Простая модель расчета высоты барьеров Шоттки на контактах переходных металлов с политипами карбида кремния

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: Sergei.Davydov@mail.ioffe.ru

(Поступила в Редакцию 18 мая 2004 г.)

В рамках предложенной нами ранее простой модели проведены самосогласованные расчеты высоты барьера Шоттки для контактов Ag, Au, Pd, Pt, Ti, Ru, Ni, Cr, Al, Mg и Mn с различными политипами SiC. Показано, что вполне удовлетворительное согласие результатов расчета с экспериментом получено для контактов переходных металлов в предположении об определяющей роли кремниевых вакансий с энергией $E_d = E_V + 2.1 \text{ eV}.$

Работа выполнена при частичной поддержке грантов Российского фонда фундаментальных исследований № 03-02-160546, INTAS N 01-0603 и NATO SiP N 978011.

1. Влияние политипизма карбида кремния на высоту барьера Шоттки Φ_b отмечалось в ряде публикаций [1–6]. Насколько известно автору, первая попытка связать величину Ф_b с какой-либо характеристикой политипа предпринята в работе [1], где на примере контакта хрома с политипами 4H, 8H, 6H, 10H, 15R, 21R и 27 к электронного карбида кремния было показано, что $\Phi_b^n \propto D$, где степень гексагональности $D = N_h/(N_h + N_k)$ (N_h и N_k — число занятых атомами гексагональных и кубических узлов соответственно). Поскольку степень гексагональности SiC пропорциональна концентрации вакансий $N_{\rm Si}$ в подрешетке кремния [7,8], можно показать, что $\Phi_b^n \propto N_{
m Si}^s \propto D$, где $N_{
m Si}^s$ — пересчитанная для двумерного случая концентрация кремниевых вакансий $N_{\rm Si}~(N_{\rm Si}^s=(N_{\rm Si})^{2/3}).$ Модель, описывающая такую зависимость, была предложена в работе [9] и представляла собой слегка модифицированную модель поверхностного дефекта Людеке [10]. В [9] предполагалось, что уровень Ферми E_F на контакте Cr-SiC совпадает с уровнем дефекта Е_d, что позволило, воспользовавшись экспериментальными значениями Φ_b^n , вычислить поверхностную концентрацию дефектов N_d и показать, что отношения N_{Si}^s/N_d и Φ_b^n/N_d приблизительно постоянны в ряду 8*H*-6*H*-15*R*-27*R*-4*H*. Это и позволило сделать заключение о доминирующем влиянии кремниевых вакансий на величину Φ_{b}^{n} на контакте различных политипов SiC с одним и тем же металлом.

В работе [9] предполагалось, что электронное сродство χ для всех политипов одинаково и равно 4.4 eV, как в случае 6*H*-SiC¹ [11]. С другой стороны, по данным [6] для 6*H*- и 3*C*-политипов имеем соответственно $\chi = 3.3-3.7$ и 4.0 eV, тогда как справочник [12] приводит значения $\chi = 4.8$ eV для 3*C*-политипа и $\chi = 4.1$ eV для 2*H*-политипа. В настоящей работе мы, не прибегая к упрощающему предположению $E_F = E_d$, проанализируем модель [9] на основе экспериментальных данных [1].

В модели [9] число заполнения n_d уровня поверхностного дефекта полупроводниковой подложки с энергией E_d (здесь и далее энергию отсчитываем от потолка валентной зоны), лежащего в запрещенной зоне, определяется самосогласованным уравнением

$$n_{d} = \pi^{-1} \operatorname{arcctg}[(E_{d} - E_{\rm F})/\Gamma],$$

$$E_{\rm F} = \chi + E_{g} - \phi_{m} - \Delta\phi,$$

$$\Delta\phi = -4\pi e^{2}\lambda N_{d}q_{d}.$$
(1)

