Тепловые и акустические свойства хризотилового асбеста

© Ю.А. Кумзеров, Л.С. Парфеньева, И.А. Смирнов, А.И. Кривчиков*, Г.А. Звягина*, В.Д. Филь*, X. Мисиорек**, Я. Муха**, А. Ежовский**

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Физико-технический институт низких температур Национальной академии наук Украины,

6103 Харьков, Украина

** Институт низких температур и структурных исследований Польской академии наук,

50-950 Вроцлав, Польша

E-mail: igor.smirnov@pop.ioffe.rssi.ru

(Поступила в Редакцию 24 июня 2004 г.)

В интервале температур 5–300, 3–65 и 77 К измерены соответственно теплопроводность, теплоемкость и скорость звука кристаллического хризотилового асбеста, состоящего из полых трубчатых волокон Mg₃Si₂O₅(OH)₄. Проведен анализ полученных экспериментальных данных.

Работа выполнена в рамках двустороннего соглашения между Российской и Польской академией наук и при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 02-02-17657, 04-02-16550) и Польского государственного комитета по научным исследованиям (KBN, грант № 3 Т08А 054 26).

Настоящая работа является продолжением начатого нами цикла исследований тепловых свойств хризотилового асбеста [1], который используется в качестве наноканальной диэлектрической матрицы при исследовании физических свойств кластеров и сверхтонких квантовых нитей металлов и полупроводников, введенных в наноканалы этой матрицы [2,3].

Хризотиловый асбест — волокнистый минерал группы серпентина, водный силикат магния $Mg_3Si_2O_5(OH)_4$. Химический состав (по соотношению $SiO_2 \kappa MgO$ и связанной воде H_2O) может варьироваться в зависимости от того или иного месторождения. В качестве примесей в нем могут присутствовать Al, Fe, Ca, Ni, Mn, K, Na [4].

Хризотиловый асбест имеет нестандартную кристаллическую структуру, состоящую из структурных слоев, ограниченных с внутренней стороны кремнекислородной сеткой, а с внешней — сеткой, отвечающей гидроокиси магния [2–5]. Из-за того что размеры внутренней сетки меньше, чем у внешней, слои хризотилового асбеста стремятся свернуться в цилиндры (трубки) с кремнекислородным слоем на внутренней стороне. Такие трубки имеют внешние диаметры $d_1 \sim 300-500$ Å, а внутренние — $d_2 \sim 20-150$ Å (рис. 1, *b*). Пространство между трубками обычно бывает заполнено аморфной массой из материала трубок.

Волокна хризотил-асбеста представляют собой чередующиеся цепочки Si-тетраэдров, Mg-октаэдров, вытянутых по оси волокон, и гидроксидных групп.

В целом кристаллическая решетка слоев асбеста относится к моноклиной системе с параметрами: a = 5.30 Å, b = 9.1 Å, c = 7.32 Å, $\beta = 93^{\circ}$ [8]. Ось *а* направлена вдоль каналов трубок. Упаковка самих трубок близка к гексагональной. Пористость хризотилового асбеста (процент пустот каналов к общему объему образца) составляет ~ 5-6%. За последние годы проведено большое число исследований физических свойств тонких нитей (квантовых проволок) металлов и полупроводников, расположенных в каналах матрицы хризотилового асбеста [3]. К сожалению, в литературе отсутствуют данные об акустических и тепловых свойствах этой наноканальной матрицы (за исключением результатов по исследованию ее теплопроводности, полученных нами [1]). Однако часто такие сведения бывают необходимы для теплофизических расчетов, а также в некоторых случаях для выделения данных, относящихся к материалам, составляющим тонкие нити в нанокомпозите: матрица асбеста + материал в ее каналах.

В настоящей работе проведены измерения теплопроводности (κ), теплоемкости (C) и скорости звука (v) ряда образцов хризотилового асбеста.

Для экспериментов использовались образцы натурального "ломкого" хризотилового асбеста из двух месторождений. Образцы отличались друг от друга окраской: они были светло-желтые (партия № 1) и зеленоватые (партия № 2). Диаметры трубок в исследованных образцах были равны: $d_1 \sim 300$ Å и $d_2 \sim 50$ Å (рис. 1, *b*).

Теплопроводность образца из партии № 1 исследовалась в интервале 5-300 К на установке, аналогичной [9]. Процедура измерений \varkappa не отличалась от принятой в работе [1].

