Исследование электронной структуры и химической связи гексацианоферрата (III) свинца

© В.М. Зайнуллина, М.А. Коротин*, Л.Г. Максимова

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия * Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: Veronika@ihim.uran.ru, mkorotin@optics.imp.uran.ru

(Поступила в Редакцию 1 декабря 2003 г. В окончательной редакции 10 марта 2004 г.)

Неэмпирическим методом TB–LMTO в приближении LSDA + U выполнены расчеты электронной структуры гексацианоферрата (III) свинца. Изучено влияние вакансий в подрешетке свинца на электронный спектр, химическую связь и магнитные свойства $Pb_{1.5}Fe(CN)_6$. Для этого соединения получен электронный спектр с полупроводниковым характером проводимости и показано, что наличие полупроводниковой щели связано с зарядовым упорядочением ионов железа (III).

Работа поддержана проектами Российского фонда фундаментальных исследований № 02-03-32806, 01-02-17063. Один из авторов (В.М.З.) благодарит Фонд содействия отечественной науке.

Недавно синтезированы безводные гексацианоферраты (ГЦФ) (II, III) свинца и олова [1]. На основе рентгено- и нейтронографических данных установлено, что фазы состава Pb₂Fe(CN)₆, Pb_{1.5}Fe(CN)₆ и Sn₂Fe(CN)₆ имеют тригональную сингонию [2]. Эти соединения относятся к группе цианометаллатных комплексных соединений типа $A_k^{(II)} [Fe^{(II,III)}(CN)_6]_m^{n-}$ (А катионы переходных элементов), большинство из которых характеризуется высокими значениями температуры Кюри и хорошими ионообменными свойствами (способность катионов переходных металлов первой координационной сферы комплекса обмениваться с тяжелыми одновалентными ионами щелочных металлов в растворе) [3-6]. Данные физико-химические свойства ГЦФ р-, *d*-элементов обусловливают возможность их использования в качестве неорганических сорбентов и прекурсоров для построения трехмерных молекулярных магнитов с регулируемыми магнитными моментами [3-6].

Известно, что существование магнитного порядка в ГЦФ связано с косвенными обменными взаимодействиями через (CN)-группы [3,4], в то время как прямые взаимодействия Fe-Fe отсутствуют, поскольку расстояния между ближайшими ионами железа составляют обычно более 6 Å. Магнитные взаимодействия между октаэдрами $Fe(CN)_{6}$ осуществляются через магнитный ион А по схеме $\dots - (NC)_5 - Fe^{III} - CN - A - NC - Fe^{III} - (CN)_5 - \dots$ где A = Fe, Co, Ni, Cr, Mn. В соединении $Pb_{1.5}Fe(CN)_6$ октаэдры Fe(CN)₆ связаны между собой ионами Pb²⁺. Природа магнитных взаимодействий в ГЦФ свинца в настоящее время неизвестна. Квантово-химические исследования электронного спектра и химической связи цианометаллатных комплексов ограничиваются главным образом кластерными расчетами фрагментов кристаллической решетки типа $(CN)_5 - A - NC - B - (CN)_5$ [7,8]. Исключением являются работы [9–11]. Авторами [9] рассчитаны электронная структура $Pb_2Fe(CN)_6$ и эффективные заряды на атомах (трехмерные интегралы от зарядовой плотности по пространственным областям, заключенным между точками минимума электронной плотности) методом дискретного варьирования с использованием модели "расширенного кластера". Эффективный заряд на атомах железа варьировался в диапазоне от 2.35 до 2.75 и оказался выше их формальной степени окисления в $Pb_2Fe(CN)_6$. В [10,11] представлены результаты зонных расчетов электронного спектра и химической связи для фаз $Pb_2Fe(CN)_6$, $Pb_{1.5}Fe(CN)_6$ и $Sn_2Fe(CN)_6$ на базе неэмпирического линейного метода muffin-tin-орбиталей в приближении сильной связи (TB–LMTO) и зонного метода Хюккеля.

