Дисперсия и затухание сдвиговых поверхностных акустических волн горизонтальной поляризации на свободной статистически-шероховатой поверхности гексагонального кристалла

© В.В. Косачёв, Ю.Н. Гандурин, К.В. Барсуков

Московский инженерно-физический институт (государственный университет), 115409 Москва, Россия

E-mail: kosachev@theor.mephi.ru

(Поступила в Редакцию 16 декабря 2003 г.)

Для Z-среза гексагонального кристалла со свободной статически-шероховатой поверхностью в рамках теории возмущений с помощью модифицированного метода среднего поля в аналитическом виде получены выражения для дисперсии фазовой скорости и обратной длины затухания поверхностных акустических волн сдвиговой горизонтальной поляризации. Рассмотрены как двумерно-, так и одномерно-шероховатые поверхности. При этом одномерно-шероховатая поверхность рассматривается как частный случай двумерношероховатой. Показано, что на плоской поверхности Z-среза гексагонального кристалла существование сдвиговых поверхностных волн горизонтальной поляризации невозможно.

Полученные выражения исследованы аналитически и численно во всем достижимом в теории возмущений диапазоне частот. Рассмотрен наиболее интересный с точки зрения эксперимента длинноволновый предел, когда длина волны много больше корреляционного радиуса шероховатости. Найдены условия существования волн SH-поляризации для обоих типов шероховатости. Показано, что характер дисперсии и затухания волн SH-поляризации качественно совпадает с рассмотренным нами ранее для изотропной среды.

1. Введение

Как известно, при определенных условиях на неровной поверхности изотропного твердого тела наряду с волнами Рэлея могут также распространяться сдвиговые поверхностные акустические волны (ПАВ) горизонтальной поляризации (SH-поляризации). Существование волн SH-поляризации на плоской поверхности изотропного твердого тела невозможно [1]. Однако условия для их существования могут быть созданы за счет следующих факторов: неоднородности свойств материала упругой среды вблизи поверхности (путем нанесения тонкого слоя на подложку — волна Лява [2], слабая поверхностная неоднородность [3]); пьезоэлектричества (волна Гуляева–Блюштейна [4,5]); ферромагнетизма (магнитоупругие волны [6–8]); ангармонизма колебаний решетки [9]; шероховатости поверхности.

Что касается шероховатости поверхности, изучаемой в настоящей работе, то в литературе рассматриваются как двумерно-, так и одномерно-шероховатые поверхности. Дисперсионное соотношение для волн SH-поляризации, распространяющихся вдоль двумерношероховатой поверхности изотропного твердого тела, впервые было получено в [10]. Большинство работ, посвященных рассмотрению волн SH-поляризации на одномерно-шероховатой поверхности [11-13], ограничивается случаем падения волн перпендикулярно случайным канавкам решетки. В [14] найдено дисперсионное соотношение для волн SH-поляризации, распространяющихся вдоль канавок случайной решетки; аналогичный результат (но для периодической шероховатости) был получен в [15]. В [16] также выведено дисперсионное соотношение для волн SH-поляризации, но распространяющихся перпендикулярно канавкам периодической шероховатости. В работе [17] получено дисперсионное соотношение для волн SH-поляризации в случаях двумерной и одномерной шероховатости при произвольном угле падения на случайные канавки решетки. Заметим, что в цитируемых выше работах при рассмотрении ПАВ SH-поляризации на шероховатой поверхности среда считалась изотропной. Кроме того, остается открытым вопрос о существовании ПАВ SH-поляризации на плоской (не шероховатой) поверхности кристалла.

В настоящей работе найден закон дисперсии волн SH-поляризации на слабошероховатой поверхности гексагонального кристалла. В частности, рассмотрены волны SH-поляризации на базисной плоскости свободной статистически-шероховатой поверхности гексагонального кристалла (Z-срез) при произвольном направлении распространения.

2. Постановка задачи

Гексагональный кристалл, рассматриваемый в приближении упругого континуума, с осью симметрии шестого порядка, параллельной оси x_3 , ограничен свободной статистически-шероховатой поверхностью и располагается в полупространстве $x_3 > \xi(\mathbf{x}_{\parallel})$, где $\xi(\mathbf{x}_{\parallel})$ — функция профиля шероховатой поверхности, а $\mathbf{x}_{\parallel} = (x_1, x_2, 0)$. Гексагональная среда характеризуется плотностью массы ρ и тензором модулей упругости $C_{\alpha\beta\mu\nu}$. Вдоль статистически-шероховатой поверхности гексагонального кристалла распространяется ПАВ SH-поляризации. Требуется найти дисперсию фазовой скорости и обратную длину затухания волны, обусловленные шероховатостью поверхности. Предполагается, что функция $\xi(\mathbf{x}_{\parallel})$ обладает следующими статистическими свойствами:

$$\langle \xi \left(\mathbf{x}_{\parallel} \right) \rangle = \mathbf{0},\tag{1}$$

$$\langle \xi(\mathbf{x}_{\parallel})\xi(\mathbf{x}_{\parallel}')\rangle = \delta^2 W(|\mathbf{x}_{\parallel} - \mathbf{x}_{\parallel}'|), \qquad (2)$$