Здесь $E_{\rm F}$ — уровень Ферми системы, E_g — ширина запрещенной зоны, ϕ_m — работа выхода металла, e заряд электрона, 2λ — толщина дипольного слоя на контакте, Γ — полуширина квазиуровня дефекта, N_d поверхностная концентрация дефектов. Если до контакта с металлом уровень дефекта был пуст, то его заряд после контакта $q_d = -n_d$; если же этот уровень был заполнен, то $q_d = 1 - n_d$. Высота барьера Шоттки Φ_b^n на контакте с электронным полупроводником составляет

$$\Phi_b^n = \phi_m - \chi + \Delta \phi. \tag{2}$$

Предположим, что от концентрации дефектов N_d зависит лишь заряд q_d . Тогда легко показать, что

$$\frac{d\Phi_b^n}{dN_d} = -\frac{4\pi e^2 \lambda q_d}{1 + 4\pi e^2 \lambda N_d \rho_d},\tag{3}$$

где плотность состояний на уровне дефекта

$$\rho_d = \frac{1}{\pi} \frac{\Gamma}{(E_d + \phi_m + \Delta \phi)^2 + \Gamma^2}.$$
 (4)

Следовательно, в случае изначально пустого уровня дефекта $(q_d = -n_d)$ высота барьера Шоттки Φ_b^n возрастает с концентрацией дефектов N_d , тогда как при заполненном (до контакта с металлом) уровне дефекта $(q_d = 1 - n_d)$ величина Φ_b^n уменьшается. Поскольку в эксперименте [1] был продемонстрирован рост Φ_b^n с

¹ Обычно для 6*H*-SiC приводятся значения χ , лежащие в интервале от 3.5 до 4.4 eV [5,6,12]. Следует подчеркнуть, что определение величины электронного сродства политипов карбида кремния остается, наверное, наименее популярной задачей как у экспериментаторов, так и у теоретиков.

увеличением D, в [9] (в рамках упрощенной модели) сделан вывод, что различие высоты барьеров Шоттки для разных политипов определяется концентрацией изначально пустых поверхностных вакансий в подрешетке кремния N_{Si}^{s} .

2. Начнем с пересмотра результатов работы [13], где был проведен самосогласованный расчет высоты барьеров Шоттки на контактах серебра и золота с 3С-и 6Н-политипами карбида кремния. Как и ранее, полагаем $\Gamma = 0.5 \,\text{eV}, \ \lambda = 2 \,\text{\AA}$ для обоих политипов² (значение λ близко как к расстоянию между ближайшими соседями в карбиде кремния, равному 1.88 Å [14], так и к половине постоянных решетки монокристаллов серебра и золота [15]) и $q_n = -n_d$. Значения E_g брались из [16], ϕ_m — из [12] (ϕ_m = 4.26 и 5.10 eV для Ag и Аи соответственно). Далее в отличие от [13] принимаем концентрацию дефектов N_d равной N^s_{Si}, т.е. для 3С- и 6*H*-политипов имеем соответственно $3.42 \cdot 10^{13}$ и $4.20 \cdot 10^{13} \, \text{cm}^{-2}$. Рассмотрим два варианта расчета: а) $\chi = 4.4 \text{ eV}$ для 3*C*- и 6*H*-SiC; b) $\chi = 4.0 \text{ eV}$ для 3*C*-SiC и 3.5 eV для 6*H*-SiC [6]. Значение энергии E_d определим путем подгонки расчетного значения Φ_b^n для системы Ag/3C-SiC к экспериментальной величине 0.4 eV [2], откуда получим $E_d = 2.1 \, \text{eV}$. Далее, исходя из результатов работы [17], будем полагать, что и во всех других политипах соответствующие уровни вакансий (т.е. уровни вакансий, находящихся в одинаковом зарядовом состоянии) расположены на том же удалении от потолка валентной зоны. Поскольку в моделях [9,10,13] сдвиг уровня Е_d вследствие взаимодействия с металлом игнорируется, будем считать в дальнейшем $E_d = 2.1 \text{ eV}$ для всех систем металл/политип SiC. Результаты расчетов представлены в табл. 1, откуда следует, что вариант а дает по сравнению с вариантом в более адекватное описание экспериментальных данных. Поэтому в дальнейшем примем $\chi = 4.4 \, \mathrm{eV}$ для всех рассматриваемых политипов.