Для выяснения особенностей магнитных свойств Pb_{1.5}Fe(CN)₆ выполнены расчеты его электронной структуры в рамках неэмпирического метода TB–LMTO в приближении LSDA + U [12].

1. Кристаллическая структура

Комбинацией порошковых рентгено- и нейтронографических данных по методу Ритвелда установлено, что безводный $Pb_{1.5}Fe(CN)_6$ имеет тригональную сингонию (пространственная группа $P\overline{3}$, Z = 1) с параметрами кристаллической решетки a = 7.1879 (3) Å, c = 5.5092 (4) Å [11]. Соединение $Pb_{1.5}Fe(CN)_6$ изоструктурно фазе $Pb_2Fe(CN)_6$ (табл. 1). Оно состоит из слоев, образованных $[Fe(CN)_6]^{n-}$ -комплексами, где n = 3, 4 (рис. 1). Ионы железа Fe^{2+} , Fe^{3+} находятся внутри этих комплексов и координируются шестью (CN)⁻-группами. Ионы свинца располагаются внутри искаженных октаэдров, образованных шестью ионами азота, принадлежащими шести ближайшим $Fe(CN)_6$ -комплексам (три комплекса из одного слоя и

Рис. 1. Кристаллическая структура фазы Pb₂Fe(CN)₆.

три из другого). Межатомные расстояния Pb–N делятся на два типа: три длинных и три коротких. Соединения $Pb_2Fe(CN)_6$ и $Pb_{1.5}Fe(CN)_6$ являются слоистыми: тройки ближайших комплексов $[Fe(CN)_6]^{n-}$ с помощью мостиковых атомов свинца объединяются в слои. Эти же мостиковые атомы свинца (координационное число составляет 3 + 3) соединяют ближайшую тройку комплексов из соседнего слоя. Взаимодействия между комплексами осуществляются с помощью связей типа азот-свинец-азот.

В отличие от $Pb_2Fe(CN)_6$ в кристаллической решетке $Pb_{1.5}Fe(CN)_6$ примерно 1/4 часть позиций свинца оказывается вакантной. Вакансии в подрешетке свинца распределяются статистически.

Таблица 1. Структурные параметры фаз $Pb_2Fe(CN)_6$ и $Pb_1 {}_5Fe(CN)_6$

Атом (позиция)	x/a	y/b	z/c	Ν	
Pb ₂ Fe(CN) ₆					
Pb (2 <i>d</i>)	1/3	2/3	0.6005 (2)	1.00	
$\operatorname{Fe}(1a)$	0	0	0	1.00	
C(6g)	0.0654(6)	0.2502	0.1956 (8)	1.00	
N(6g)	0.3014 (5)	0.9053	0.3070 (7)	1.00	
Pb _{1.5} Fe(CN) ₆					
Pb (2 <i>d</i>)	1/3	2/3	0.5959(6)	0.91	
Fe(1a)	0	0	0	1.00	
C(6g)	0.0595(7)	0.2455 (7)	0.1979 (9)	1.00	
N(6g)	0.3016(6)	0.9085 (5)	0.3093 (8)	1.00	

Примечание. *N* — заселенность атомной позиции.

2. Детали расчета

В рамках функционала локальной спиновой плотности LSDA + U [12], учитывающего одноузельные кулоновские корреляции, выполнены расчеты электронной структуры ГЦФ (III) свинца.

В расчетах использовалась ячейка состава $Pb_3[Fe(CN)_6]_2E_{39}$, где Е — пустые сферы. Поскольку

данные методы разработаны и используются для плотноупакованных структур, в атомный базис ГЦФ с достаточно "рыхлой" структурой вводились дополнительные пустые сферы. Их размещали главным образом между слоями железо-углерод-азотных октаэдров. Выбор состава расчетной ячейки для фазы Pb_{1.5}Fe(CN)₆ осуществлялся следующим образом. Во-первых, выбирался такой состав расчетной ячейки, который оптимально соответствовал составу исследуемой фазы. Во-вторых, для этого состава использовалась ячейка с минимальным атомным базисом. Выбранная таким образом ячейка состава Pb₃[Fe(CN)₆]₂E₃₉ была получена путем двухкратной трансляции элементарной тригональной ячейки в направлении оси с и удалением одного из четырех атомов свинца. Симметрия такой ячейки ниже, чем симметрия ячейки фазы $Pb_2Fe(CN)_6$. В модельной структуре Pb_{1.5}Fe(CN)₆ имеется два типа неэквивалентных атомов железа (Fe1 и Fe2), три типа неэквивалентных атомов свинца и шесть типов атомов углерода и азота. Атом железа типа Fe2 располагается ближе к вакансии свинца. В основу используемой ячейки положено периодическое повторение дефектов (вакансий свинца), что является предположением данной модели.