где $\delta = \sqrt{\langle \xi^2 \rangle}$ — среднеквадратичная амплитуда шероховатости. Вводя Фурье-представление

$$\xi(\mathbf{x}_{\parallel}) = \int \frac{d^2 \mathbf{k}_{\parallel}}{(2\pi)^2} \xi(\mathbf{k}_{\parallel}) \exp(i\mathbf{k}_{\parallel}x_{\parallel}),$$
$$\mathbf{k}_{\parallel} = (k_1, k_2, 0), \tag{3}$$

получаем

$$\langle \xi(\mathbf{k}_{\parallel})\xi(\mathbf{q}_{\parallel})\rangle = \delta^2 g(|\mathbf{k}_{\parallel}|)(2\pi)^2 \delta(\mathbf{k}_{\parallel} + \mathbf{q}_{\parallel}).$$
(4)

Корреляционная функция $g(|k_{\parallel}|)$ выбирается в гауссовом виде

$$g(|\mathbf{k}_{\parallel}|) = \pi a^2 \exp\left(-\frac{k_{\parallel}^2 a^2}{4}\right),\tag{5}$$

где *а* — корреляционная длина шероховатости (мера среднего расстояния между последовательными пиками или впадинами на поверхности). Шероховатость поверхности считается слабой, т.е. характерные высоты неровностей δ предполагаются малыми по сравнению с длиной исследуемой волны λ ($\delta \ll \lambda$). Зависимость поля смещения от времени предполагается гармонической

$$\mathbf{u}(\mathbf{x},t) = \mathbf{u}(\mathbf{x},\omega) \exp(-i\omega t). \tag{6}$$

Дисперсионное соотношение для волн SH-поляризации на двумерно-шероховатой поверхности

Задача нахождения закона дисперсии ПАВ SH-поляризации решается с помощью модифицированного метода среднего поля, описанного в [17], где показано, что с помощью эффективных граничных условий проблема может быть сведена к рассмотрению свободных колебаний упругой среды, локализованных вблизи плоскости $x_3 = 0$. Поскольку эффективные граничные условия были получены в [17] для среды с произвольной симметрией, они справедливы также и для рассматриваемого случая гексагональной среды. Вводя функцию Грина, удовлетворяющую уравнениям движения полубесконечной среды и граничным условиям на плоскости $x_3 = 0$ и бесконечности, можно перейти от дифференциальных уравнений с эффективными граничными условиями к интегральным уравнениям с помощью интегральной теоремы Грина. Переходя к Фурье-представлению и комбинируя интегральные уравнения с эффективными граничными условиями, получаем систему однородных интегральных уравнений для компонент поля смещения $\langle F_{\alpha}(\mathbf{k}_{\parallel},\omega|x_{3})\rangle$

во втором порядке по ξ . Усредняя далее по ансамблю реализаций функции профиля поверхности, получаем однородную систему алгебраических уравнений для компонент среднего поля смещения, общий вид которой

$$\langle F_{\alpha}(\mathbf{k}_{\parallel},\omega|0)\rangle = \delta^{2}A_{\alpha\beta}(\mathbf{k}_{\parallel},\omega)\langle F_{\beta}(\mathbf{k}_{\parallel},\omega|0)\rangle.$$
(7)

Для случая гексагонального кристалла (Z-срез) система уравнений (7) получена в [18] (выражение (18)). Оказывается, что, так же как и для изотропной среды [17], для Z-среза гексагонального кристалла компоненты $\langle F_1(\mathbf{k}_{\parallel}, \omega|0) \rangle$ и $\langle F_3(\mathbf{k}_{\parallel}, \omega|0) \rangle$ (отвечающие волнам Рэлея [18]) отделяются от уравнения для $\langle F_2(\mathbf{k}_{\parallel}, \omega|0) \rangle$, соответствующего волнам SH-поляризации (см. (18), (19) в [18]). Такое разделение связано с изотропией Z-среза гексагонального кристалла. Уравнение для компоненты $\langle F_2(\mathbf{k}_{\parallel}, \omega|0) \rangle$ имеет вид

$$\langle F_2(\mathbf{k}_{\parallel},\omega|\mathbf{0})\rangle = \delta^2 \int \frac{d^2 q_{\parallel}}{(2\pi)^2} g(|\mathbf{k}_{\parallel} - \mathbf{q}_{\parallel}|) \\ \times (d_{22}X_{21}^2 \tilde{d}_{11} + d_{22}X_{22}^2 \tilde{d}_{22}) \langle F_2(\mathbf{k}_{\parallel},\omega|\mathbf{0})\rangle, \quad (8)$$