Предварительно для удаления воды из каналов трубок образец отжигался на воздухе при температуре $\sim 150^{\circ}$ С. При этой температуре потерь "связанной воды" в образце не происходило [10]. После отжига на торцы образца наносился тонкий слой лака, который препятствовал проникновению атмосферной влаги в каналы трубок асбеста при монтаже образца в измерительной установке. Измерение \varkappa проводилось в вакууме. Тепловой поток направлялся вдоль волокон асбеста. Размеры образца

Рис. 1. *а* — зависимость теплопроводности от температуры кристаллических образцов хризотилового асбеста из первой (*1*) и второй (*2*) партий и минерала форстерита (*3*) с нулевой пористостью [6,7]. *b* — система плотноупакованных трубчатых волокон хризотилового асбеста.

были: $3 \times 4 \times 12$ mm. Хризотиловый асбест является изолятором, поэтому измеренная на эксперименте \varkappa является теплопроводностью кристаллической решетки $\varkappa_{\rm ph}$.

Экспериментальные результаты для $\varkappa_{\rm ph}(T)$ хризотилового асбеста представлены на рис. 1, *a*. На этом рисунке вместе с данными, полученными в настоящей работе (1), приведены также результаты (2) для $\varkappa_{\rm ph}(T)$, взятые из нашей работы [1] для образца, относящегося к партии № 2. Для сравнения на рисунке представлены также данные для $\varkappa_{\rm ph}(T)$ форстерита (3) [6,7]. Форстерит — минерал из группы оливина — имеет химический состав 2MgO·SiO₂, близкий к составу хризотилового асбеста.

Из рисунка следует, что теплопроводности образцов хризотилового асбеста из двух различных месторождений близки между собой. Небольшое расхождение наблюдается лишь при T > 50 K, которое связано, вероятно, с наличием в них разного сорта (или разной концентрации) неконтролируемых примесей. При T < 50 K их теплопроводности оказались практически одинаковыми (для области температур 5-50 K $\varkappa_{\rm ph} \sim T^{1.4}$).

Для ультразвуковых измерений использовалась установка, представляющая собой компенсационную схему, работающую в импульсном режиме, что позволяло надежно разделить различные звуковые моды [11]. Измерения проводились на двух образцах хризотилового асбеста из партий № 1 и 2.

Образцы вырезались в направлении вдоль нитей. Для предотвращения расслаивания механически непрочных образцов они помещались в жесткий бандаж, после чего торцевые грани притирались на микронной шлифовальной бумаге без применения смачивающих жидкостей. Плоскопараллельность рабочих граней контролировалась оптиметром, отклонение от нее составляло $\sim 1\,\mu$. Для дополнительного разделения звуковых мод использовались линии задержки из германия, между которыми размещался образец. Для обеспечения акустического контакта между образцом, линиями задержки и пьезопреобразователями из ниобата лития использовалось силиконовое масло ГКЖ-94. Абсолютные значения скоростей звука были измерены при температуре 77 К. Методика обеспечивала достаточно высокую точность измерений (~1%) в образцах с большим рассеянием. В фиксированном частотном интервале измерялась фазо-частотная характеристика (ФЧХ) акустического тракта, составленного из двух линий задержки. Далее при той же температуре измерялась ФЧХ сандвича, составленного из тех же линий задержки с образцом между ними. Разность двух ФЧХ, т.е. ФЧХ образца, представляла собой прямую линию, по наклону которой определялась фазовая скорость звука: v = (360L)/S, где v — скорость звука (cm/s), L — толщина образца (cm), *S* — наклон разностей ФЧХ (grad/Hz).

Были получены следующие значения для скоростей звука:

$$v_l \approx 8.4 \cdot 10^5 \,\mathrm{cm/s}$$
 (продольная) и

 $v_t \approx 2.6 \cdot 10^3 \,\mathrm{cm/s}$ (поперечная)

для образца асбеста из первой партии с длиной акустического пути L = 4.13 mm и

$$v_l \approx 8.3 \cdot 10^5 \,\mathrm{cm/s}$$
 и $v_t \approx 2.7 \cdot 10^5 \,\mathrm{cm/s}$

для образца асбеста из второй партии с длиной акустического пути L = 7.24 mm.