В базис валентных орбиталей фазы $Pb_{1.5}Fe(CN)_6$ включались валентные *ns-*, *np*-орбитали атомов Pb, C, N, E и 4*s-*, 4*p-*, 4*d*-состояния Fe. Атомные (n + 1)d-орбитали C, N и *nd*-состояния Pb учитывались только в рамках методики down-folding [13], основанной на тоерии возмущения Левдина [14]. Расчеты выполнялись для 32 *k*-точек на полную зону Бриллюэна (по 12 *k*-точек на ее неприводимую часть). Для Pb_{1.5}Fe(CN)₆ оптимальные отношения радиусов r_{Pb}/r_C и r_{Fe}/r_C составили 3 и 1.92 соответственно. Предполагалось, что для Pb_{1.5}Fe(CN)₆ пустая сфера, находящаяся в позиции атома свинца, приобретает его радиус.

Как оказалось, результаты немагнитных расчетов для фазы $Pb_{1.5}Fe(CN)_6$ противоречат экспериментальным данным. Отсутствие запрещенной щели на уровне Ферми в электронном спектре кристалла $Pb_{1.5}Fe(CN)_6$ вызвано игнорированием в LSDA-расчетах сильных корреляционных эффектов, характерных для соединений железа. Поэтому для фазы $Pb_{1.5}Fe(CN)_6$ были выполнены неэмпирические расчеты в приближении LSDA + U, позволяющем исследовать системы с сильными кулоновскими корреляциями. В расчетах использовались следующие параметры: U = 8.0 eV, J = 0.88 eV.

Анализ схем заполнения 3*d*-орбиталей ионов железа для фазы $Pb_{1.5}Fe(CN)_6$ выполнен с использованием расчета матриц заселенности ионов Fe^{3+} в локальной системе координат (ЛСК). ЛСК представляет собой декартову систему координат с атомом железа в точке отсчета, полученную путем преобразования тригональной системы координат в кубическую [15]. В результате группы 3*d*-орбиталей атомов железа типа *E*2 и *E*1, *A*1, характеризующие тригональную сингонию рассматриваемых фаз, преобразуются в группы орбиталей типа e_g и t_{2g} .

В.М. Зайнуллина, М.А. Коротин, Л.Г. Максимова

Таблица 2. Атомные параметры, использованные в расчетах по методу Хюккеля: потенциалы ионизации валентных орбиталей H_{ii} , показатели экспонент ξ_i и весовые коэффициенты C_i при экспонентах в выражениях для атомных орбиталей слэтеровского типа [17]

Атом	Орбиталь	H_{ii}, eV	$\begin{array}{c} \xi_1 \ (C_1) \\ \xi_2 \ (C_2) \end{array}$
Pb	6s 6p	15.7 8.0	2.35 (1.00) 2.06 (1.00)
Fe	4s 4p 3d	9.10 5.32 12.60	$\begin{array}{c} 1.90 \ (1.00) \\ 1.90 \ (1.00) \\ 5.35 \ (0.5505) \\ 2.0 \ (0.6260) \end{array}$
С	2s 2p	21.4 11.4	$\begin{array}{c} 1.625 \ (1.00) \\ 1.625 \ (1.00) \end{array}$
Ν	$\frac{2s}{2p}$	26.0 13.4	$\begin{array}{c} 1.95 \ (1.00) \\ 1.95 \ (1.00) \end{array}$

Анализ природы и прочности химических взаимодействий в $Pb_{1.5}Fe(CN)_6$ выполнен посредством полуэмпирического расширенного метода Хюккеля (PMX) [16]. Стандартные значения параметров, использованные в PMX-расчетах, табулированы в [17] и представлены в табл. 2.