где $d_{\alpha\beta} \equiv d_{\alpha\beta}(k_{\parallel}|\omega)$, $\tilde{d}_{\alpha\beta} \equiv d_{\alpha\beta}(q_{\parallel}|\omega)$ (поверхностная функция Грина для гексагонального кристалла со свободной поверхностью, параллельной базисной плоскости [19]), $X_{\alpha\beta} \equiv X_{\alpha\beta}(q_{\parallel}, k_{\parallel}|\omega)$. Условие разрешимости уравнения (8) после несложных преобразований дает дисперсионное соотношение для поверхностных волн SH-поляризации

$$\frac{\alpha_t(k_{\parallel},\omega)}{k_{\parallel}\sqrt{h}} = \left(\frac{\delta}{a}\right)^2 r(\xi),\tag{9}$$

где

$$r(\xi) = \xi^4 \frac{h}{8} \exp\left(-\frac{\xi^2}{4}\right) \left(A(\xi) + B(\xi) + E(\xi)\right), \quad (10)$$

 $\xi = k_{\parallel}a$, функции $\alpha_t(k_{\parallel}, \omega)$, $A(\xi)$, $B(\xi)$, $E(\xi)$ и коэффициент *h* зависят только от компонент тензора модулей упругости и приведены в Приложении 1. Функция $\alpha_t(k_{\parallel}, \omega)$ определяет затухание Фурье-компонент смещения

$$u_{\alpha}(k_{\parallel},\omega|x_{3}) \sim \exp(-\alpha_{t}(k_{\parallel},\omega)x_{3}).$$
(11)

Запишем решение дисперсионного уравнения (9) в виде

$$\omega = \omega_{\rm SH} + \Delta \omega, \qquad (12)$$

где $\omega_{\rm SH} = k_{\parallel} \sqrt{hc_{44}/\rho}$ соответствует решению уравнения (9) на плоской поверхности ($\delta = 0$), однако $\omega_{\rm SH}$ — нефизическое решение, так как $\alpha_t(k_{\parallel}, \omega) = 0$ не соответствует волнам, локализованным вблизи поверхности. Решение уравнения (9) с учетом (12) имеет вид

$$\frac{\Delta\omega(\xi)}{\omega_{\rm SH}} = -\frac{\delta^4}{a^4} \frac{r(\xi)^2}{2}.$$
 (13)

Поскольку $r(\xi)$ комплексно, его удобно записать в форме

$$r(\xi) = r_1(\xi) + ir_2(\xi).$$
(14)

Тогда (13) принимает вид

$$\frac{\Delta\omega(\xi)}{\omega_{\rm SH}} = -\frac{\delta^4}{a^4} \frac{r_1(\xi)^2 - r_2(\xi)^2}{2} - i \frac{\delta^4}{a^4} r_1(\xi) r_2(\xi). \quad (15)$$

Поскольку волна должна затухать в глубь среды $(x_3 > 0)$, из (11) следует, что Re $\alpha_t > 0$, что соответствует условию

$$r_1(\xi) > 0.$$
 (16)

Для того чтобы при распространении вдоль шероховатой поверхности амплитуда волны не возрастала, необходимо выполнение условия $\text{Im}\,\Delta\omega \leq 0$; тогда из (15) следует

$$r_2(\xi) \ge 0. \tag{17}$$

Условия (16) и (17) определяют область существования волн SH-поляризации.

В случае изотропной среды дисперсионное соотношение (13) переходит в выражение (5.20) работы [17].

В длинноволновом пределе, когда $\xi \ll 1$ ($\lambda \gg a$), выражения для $r_1(\xi)$ и $r_2(\xi)$ принимают вид

$$r_{1}(\xi) = \xi \frac{h\sqrt{\pi}}{2} \left(\frac{\sqrt{h}}{a_{1}} \left(\sqrt{a_{2} + b_{2}} + \sqrt{a_{2} - b_{2}} \right) + 1 \right), \quad (18)$$

$$r_{2}(\xi) = \xi^{4} \frac{h}{8}$$

$$\left(10 \qquad \tilde{\alpha}_{p} \left(\frac{1}{\epsilon} \right) \left(1 + \frac{h}{\epsilon} \right) \varepsilon (1 - \epsilon) \left(\frac{c_{11}}{c_{44}} - \epsilon \right) \right)$$

$$\times \left(\frac{10}{3} + \pi \frac{c_p\left(\varepsilon\right)\left(1+\varepsilon\right)c\left(1-\varepsilon\right)\left(c_{44}-\varepsilon\right)}{\left(2a_1 - \frac{c_{11}}{c_{44}} + 1\right)\varepsilon^2 - \varepsilon a_1\left(\frac{c_{11}}{c_{44}} + 3\right) + 2a_1\frac{c_{11}}{c_{44}}}\right)$$
$$-h\operatorname{Im} \int_{0}^{1} dx \, \frac{\tilde{\alpha}_p(x)\sqrt{x-1}(1+hx)}{\sqrt{x-1}(1-a_1x) + \tilde{\alpha}_m(x)}\right), \tag{19}$$