Рассчитаем барьер Шоттки для систем Pd, Pt/6*H*-, 15*R*-, 4*H*-SiC, исследовавшихся в работе [18]. Как и раньше, принимаем $\lambda = 2$ Å, что близко к половине постоянных решетки массивных палладия и платины, равных соответственно 3.89 и 3.92 Å [15], $\Gamma = 0.5$ eV и полагаем, что изначально уровень вакансии пуст, т. е. $q_d = -n_d$. В соответствии с данными [8] для 15*R*-и 4*H*-политипов имеем соответственно 6.30 · 10¹³ и 8.11 · 10¹³ сm⁻². В табл. 2 результаты расчетов сопоставляются с экспериментальными данными. Там же приведены значения барьеров и для системы Pd/3*C*-SiC, исследовавшейся в [2].

Таблица 1. Результаты расчета чисел заполнения вакансии n_d и высоты барьера Шоттки Φ_b^n для контактов Ag, Au/3C-SiC и Ag, Au/6H-SiC (а — $\chi = 4.4 \text{ eV}$ для 3C- и 6H-SiC; b — $\chi = 4.0 \text{ eV}$ для 3C-SiC и 3.5 eV для 6H-SiC)

	Папаметп	3C-SiC		6H-SiC	
	mupumorp	Ag	Au	Ag	Au
Расчет а	$n_d \Phi^n_b, \mathrm{eV}$	0.44 0.40	0.21 0.96	0.545 0.93	0.32 1.32
Расчет b	$n_d \Phi_b^n, \mathrm{eV}$	0.31 0.64	0.15 1.29	0.30 1.36	0.16 1.91
Эксперимент	Φ_b^n, eV	0.40	0.87	0.97	1.14

Таблица 2. Результаты расчета чисел заполнения вакансии n_d и высоты барьера Шоттки Φ_b^n для контактов Pd, Pt/3C-, 6H-, 15R-, 4H-SiC

Метаци	Параметр	Политип				
Wieldsbi	параметр	3 <i>C</i>	6 <i>H</i>	15 <i>R</i>	4 <i>H</i>	
Pd	n_d	0.27	0.39	0.35	0.35	
	Φ_b^n , eV (расчет)	1.07	1.17	1.21	1.42	
	Φ^n_b , eV (эксперимент)	0.95	1.27	1.22	1.56	
Pt	n_d	_	0.27	0.245	0.25	
	Φ_b^n , eV (расчет)	—	1.45	1.48	1.66	
	Φ^n_b, eV (эксперимент)	—	1.34	—	1.58	

Примечание. В качестве экспериментальных данных взяты значения Φ_h^n из работы [18], наиболее близкие к расчетным.

Таблица 3. Результаты расчета чисел заполнения вакансии n_d и высоты барьера Шоттки Φ_h^p для контактов Ti, Al/3*C*-, 6*H*-SiC

Параметр	3 <i>C</i> -	SiC	6H-SiC		
параметр	Ti	Al	Ti	Al	
$n_d \Phi^n_b, \mathrm{eV} \ (\mathrm{pacчet}) \Phi^n_b, \mathrm{eV} \ (\mathrm{эксперименt})$	0.41 0.44 0.53 [2]	0.44 0.40 0.16 [3]	0.525 0.96 0.98 [2]	0.55 0.925 0.98 [19]	

Примечание. В качестве экспериментальной величины Φ_b^n на контакте Ті/6*H*-SiC из [3] взята средняя высота барьера для отожженных образцов.

В табл. З представлены результаты расчетов для систем Ті, A1/3C- и 6H-SiC, исследовавшихся в работах [2,3,19]. Для Ті принимали $\phi_m = 4.33 \,\mathrm{eV}$ [2], для Al $\phi_m = 4.25 \,\text{eV}$ [12]; как и выше, считаем $\lambda = 2 \,\text{\AA}$, $\Gamma = 0.5 \,\mathrm{eV}, \ q_d = -n_d.$ Отметим, что здесь мы впервые рассмотрели барьер, возникающий на границе простого (а не переходного) металла Аl с карбидом кремния, и получили для системы A1/3C-SiC значение Φ_h^n , в 2.5 раза превышающее экспериментальное. Для Мп $(\phi_m = 3.83 \, \text{eV})$, находящегося в контакте с 6*H*-SiC, получаем $\Phi_h^n = 0.725 \, \text{eV} \ (n_d = 0.66)$, тогда как экспериментальная высота барьера равна 0.79-0.96 eV [3]. Mg/6*H*-SiC $(\phi_m = 3.64 \,\text{eV})$ Для системы при