3. Результаты расчетов и их обсуждение

Электронная структура, полученная в приближении LSDA, для фаз $Pb_2Fe(CN)_6$ и $Pb_{1.5}Fe(CN)_6$ обсуждалась нами ранее в [10,11]. В соответствии с результатами выполненных расчетов электронная структура $Pb_2Fe(CN)_6$ и $Pb_{1.5}Fe(CN)_6$ характеризуется большим числом острых узких пиков, наличие которых характерно для молекулярных кристаллов. В электронном спектре этих соединений можно выделить четыре полосы. В низкоэнергетической области располагается полоса 6s-состояний свинца и 4s-состояний железа, которая расщепляется на две самостоятельные зоны для фазы Pb_{1.5}Fe(CN)₆. Широкая валентная зона состоит из гибридных 2*p*-состояний углерода и азота с существенным вкладом Fe3d- и Pb6s-состояний. Вблизи уровня Ферми наблюдается сильное расщепление 3*d*-состояний атомов железа на два узких пика, соответствующих t₂₀- и е₉-типам кубической симметрии.

Согласно результатам немагнитных расчетов, фаза $Pb_{1.5}Fe(CN)_6$ характеризуется металлическим типом проводимости. Уровень Ферми попадает на вершину узкого пика, состоящего главным образом из 3*d*-состояний ионов Fe.

Для учета корреляционных эффектов, которые, повидимому, достаточно сильны для фазы $Pb_{1.5}Fe(CN)_6$, были выполнены расчеты в приближении LSDA + U. Они привели к двум стабильным решениям (с близкими значениями полной энергии) для ферромагнитного порядка ионов железа. Первое решение соответствует полупроводнику со значением запрещенной щели 1.18 eV, второе — полуметаллу. Для обоих решений магнитный момент составил 2 µ_в на расчетную ячейку Pb₃[Fe(CN)₆]₂E₃₉. Полные и парциальные плотности состояний для Pb_{1.5}Fe(CN)₆ с металлическим и полупроводниковым типами проводимости представлены на рис. 2, 3. Полная плотность состояний для фазы Pb_{1.5}Fe(CN)₆ с металлическим типом проводимости (рис. 2) по форме и порядку расположения зон занимает промежуточное положение между электронными спектрами немагнитных фаз $Pb_2Fe(CN)_6$ и $Pb_{1.5}Fe(CN)_6$. Расчетный магнитный момент на ионах железа Fe³⁺1 и Fe³⁺2 одинаков и равен 1 $\mu_{\rm B}$. На основе анализа матриц заселенности ионов Fe³⁺ в ЛСК (см. раздел 2) предложена схема заполнения 3d-орбиталей этих ионов (рис. 4, a). Оба иона железа находятся в низкоспиновом состоянии (имеют один неспаренный электрон на 3*d*-орбиталях).

Электронный энергетический спектр для $Pb_{1.5}Fe(CN)_6$ с полупроводниковым типом проводимости, найденный из LSDA + U-расчетов (рис. 3), существенно отличается от электронного спектра, полученного на основе немагнитного расчета [11]. В области значений энергий –7.4, –6.7 и 1.2 eV появляются три пика (C', D', C''), соответствующие 3*d*-состояниям Fe2. В интервале энергий от –1.2 до 0 eV наблюдаются три пика 3*d*-состояний ионов Fe1. Существенный вклад в плотность состояния пиков D и D' вносят валентные *ns-*, *np*-состояния

Рис. 2. Полная (*a*) и парциальные плотности 3d-состояний Fe1 (*b*) и Fe2 (*c*) для полуметалла $Pb_{1.5}Fe(CN)_6$. LSDA + U-расчет.

Физика твердого тела, 2004, том 46, вып. 10

Рис. 3. Полная (a) и парциальные плотности 3*d*-состояний Fe1 (b) и Fe2 (c), 2*p*-состояний C (d) для полупроводника Pb_{1.5}Fe(CN)₆.