где

$$a_2 = \frac{a_1}{2} - \frac{c_{13}}{c_{33}}, \quad b_2 = \sqrt{a_2^2 - \frac{c_{11}}{c_{33}}}$$

Из выражений (18), (19) следует, что

$$\operatorname{Re}\Delta\omega\sim\xi^3,\quad\operatorname{Im}\Delta\omega\sim\xi^6.$$
 (20)

Случай одномерно-шероховатой поверхности

В этом случае постановка задачи отличается только тем, что профиль шероховатости поверхности — это штрихи решетки со случайным расстоянием между ними, т. е. функция профиля поверхности $\xi(x_{\parallel}) = \xi(x_2)$ зависит только от одной координаты. Считается, что волна, распространяясь вдоль поверхности, падает на случайные штрихи решетки под углом ψ к нормали к штрихам. По аналогии с [20] рассмотрим одномерную шероховатость как частный случай двумерной. Тогда во всех выкладках достаточно сделать формальную замену

$$g(|\mathbf{k}_{\parallel}|) \to g(|\mathbf{k}_{\parallel}|) = (2\pi)\delta(k_2)g(|k_1|), \qquad (21)$$

где $\delta(k_2)$ — дельта-функция Дирака. В результате для волн SH-поляризации на одномерно-шероховатой поверхности получаем закон дисперсии (13), в котором теперь $\Delta\omega(\xi)$ и $r(\xi)$ зависят также и от угла падения ψ

$$r(\xi, \psi) = \xi^3 \frac{h}{2\sqrt{\pi}} \left(A(\xi, \psi) + B(\xi, \psi) + E(\xi, \psi) \right).$$
(22)

Выражения для $A(\xi, \psi)$, $B(\xi, \psi)$ и $E(\xi, \psi)$ приведены в Приложении 2. Условиями существования волн SH-поляризации в этом случае также являются соотношения (16) и (17), но для $r(\xi, \psi)$ (22).

В длинноволновом пределе $\xi \ll 1$

$$r_{1}(\xi,\psi) = \xi \frac{2h}{\sqrt{\pi}} \left(\cos^{2} 2\psi + \frac{\sqrt{h}}{a_{1}} \left(\sqrt{a_{2} + b_{2}} + \sqrt{a_{2} - b_{2}} \right) \sin^{2} 2\psi \right),$$
(23)

$$r_{2}(\xi,\psi) = \xi^{3} \frac{h}{2\sqrt{\pi}} \left[\frac{\pi}{16} (6 + 5\cos 2\psi - 2\cos 4\psi + \cos 6\psi (15 - 16\sin \psi)) - iE(\xi,\psi) \right]$$

$$-\int_{0}^{\max(h-\sin^{2}\psi,0)} d\eta \operatorname{Im}\left(\frac{\tilde{\alpha}_{p}(x)\sqrt{x-1}}{\sqrt{x-1}(1-a_{1}x)+\tilde{\alpha}_{m}(x)}\right)_{x=\frac{\eta^{2}+\sin^{2}\psi}{h}} \times \left(\Phi_{2}(\eta,\psi)+\Phi_{2}(-\eta,\psi)\right)_{\varepsilon=0}\right].$$
(24)

$$(2(0, \gamma), 2(0, \gamma))_{\xi=0}$$

С учетом (23), (24) из (15) получаем

Re
$$\Delta \omega \sim \xi^3$$
, Im $\Delta \omega \sim \xi^5$. (25)

5. Численный расчет

Для проведения численных расчетов удобно записать $\Delta \omega$ через действительную и мнимую части безразмерной функции $\omega_{12} = \omega_1 - i\omega_2$:

$$\frac{\Delta\omega}{\omega_{\rm SH}} = \frac{\delta^4}{a^4} \left(\omega_1 - i\omega_2\right). \tag{26}$$

Тогда выражение для ω_1 и ω_2 следует из (15). При этом ω_1 определяет относительное изменение фазовой скорости волн SH-поляризации

$$\frac{\Delta c}{c_{\rm SH}} = \frac{\delta^4}{a^4} \,\omega_1 \tag{27}$$

(где коэффициент $c_{\rm SH} = \omega_{\rm SH}/k_{\parallel}$), а ω_2 — обратную длину затухания

$$\frac{1}{L} = \frac{\delta^4}{a^5} \xi 2\omega_2. \tag{28}$$

Численный расчет функций ω_1 и ω_2 был проведен для большинства известных гексагональных кристаллов. Оказалось, что графики функций ω_1 и ω_2 качественно схожи между собой, а также с соответствующими графиками для случая изотропной среды, различаясь только в количественном отношении. Это имеет место как для двумерно-, так и для одномерно-шероховатой поверхности. Поэтому приведем результаты численного расчета для одного из наиболее известных гексагональных кристаллов — ZnO (коэффициенты тензора модулей упругости взяты из [21]).