Рассчитаны значения модулей упругости. Для образцов из первой и второй партий они оказались соответственно равны

$$c_{33} \approx 19.1 \cdot 10^{11} \, \text{dyn/cm}^2,$$

 $c_{44} \approx 1.83 \cdot 10^{11} \, \text{dyn/cm}^2$ и
 $c_{33} \approx 18.6 \cdot 10^{11} \, \text{dyn/cm}^2,$
 $c_{44} \approx 1.96 \cdot 10^{11} \, \text{dyn/cm}^2.$

При расчетах использовалось рентгеновское значение плотности для хризотилового асбеста 2.7 g/cm³. Так же как и в случае теплопроводности, акустические характеристики образцов хризотилового асбеста из разных месторождений оказались практически одинаковыми.

На рис. 2, *а* представлены полученные экспериментальные данные для теплоемкости C_p образца хризотилового асбеста из партии № 2. Измерение теплоемкости проводилось в интервале температур 3–65 К с помощью импульсного квазиадиабатического метода [12]. Ниже 6 К $C_p(T)$ описывается как сумма двух вкладов

$$C_n = 4.26373 \cdot 10^{-5}T + 1.04994 \cdot 10^{-6}T^3.$$
(1)

При $T > 6 \,\mathrm{K}$ теплоемкость возрастает по закону $C_p \sim T^{2.4}$.

На рис. 2, *b* приведены также данные для *C* минерала форстерита [6]. Оказалось, что его теплоемкость близка к измеренной нами теплоемкости хризотилового асбеста.

Как это уже отмечалось [1], необычным в поведении $\varkappa_{\rm ph}(T)$ хризотилового асбеста является наличие у него максимума теплопроводности при достаточно высокой температуре (~ 150–170 K). Поведение $\varkappa_{\rm ph}(T)$ в районе максимума и в самом максимуме зависит от многих факторов [13–15]. Имеется по крайней мере два возможных объяснения обнаруженного эффекта.

1) Образцы минерала хризотилового асбеста содержат большое количество примесей и, возможно, дефектов, которые и ответственны за смещение у него $T_{\rm max}$ теплопроводности в сторону высоких температур. При этом надо предположить, что у более совершенного образца хризотилового асбеста $T_{\rm max}$ располагается при низких температурах. В литературе такой эффект обнаружен для ряда материалов с дефектами и примесями. Однако $T_{\rm max}$ в них может сдвигаться или не сдвигаться в сторону высоких температур по сравнению с чистым материалом в зависимости от его природы и вида примесей и дефектов. Например, $T_{\rm max}$ теплопроводности сдвигается в сторону высоких температур в КС1 и LiF соответственно с примесями KNO₂ и Mg, у KC1, LiF, CaF₂ — при их деформации, у InSb — с увеличением

Рис. 2. a — теплоемкость кристаллического хризотилового асбеста. b — теплоемкость хризотилового асбеста (1) и минерала форстерита (2) [6].

Рис. 3. Схематическое изображение решетки хризотилового асбеста. Размеры трубок (d_1) , каналов (d_2) и зазоров между трубками (1) даны в одинаковом масштабе, соответствующем величинам: $d_1 = 50$ Å и $d_2 = 300$ Å; 2 — заполненные каналы.

концентрации носителей тока и при облучении его электронами. Но не сдвигается у КС1 с примесями иода, в образцах кристаллического кварца, облученного быстрыми нейтронами, хотя при этом величина их $\varkappa_{\rm ph}$ существенно уменьшается [13].

К сожалению, проверить экспериментально это предположение в случае хризотилового асбеста невозможно, так как мы имеем дело не с синтетическими кристаллами, чистоту которых можно изменять и контролировать, а с естественными минералами, в которых количество примесей и дефектов уже задано природой.

Не в пользу приведеного выше объяснения обнаруженного эффекта в хризотиловом асбесте говорят полученные нами данные $\varkappa_{\rm ph}(T)$ для образцов из двух разных месторождений (рис. 1, *a*, образцы *1* и *2*). *T*_{max} $\varkappa_{\rm ph}$ у них располагается в районе 150–170 K, хотя они, по всей вероятности, должны были содержать различное количество (и, возможно, различный тип) примесей.

2) $\varkappa_{\rm ph}(T)$ может проходить через максимум, когда длина свободного пробега фононов *l* в классических случаях становится сравнимой с размерами образца (или с его частью при сложной геометрической конфигурации образца). В случае исследованных в работе образцов хризотилового асбеста такими "критическими" размерами могли бы быть: поперечные размеры исследованных образцов 3×4 mm (для образца *l*) и 5.5×6.5 mm (для образца 2 [1]) (рис. 1, *a*), стенки трубок (d_1-d_2)/2 = 125 Å или пространство между трубками ~ 40–50 Å, заполненное аморфной (или мелкокристаллической) массой материала трубок [3] (*l* на рис. 3), вытянутое вдоль волокон асбеста.

