [5] М.И. Петров, Г.А. Смоленский, А.Р. Пагурт. ФТТ 14, 109 (1972).
- [6] И.С. Эдельман, А.В. Малаховский, Т.И. Васильева, В.Н. Селезнев. ФТТ 14, 2810 (1972).
- [7] A.V. Kumel, R.V. Pisarev, J. Hohlfeld, Th. Rasing. Phys. Rev. Lett. 89, 287401 (2002).
- [8] A.J. Kurtzig, R. Wolf, R.C. Le Graw, J.W. Nielsen. Appl. Phys. Lett. 14, 350 (1969).
- [9] N.F. Mott. Proc. Phys. Soc. A 62, 416 (1949).
- [10] A.G. Gavriliuk, I.A. Trojan, R. Boehler, M. Eremets, A. Zerr, I.S. Lyubutin, V.A. Sarkisyan. Письма ЖТФ 75, 1, 25 (2002). JETP Lett. 75, 1, 23 (2002).
- [11] И.А. Троян, М.И. Еремец, А.Г. Гаврилюк, И.С. Любутин, В.А. Саркисян. Письма в ЖЭТФ 78, 1, 16 (2003).
- [12] В.А. Саркисян, И.А. Троян, И.С. Любутин, А.Г. Гаврилюк, А.Ф. Кашуба. Письма в ЖЭТФ 76, 11, 788 (2002).
- [13] L.N. Bezmaternykh, S.A. Kharlamova, V.L. Тетегоv. Кристаллография **49**, *4*, 1 (2004).
- [14] E.P. Chukalina, D.Yu. Kuritsin, M.N. Popova, L.N. Bezmaternyhk, S.A. Kharlamova, V.L. Temerov. Phys. Lett. A 322, 239 (2004).
- [15] С.Г. Овчинников, В.Н. Заблуда. ЖЭТФ 125, 150 (2004).
- [16] Д.Т. Свиридов, Р.К. Свиридова, Ю.Ф. Смирнов. Оптические спектры ионов переходных металлов в кристаллах. Наука, М. (1976). 356 с.
- [17] А.Д. Васильев, Д.А. Великанов, Н.Б. Иванова, Н.В. Казак, С.Г. Овчинников, А. Абд-Эльмигид, В.В. Руденко. ЖЭТФ 121, 5, 1 (2003).
- [18] С.Г. Овчинников. Письма в ЖЭТФ 77, 808 (2003).
- [19] Y. Tanabe, S. Sugano. J. Phys. Sol. Jap. 9, 753 (1951).