Рассмотрим двумерно-шероховатую поверхность. В этом случае $r_1(\xi) > 0$ и $r_2(\xi) > 0$ для всех ξ , поэтому ПАВ SH-поляризации существует для всех ξ . Графики функций $\omega_1(\xi)$ и $\omega_2(\xi)$ приведены на рис. 1, *a* и *b* соответственно. Из рис. 1, *b*, в частности, видно, что при $\xi \lesssim 1$ волна почти не затухает, а при $\xi > 50$ начинается сильное затухание.

Для одномерно-шероховатой поверхности (случайные штрихи решетки) с учетом симметрии задачи достаточно провести вычисления для $\psi \in [0, 90^\circ]$. Расчет показывает, что $r_2(\xi) > 0$ для всех ξ , поэтому (см. (15)) область существования волн SH-поляризации можно определить как $\omega_2(\xi, \psi) \ge 0$. Графики функций $\omega_1(\xi, \psi)$ и $\omega_2(\xi, \psi)$ представлены на рис. 2, *а* и *b* соответственно. Из рис. 2, *b* следует, что волна SH-поляризации

Рис. 1. Зависимости вещественной ω_1 (*a*) и мнимой ω_2 (*b*) частей комплексного сдвига частоты от безразмерной переменной ξ для волн SH-поляризации на двумерно-шероховатой поверхности кристалла ZnO.

Рис. 2. Зависимости вещественной ω_1 (*a*) и мнимой ω_2 (*b*) частей комплексного сдвига частоты от безразмерной переменной ξ и угла падения ψ для волн SH-поляризации на одномерно-шероховатой поверхности кристалла ZnO.

не существует в незаштрихованной овальной области $\xi \approx [10, 30]$ и $\psi \approx [65^{\circ}, 85^{\circ}]$, где $\omega_2(\xi, \psi) < 0$.

В длинноволновом пределе $(\xi \ll 1)$ для двумерно-шероховатой поверхности можно записать (см. (15), (18), (19))

$$\omega_1(\xi) = -\xi^2 \Phi \qquad \left(\frac{\Delta c}{c_{\rm SH}} \sim \frac{\delta^4}{a^2} \,\omega^2\right),\tag{29}$$

$$\omega_2(\xi) = \xi^5 \frac{\Lambda}{2} \qquad \left(\frac{1}{L} \sim \delta^4 a \omega^6\right),\tag{30}$$

где Φ и Λ — константы, зависящие только от компонент тензора модулей упругости. Численные значения Φ и Λ порядка единицы и для большинства известных гексагональных кристаллов представлены в таблице.

6

Для одномерно-шероховатой поверхности в пределе длинных волн

$$\omega_1(\xi,\psi) = -\xi^2 \Phi(\psi) \qquad \left(\frac{\Delta c}{c_{\rm SH}} \sim \frac{\delta^4}{a^2} \omega^2 \Phi(\psi)\right), \quad (31)$$

$$\omega_2(\xi,\psi) = \xi^4 \frac{\Lambda(\psi)}{2} \qquad \left(\frac{1}{L} \sim \delta^4 \Lambda(\psi) \omega^5\right). \tag{32}$$

В.В. Косачев. Ю.Н. Гандурин. К.В. Барсук	В.В. Косачёв.	Ю.Н.	Гандурин.	K.B.	<i>Eapc</i>	/КОВ
--	---------------	------	-----------	------	--------------------	------

Среда	<i>Т</i> ,К	ho, g/cm ³	c _{SH} , km∕s	Φ	Λ
Be	293	1.816	8.297	1.671	2.617
CdS	293	4.825	1.827	1.124	1.706
Со	298	8.836	2.835	0.8794	1.334
Лед	257	0.960	1.950	1.316	2.013
	248	0.960	1.923	1.368	2.093
	263	0.960	1.896	1.375	2.105
	268	0.960	1.882	1.332	2.037
Mg	0	1.799	3.233	1.169	1.790
SiO ₂	873	2.517	4.444	2.525	4.005
	873	2.533	4.441	2.533	4.025
ZnO	293	5.676	2.792	1.087	1.650
Y	4	4.472	2.464	1.193	1.835
	75	4.472	2.450	1.187	1.827
	200	4.472	2.393	1.182	1.817
	300	4.472	2.350	1.193	1.833
	400	4.472	2.314	1.211	1.860

Численные значения Ф, Л и с_{SH} для двумерно-шероховатой поверхности для ряда гексагональных кристаллов

Примечание. Компоненты тензора модулей упругости, входящие в $c_{\rm SH},$ Фи А, взяты из [18].