С помощью полученных экспериментально значений $\varkappa_{\rm ph}$, $\bar{v} = (2v_t + v_l)/3$ и данных для C_p из рис. 2, *b* можно оценить по формуле (2) величину *l*, соответствующую максимуму $\varkappa_{\rm ph}$ при $T \sim 150-170$ K,

$$l = (3\varkappa_{\rm ph}/C\bar{v}). \tag{2}$$

<i>Т</i> , К	\varkappa , W/m · K	C_p , J/g · K
5	0.207	0.00034
10	0.48	0.0015
20	1.25	0.0086
30	2.50	0.0240
40	3.55	0.045
50	4.75	0.070
60	5.75	0.108
80	7.00	
100	7.75	
120	8.20	
140	8.40	
160	8.55	
180	8.60	
200	8.55	
220	8.42	
240	8.27	
260	8.18	
280	8.07	
300	8.00	

Усредненные экспериментальные значения $C_p(T)$ и $\varkappa_{\rm ph}(T)$ для хризотилового асбеста

Для T = 170 K l оказалась равной ~ 40 Å, что соответствует размерам заполненных каналов между трубчатых волокон (2 на рис. 3). Полученные результаты требуют дальнейшего теоретического анализа.

В заключение приведем таблицу усредненных значений для $C_p(T)$ и $\varkappa_{\rm ph}(T)$, относящихся соответственно к образцам из партий № 2 и 1 (точки на рис. 1, *a*), которые могут быть полезны при теплофизических расчетах для систем на основе хризотиловых асбестов.

Список литературы

- Ю.А. Кумзеров, Л.С. Парфеньева, И.А. Смирнов, Х. Мисиорек, Я. Муха, А. Ежовский. ФТТ 45, 1, 54 (2003).
- [2] В.Н. Богомолов, Ю.А. Кумзеров. Препринт ФТИ им. А.Ф. Иоффе АН СССР № 971. Л. (1985). 59 с.
- [3] Yu.A. Kumzerov. Nanostructured Films and Coatings / Ed. Gan-Moog Chow, I.A. Ovid'ko, T. Tsakalakos. NATO Science, Ser. 3. High Technology. Kluwer Academic Publ., Dordrecht– Boston–London (2000). Vol. 78. P. 63.
- [4] В.В. Бахтерев, В.И. Соломонов. Неорган. материалы 31, 4, 567 (1995).
- [5] У.Л. Брегт, Г.Ф. Клирнбулл. Кристаллическая структура минералов. Мир, М. (1967). 389 с.
- [6] Р.Е. Кржижановский, З.Ю. Штерн. Теплофизические свойства неметаллических материалов. Энергия, Л. (1973). 333 с.
- [7] W.D. Kingery, J. Franel. J. Amer. Ceram. Soc. 37, 2, part II, 107 (1954).
- [8] K. Yada. Acta Cryst. 23, 704 (1967).
- [9] A. Jezowski, J. Mucha, G. Pompe. J. Phys. D: Appl. Phys. 7, 1247 (1974).

- [10] Л.А. Дробышев, Я.Я. Говорова. Кристаллография 16, 3, 544 (1971).
- [11] Е.А. Масалитин, В.Д. Филь, К.Р. Жеков, А.Н. Жолобенко, Т. Игнатова. ФНТ **29**, *1*, 93 (2003).
- [12] A.I. Krivchikov, B.Ya. Gorodilov, A. Czopnik. Proc. Conf. Low Temperature Thermometry and Dynamic Temperature Measurement. ILTandSR, Wroclaw (1997). P. V7.
- [13] В.С. Оскотский, И.А. Смирнов. Дефекты в кристаллах и теплопроводность. Наука, Л. (1972). 158 с.
- [14] I.A. Smirnov, V.S. Oskotski. Handbook on the Physics and Chemistry of Rare Earths / Ed. K.A. Gschneidner, Jr., L. Eyring. Elsever Science Publ. B.V. (1993). Vol. 16. P. 107.
- [15] Р. Бергман. Теплопроводность твердых тел. Мир, М. (1979). 286 с.