² Для зависимости величины параметра λ от политипа нет веских оснований. Действительно, по оценкам [9] $\lambda \approx 2-3$ Å. Поскольку все политипы отличаются друг от друга только расположением третьих соседей, нет основания полагать, что толщины дипольного слоя будут заметно различаться. Полуширина квазиуровня $\Gamma \propto \exp(-2\gamma\lambda)$, где $\gamma \sim 1$ Å⁻¹; следовательно, и этот параметр можно считать одинаковым для различных политипов. Отметим, что в [9] $\lambda = 3$ Å. Если положить $\lambda = 2$ Å, то величины, приведенные в таблице, необходимо пересчитать: величину N_d нужно умножить на 1.5, а следующие за N_d отношения следует поделить на 1.5.

Таблица 4. Результаты расчета чисел заполнения вакансии n_d и высоты барьера Шоттки Φ_b^n для контактов хрома с политипами SiC.

Параметр	Политип					
	3 <i>C</i>	8 <i>H</i>	6 <i>H</i>	15R	27 <i>R</i>	4 <i>H</i>
$N_{\rm Si}^{\rm s}, 10^{13}{\rm cm}^{-2}$	3.42	4.78	5.70	6.87	7.27	7.96
n_d Φ_b^n , eV (расчет)	0.33	0.40	0.42	0.37	1.18	1.33
Φ^n_b, eV (эксперимент)	0.40	0.80 - 0.95	1.1 - 1.2	1.1 - 1.2	1.20-1.35	1.4 - 1.6

Примечание. Значение Φ_h^n для Cr/3C-SiC в [1] получено экстраполяцией.

 $E_g = 3.1 \text{ eV}$ [16] находим $\Phi_b^n = 0.61 \text{ eV}$ ($n_d = 0.70$), что почти в 2 раза превышает экспериментальное значение 0.30–0.34 eV [3]. Если, как и в [3], принять $E_g = 2.86 \text{ eV}$, получим $\Phi_b^n = 0.51 \text{ eV}$ ($n_d = 0.65$), что несколько ближе к эксперименту. Мы попытались также рассчитать высоту барьера в системе Cs/6H-SiC, изучавшейся в работе [20], и получили отрицательное значение Φ_b^n (экспериментальное значение Φ_b^n (экспериментальное значение Φ_b^n (экспериментальное значение при контактах SiC с простыми металлами, гораздо хуже, чем в случае переходных металлов.

Для дополнительной проверки модели мы рассчитали барьеры для Co, Tb/3C-SiC и Ru, Ni/6H-SiC, экспериментальные данные для которых приведены в [2–5]. Положив величину ϕ_m для кобальта равной 4.41 eV [12], находим $\Phi_b^n = 0.49$ eV ($n_d = 0.385$), а приняв $\phi_m = 5$ eV [2], получим $\Phi_b^n = 0.88$ eV ($n_d = 0.225$), тогда как экспериментальное значение высоты барьера равно 0.69 eV [2]. Расчет для тербия ($\phi_m = 3.15$ eV) дает отрицательное значение Φ_b^n , тогда как, согласно экспе-

Рис. 1. Зависимость высоты барьера Шоттки Φ_b^n для контактов металл-политип карбида кремния от поверхностной концентрации кремниевых вакансий N_{Si}^s . 1 — Ag и Al, 2 — Au, 3 — Pt, 4 — Ti, 5 — Pd.

рименту [2], $\Phi_b^n = 0.35 \text{ eV.}^3$ Для рутения ($\phi_m = 4.60 \text{ eV}$) при $E_g = 3.1 \text{ eV}$ находим $\Phi_b^n = 1.08 \text{ eV}$, что значительно превышает экспериментальное значение 0.67 eV [21]. Если вновь принять $E_g = 2.86 \text{ eV}$, получим $\Phi_b^n = 0.95 \text{ eV}$ ($n_d = 0.38$), что несколько лучше согласуется с экспериментом. В случае никеля ($\phi_m = 4.50 \text{ eV}$) расчет дает значение 1.04 eV, а эксперимент [4,5] — 1.17–1.68 eV.