Графики функций $\Phi(\psi)$ и $\Lambda(\psi)$ для ZnO приведены на рис. 3, *a* и *b* соответственно. Из рис. 3, *a* видно, что дисперсия волн SH-поляризации максимальна при угле падения 45°. Как следует из рис. 3, *b*, при больших углах падения волна затухает существенно меньше, чем при нормальном падении на штрихи решетки.

Рис. 3. Зависимости функций $\Phi(a)$ и $\Lambda(b)$ от угла падения ψ на одномерно-шероховатой поверхности кристалла ZnO в пределе длинных волн ($\xi \ll 1$).

6. Заключение

Таким образом, в настоящей работе в рамках теории возмущений в аналитическом виде найдены выражения для дисперсии фазовой скорости и обратной длины затухания ПАВ SH-поляризации, распространяющихся в произвольном направлении вдоль двумерной или одномерной статистически-шероховатой свободной поверхности гексагонального кристалла (Z-срез).

Выражения для двумерно-шероховатой поверхности получены с помощью модифицированного метода среднего поля [17], а для одномерно-шероховатой при рассмотрении ее как частного случая двумерношероховатой. В случае изотропной среды дисперсионное соотношение (13) переходит в формулу (5.20) работы [17]. Определены условия существования волн SH-поляризации на обоих типах шероховатости поверхностей для Z-среза гексагонального кристалла. Показано, что на плоской поверхности гексагонального кристалла (Z-срез) существование ПАВ SH-поляризации невозможно. В этом случае, как и для изотропной среды, она вырождается в объемную поперечную волну, скользящую вдоль поверхности.

Дисперсия фазовой скорости и длина затухания волн SH-поляризации рассчитаны численно для большинства известных гексагональных кристаллов при любых углах падения во всем достижимом в теории возмущений диапазоне частот. Полученные графики качественно совпадают между собой и со случаем изотропной среды, различаясь лишь в количественном отношении. Качественное совпадение со случаем изотропных сред объясняется изотропией Z-среза гексагонального кристалла.

Найдены выражения для дисперсии и затухания ПАВ SH-поляризации в длинноволновом пределе, когда волны много больше корреляционного радиуса шероховатости. Показано, что для двумерношероховатой поверхности обратная длина затухания пропорциональна шестой степени частоты, а для одномерно-шероховатой — пятой степени. Отдельное изменение фазовой скорости для обоих типов шероховатости поверхности пропорционально квадрату частоты.

В заключение отметим, что модифицированный метод среднего поля позволил найти дисперсию и затухание ПАВ Рэлея [18] и SH-поляризации как на двумерно-, так и на одномерно-шероховатой поверхности Z-среза гексагонального кристалла. Данный метод позволяет получить закон дисперсии ПАВ обеих поляризаций и для других срезов различных кристаллов. Необходимым условием этого является знание функции Грина на плоской (не шероховатой) поверхности исследуемого среза, что представляет собой самостоятельную и достаточно сложную задачу.

Приложение 1

$$\alpha_{t}(k_{\parallel},\omega) = \begin{cases} \sqrt{hk_{\parallel}^{2} - \frac{\rho\omega^{2}}{c_{44}}}, & hk_{\parallel}^{2} - \frac{\rho\omega^{2}}{c_{44}} > 0, \\ -i\sqrt{\frac{\rho\omega^{2}}{c_{44}}} - hk_{\parallel}^{2}, & hk_{\parallel}^{2} - \frac{\rho\omega^{2}}{c_{44}} > 0, \end{cases}$$
(II1.1)

$$A(\xi) = \int_{0}^{\infty} dt \exp\left(-\frac{\xi^2 t}{4}\right) \frac{\Phi_2\left(t, \frac{\xi^2 \sqrt{t}}{2}\right)}{\tilde{\alpha}_{tt}(t)}, \qquad (\Pi 1.2)$$

$$B(\xi) = -hP \int_{0}^{\infty} dx \exp\left(-\frac{\xi^2 hx}{4}\right)$$

$$\times \frac{\tilde{\alpha}_p(x)\sqrt{x-1}}{\sqrt{x-1}(1-a_1x)+\tilde{\alpha}_m(x)} \Phi_1\left(hx,\frac{\xi^2\sqrt{hx}}{2}\right), \quad (\Pi 1.3)$$
$$E(\xi) = i\pi \exp\left(-\frac{\xi^2 h}{4}\right)$$

$$\times \frac{\tilde{\alpha}_{p}\left(\frac{1}{\varepsilon}\right)\Phi_{1}\left(\frac{h}{\varepsilon},\frac{\xi^{2}}{2}\sqrt{\frac{h}{\varepsilon}}\right)\varepsilon(1-\varepsilon)\left(\frac{c_{11}}{c_{44}}-\varepsilon\right)}{\left(2a_{1}-\frac{c_{11}}{c_{44}}+1\right)\varepsilon^{2}-\varepsilon a_{1}\left(\frac{c_{11}}{c_{44}}+3\right)+2a_{1}\frac{c_{11}}{c_{44}}}, \quad (\Pi 1.4)$$

$$\Phi_{1}(t,z)=(1+t)I_{0}(z)-2\sqrt{t}I_{1}(z)-I_{2}(z)$$

$$+2\sqrt{t}I_{3}(z)-tI_{4}(z), \quad (\Pi 1.5)$$

$$\Phi_{2}(t,z)=(1+t)I_{0}(z)-2\sqrt{t}I_{1}(z)+I_{2}(z)$$

$$-2\sqrt{t}I_{3}(z) + tI_{4}(z), \qquad (\Pi 1.6)$$

где $I_n(z)$ — модифицированная функция Бесселя порядка n.

В выражениях (П1.2)–(П1.4) использованы следующие обозначения:

$$\begin{split} \tilde{\alpha}_{p}(x) &= \tilde{\alpha}_{t1} + \tilde{\alpha}_{t2}, \quad \tilde{\alpha}_{m}(x) = \frac{\alpha_{t1}\alpha_{t2}}{\sqrt{x-1}}, \\ \tilde{\alpha}_{t1}^{2} &= \frac{1}{2} \left(z + \sqrt{z^{2} - 4y_{2}} \right), \quad \tilde{\alpha}_{t2}^{2} = \frac{1}{2} \left(z - \sqrt{z^{2} - 4y_{2}} \right), \\ \text{Re} \, \tilde{\alpha}_{t1,t2} &> 0, \quad \text{Im} \, \tilde{\alpha}_{t1,t2} < 0, \\ y_{2} &= \frac{c_{11}}{c_{33}} \left(x - 1 \right) \left(x - \frac{c_{44}}{c_{11}} \right), \\ z &= \left(a_{1} - 2 \frac{c_{13}}{c_{33}} \right) x - \left(1 + \frac{c_{44}}{c_{33}} \right), \\ \tilde{\alpha}_{tt}(x) &= \begin{cases} \sqrt{x-1}, & x - 1 \ge 0, \\ -i\sqrt{1-x}, & x - 1 < 0, \end{cases} \\ a_{1} &= \frac{c_{11}c_{33} - c_{13}^{2}}{c_{33}c_{44}}, \quad h = \frac{c_{11} - c_{12}}{2c_{44}}, \\ \begin{cases} \left(1 - \frac{c_{44}}{c_{33}} \right) \varepsilon^{3} + \left(\frac{c_{11}}{c_{33}} - 1 - 2a_{1} \right) \varepsilon^{2} \\ &+ a_{1}(2 + a_{1})\varepsilon - a_{1}^{2} = 0, \end{cases} \\ 0 < \varepsilon < \min(1, a_{1}). \end{split}$$

11* Физика твердого тела, 2004, том 46, вып. 10

В выражении (П1.3) символ *P* обозначает интегрирование в смысле главного значения Коши, а полюс находится в точке $x_0 = \frac{1}{c}$.

Приложение 2

$$A(\xi,\psi) = \int_{0}^{\infty} d\eta \, \frac{\Phi_1(\eta,\psi) + \Phi_1(-\eta,\psi)}{\tilde{\alpha}_{tt}(\eta^2 + \sin^2\psi)}, \qquad (\Pi 2.1)$$

$$B(\xi,\psi) = -P \int_{0}^{\infty} d\eta \left(\frac{\tilde{\alpha}_{p}(x)\sqrt{x-1}}{\sqrt{x-1}(1-a_{1}x) + \tilde{\alpha}_{m}(x)}\right)_{x=\frac{\eta^{2}+\sin^{2}\psi}{h}}$$