Рис. 2. Зависимость высоты барьера Шоттки Φ_b^n в системе Cr/политипы SiC от поверхностной концентрации кремниевых вакансий N_{Si}^s .

Перейдем к расчетам высоты барьера Шоттки для контакта политипов карбида кремния с хромом. Вновь считаем $\lambda = 2$ Å, $\Gamma = 0.5$ eV, $q_d = -n_d$. Воспользовавшись значениями E_g и N_{Si} из [1] и положив $\phi_m = 4.58$ eV, получим результаты, представленные в табл. 4. Отметим, что величина $E_g = 3.125$ eV для политипа 27*R*-SiC взята из теоретической работы [22].

3. Результаты расчетов, представленные в таблицах, следует признать вполне удовлетворительными, так как подгонка осуществлялась всего лишь для одной конкрет-

³ Похоже, что настоящая модель не подходит для описания контакта карбида кремния с редкоземельными металлами, хотя на основании одной оценки строгий вывод сделать невозможно.

ной системы Ag/3C-SiC. Можно, таким образом, считать, что определяющую роль в формировании барьера Шоттки изначально (до контакта с металлом) играют не заполненные электронами кремниевые вакансии с энергией $E_d = E_V + 2.1 \text{ eV} (E_V$ — энергия потолка валентной зоны), одинаковой для всех политипов, обладающих одним и тем же электронным сродством $\chi = 4.4 \text{ eV}$.

На рис. 1 и 2 представлена зависимость расчетных значений Φ_b^n от поверхностной концентрации кремниевых вакансий N_{Si}^s . Видно, что везде наблюдается увеличение Φ_b^n с ростом N_{Si}^s , что подтверждается экспериментом во всех случаях, кроме одного, а именно: в ряду Pd/3C-, 6*H*-, 15*R*- и 4*H*-SiC высота барьера Шоттки для политипа 15*R* меньше, чем для 6*H* [18]. Таким образом, выводы о доминирующем влиянии кремниевых вакансий, сделанные в работах [9,13] подтверждаются.

Как показано в [5] на примере контактов Pd, Ni, Au, Ag, Mg, Ti и Al с 6H-SiC (см. также работу [20], где исследовался контакт Cs/6H-SiC), если образцы n- и p-типа изготовлены с помощью одной и той же технологии, то соотношение Шоттки $\Phi_h^n + \Phi_h^p = E_g$ выполняется с точностью до 10%. Следовательно, представленная нами модель подходит и для расчета Φ_h^p . Отметим также следующее обстоятельство. В [5] даны значения Φ_h^n и Φ_h^p при контактах приведенного выше ряда металлов с поверхностью (0001), на которой находятся атомы Si, и с (0001), содержащей атомы С. При этом оказалось, что разность соответствующих значений высот барьеров $\delta = \Phi_h^n(Si) - \Phi_h^n(C)$ отрицательна для всего ряда металлов, кроме Аu. В рамках нашей модели можно предположить, что знак δ связан с уменьшением параметра λ при переходе от поверхности (0001) к (0001), так как атомные радиусы кремния и углерода равны соответственно 0.77 и 1.18 Å [12]. Полагая $\Gamma \propto \exp(-2\gamma\lambda)$, где $\gamma \sim 1 \text{ Å}^{-1}$ [23], получим

$$\frac{d\Phi_b^n}{d\lambda} [1 + 4\pi e^2 N_d \lambda \rho_d] = A,$$

$$A = 4\pi e^2 N_d n_d - 2\gamma \rho_d \Phi_b^n,$$
 (5)

где плотность состояний ρ_d дается выражением (4). Расчет с использованием теоретических значений n_d и Φ_b^n (при $N_d = N_{\rm Si}^s$) дает для всех переходных металлов A < 0. Следовательно, с увеличением λ высота барьера Φ_b^n должна уменьшаться, что и наблюдается в эксперименте [5] (причины отличия знака A для золота неясны). Для Al также получаем A < 0, тогда как для Mg имеем A > 0.