$$\times (\Phi_2(\eta, \psi) + \Phi_2(-\eta, \psi)), \qquad (\Pi 2.2)$$

$$E(\xi,\psi) = i\pi \frac{h}{2\sqrt{\frac{h}{\varepsilon} - \sin^2\psi}} \frac{\tilde{\alpha}_p\left(\frac{1}{\varepsilon}\right)}{a_1 + \frac{c_{44}}{c_{33}} \frac{\varepsilon^3(c_{11}/c_{44}-1)}{2(1-\varepsilon)^2(a_1-\varepsilon)}} \times \left(\Phi_2\left(\sqrt{\frac{h}{\varepsilon} - \sin^2\psi},\psi\right) + \Phi_2\left(-\sqrt{\frac{h}{\varepsilon} - \sin^2\psi},\psi\right)\right),$$
(II2.3)
$$\Phi_1(\eta,\psi) = \exp\left(-\frac{\xi^2}{4}(\eta - \cos\psi)^2\right)\left(\cos\theta(\eta,\psi) - \sqrt{\eta^2 + \sin^2\psi}\cos2\theta(\eta,\psi)\right)^2,$$
(II2.4)

$$\Phi_{2}(\eta,\psi) = \exp\left(-\frac{\xi^{2}}{4}(\eta-\cos\psi)^{2}\right)\left(\sin\theta(\eta,\psi) - \sqrt{\eta^{2}+\sin^{2}\psi}\sin2\theta(\eta,\psi)\right)^{2}, \quad (\Pi 2.5)$$

$$\cos\theta(\eta,\psi) = \frac{\eta\cos\psi+\sin^{2}\psi}{1-\frac{1}{2}\cos\psi}$$

$$\sin \theta(\eta, \psi) = \frac{\sin \psi \cos \psi - \eta \sin \psi}{\sqrt{\eta^2 + \sin^2 \psi}},$$

$$\sin \theta(\eta, \psi) = \frac{\sin \psi \cos \psi - \eta \sin \psi}{\sqrt{\eta^2 + \sin^2 \psi}}.$$
(II2.6)

Величины $\tilde{\alpha}_{t1}(x)$, $\tilde{\alpha}_{t2}(x)$, $\tilde{\alpha}_p(x)$, $\tilde{\alpha}_m(x)$, $\tilde{\alpha}_{tt}(x)$, *h*, ε , a_1 определены в Приложении 1.

В выражении (П2.2) символ *P* обозначает интегрирование в смысле главного значения Коши, а полюс находится в точке $\eta_0 = \sqrt{\frac{h}{\epsilon} - \sin^2 \psi}$.

Список литературы

- A.A. Maradudin. Non Equilibrium Phonon Dynamics / Ed. W.E. Bronn. Plenum Press, N.Y.–London (1985). P. 406.
- [2] A.E.H. Love. Some Problems of Geodynamics. Cambridge University Press, London (1911).
- [3] И.А. Викторов. Материалы Х Всесоюз. конф. по квантовой электронике. Фан, Ташкент (1978). С. 101.
- [4] J.L. Bleustein. Appl. Phys. Lett. 13, 412 (1968).
- [5] Ю.В. Гуляев. Письма в ЖЭТФ 9, 37 (1969).

- [6] R.E. Camley, R.Q. Scott. Phys. Rev. B 17, 4327 (1978).
- [7] M. Matthews, H. van de Vaart. Appl. Phys. Lett. **15**, 373 (1969).
- [8] J.P. Parekh. Electron. Lett. 5, 323 (1969).
- [9] V.G. Mozhaev. Phys. Lett. A 139, 333 (1989).
- [10] O.H. Duparc, A.A. Maradudin. J. Electr. Spectr. Rel. Phen. 30, 145 (1983).
- [11] A.A. Bulgakov, S.I. Khankina. Solid State Commun. 44, 1, 55 (1982).
- [12] X. Huang, A.A. Maradudin. Phys. Rev. B 36, 15, 7827 (1987).
- [13] С.3. Дунин, Г.А. Максимов. Препринт МИФИ № 032-88 (1988).
- [14] A.A. Maradudin, X. Huang, A.P. Mayer. J. Appl. Phys. 70, 1, 53 (1991).
- [15] A.P. Mayer, W. Zierau, A.A. Maradudin. J. Appl. Phys. 69, 4, 1942 (1991).
- [16] B. Djafari-Rouhani, A.A. Maradudin. J. Appl. Phys. 65, 11, 4245 (1989).
- [17] V.V. Kosachev, A.V. Shchegrov. Ann. Phys. (N.Y.) 240, 2, 225 (1995).
- [18] В.В. Косачёв, Ю.Н. Гандурин. ФТТ 45, 2, 369 (2003).
- [19] L. Dobrzynski, A.A. Maradudin. Phys. Rev. B 14, 6, 2200 (1976); Erratum. Phys. Rev. B 15, 4, 2432 (1977).
- [20] В.В. Косачёв, Ю.Н. Гандурин. ФТТ 45, 9, 1722 (2003).
- [21] O.L. Anderson. Physical Acoustics Principles and Methods. Academic Press, N.Y.–London (1965). P. 80. B3.