Последнее расхождение не удивительно, так как расчетное значение барьера в 2 раза превышает экспериментальное (см. выше).

4. Хорошо известно, что в модели, учитывающей взаимодействие $|sp^3\rangle$ -орбиталей вторых соседей, четырехкратно вырожденный уровень вакансии в тетраэдрическом кристалле расщепляется на один невырожденный уровень *s*-типа и три вырожденных уровня *p*-типа, лежащих выше *s*-уровня [24]. Поэтому в нашей модели, где для простоты рассматривается лишь один уровень E_d , логично первоначально незаполненный уровень сопоставить уровням *p*-типа, а первоначально заполненный — уровню *s*-типа. Уровни *p*-типа испытывают также спиновое расщепление, не зависящее от политипа для однократно положительно заряженной, нейтральной и однократно отрицательно заряженной кремниевых вакансий [17]. Так, например, расположение уровней кремниевых вакансий в запрещенной зоне политипов 3*C*- и 4*H*-SiC относительно потолка валентной зоны весьма близко, причем энергия этих уровней в 4*H*-SiC не зависит от того, в каком узле (гексагональном или кубическом) расположена вакансия. Эти соображения также подтверждают использованное нами приближение $E_d = \text{const.}$

Список литературы

- Р.Г. Веренчикова, В.И. Санкин, Е.И. Радованова. ФТП 17, 10, 1757 (1983).
- [2] J.R. Waldrop, R.W. Grant. Appl. Phys. Lett. 56, 6, 557 (1990).
- [3] J.R. Waldrop, R.W. Grant, Y.C. Wang, R.F. Davis. J. Appl. Phys. 72, 10, 4757 (1992).
- [4] J.R. Waldrop, R.W. Grant. Appl. Phys. Lett. 62, 21, 2685 (1993).
- [5] J.R. Waldrop. J. Appl. Phys. 75, 9, 4548 (1994).
- [6] M.J. Bazack. Phys. Stat. Sol. (b) 202, 3, 549 (1997).
- [7] Н.Д. Сорокин, Ю.М. Таиров, В.Ф. Цветков, М.А. Чернов. Кристаллография 28, 5, 910 (1983).
- [8] А.А. Лебедев. ФТП 33, 7, 769 (1999).
- [9] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник, Ю.М. Таиров. ФТП 35, 12, 1437 (2001).
- [10] R. Ludeke. Phys. Rev. B 40, 3, 1947 (1989).
- [11] А.Н. Андреев, А.С. Трегубова, М.П. Щеглов, В.П. Растегаев, С.И. Дорожкин, В.Е. Челноков. ФТП 29, 10, 1828 (1995).
- [12] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1994).
- [13] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник, Ю.М. Таиров. ФТП 36, 6, 690 (2002).
- [14] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983). Т. 1.
- [15] Ч. Киттель. Введение в физику твердого тела. Наука, М. (1978).
- [16] В.И. Гавриленко, А.М. Грехов, Д.В. Корбутяк, В.Г. Литовченко. Оптические свойства полупроводников. Справочник. Наук. думка, Киев (1987).
- [17] F. Bechstedt, A. Fissel, J. Furtmuller, U. Grossner, A. Zywietz. J. Phys.: Cond. Matter 13, 15, 9027 (2001).
- [18] H.-J. Im, B. Kaczer, J.P. Pelz, W.J. Choyke. Mater. Sci. Forum 264–268, 813 (1998).
- [19] C.-M. Zetterling, F. Dahlquist, N. Lundberg, M. Östling, K. Rottner, L. Ramberg. Solid-State Electron. 42, 9, 1757 (1998).
- [20] V. Van Elsbergen, T.U. Kampen, W. Mönch. J. Appl. Phys. 79, 1, 316 (1996).
- [21] M.E. Samiji, E. van Wyk. Mat. Sci. Forum 353–356, 607 (2001).
- [22] Г.Б. Дубровский, А.А. Лепнева. ФТТ 19, 5, 1252 (1977).
- [23] R. Brako, D.M. Newns. Rep. Prog. Phys. 52, 3, 655 (1989).
- [24] М. Ланно, Ж. Бургуэн. Точечные дефекты в полупроводниках. Теория. Мир, М. (1984).