а		b		С
Fe ³⁺	Fe ³⁺	Fe ³⁺	Fe ²⁺	Fe ⁴⁺
	— с	— с		
	— ,	++ ,		
_	<u>+</u> + - ○⊺		++	<u>+</u>
_ + ↓	_ <u>↑</u> ↓	_ ↑ ↓	+	
_ † ↓			++	

Рис. 4. Схемы зарядовой поляризации ионов железа для полуметаллического $Pb_{1.5}Fe(CN)_6$ (*a*), для полупроводника $Pb_{1.5}Fe(CN)_6$ при сильной Fe3d-2p-гибридизации (*b*) и зарядовом упорядочении ионов железа (*c*).

ионов углерода, азота и свинца. Наблюдается сдвиг зон 6s-состояний свинца (пики A, A') и 4s-состояний железа (пик B) в более низкоэнергетическую область электронного спектра $Pb_{1.5}Fe(CN)_6$ по сравнению с их положением в спектре $Pb_2Fe(CN)_6$. Расчетный магнитный момент на ионах железа в полупроводнике $Pb_{1.5}Fe(CN)_6$ равен нулю для Fe1 и $1.97 \mu_B$ для Fe2. На основании анализа матриц заселенности ионов Fe³⁺1, Fe³⁺2 в ЛСК получены разные схемы заполнения 3*d*-орбиталей ионов железа. Ион железа типа Fe1 немагнитен, т. е. находится в низкоспиновом состоянии, а ион Fe2 имеет два неспаренных электрона на 3*d*-оболочке (промежуточное состояние). Обычно трехвалентные ионы железа в низкоспиновом состоянии имеют электронную конфигурацию $t_{2g}^{\uparrow 3} t_{2g}^{\downarrow 2}$ (рис. 4, *a*). Присутствие в полупроводнике Pb_{1.5}Fe(CN)₆ ионов железа Fe³⁺ с магнитными моментами, равными нулю и 1.97 $\mu_{\rm B}$, можно представить посредством одной из двух возможных схем. В первой схеме наличие таких магнитных моментов на трехвалентных ионах железа объясняется сильной гибридизацией 3*d*-орбиталей железа и 2*p*-орбиталей углерода (рис. 4, *b*), во второй схеме — зарядовым упорядочением ионов железа Fe²⁺ и Fe⁴⁺ (рис. 4, *c*).

В первом случае в результате сильной Fe3d – C2pгибридизации один ион углерода будет сбрасывать электрон на t_{2g} -уровень иона Fe³⁺1, находящегося в низкоспиновом состоянии, а другой ион углерода — на e_g -орбитали иона Fe³⁺2 в промежуточном состоянии (рис. 4, b). Данная схема хорошо объясняет распределение электронов только в случае полупроводника, хотя неясно, каким образом орбитали типа t_{2g} ионов железа могут участвовать в гибридизации с 2p-орбиталями ионов углерода. В случае полуметалла схема сильной гибридизации не позволяет объяснить наличие единичного магнитного момента на ионах железа (III).

Более убедительным объяснением различия в расчетных величинах локальных магнитных моментов на ионах железа Fe1 и Fe2 в полупроводниковом Pb_{1.5}Fe(CN)₆ является предположение о существовании зарядового упорядочения ионов железа Fe^{2+} и Fe^{4+} (рис. 4, c). В его пользу свидетельствуют три аргумента. Во-первых, в этой схеме примерно одинаковая Fe3d-C2p-гибридизация наблюдается для всех решений (полупроводник и полуметалл). Во-вторых, в пользу зарядового упорядочения ионов железа (III) в Pb_{1.5}Fe(CN)₆ свидетельствует выигрыш в энергии, когда высокоэнергетические е_g-состояния остаются незанятыми. И наконец, в-третьих, на правильность этого предположения указывают разные заряды на 3*d*-орбиталях внутри сфер ионов Fe1 и Fe2: их разность составила 0.5e. Мы придерживаемся второй схемы объяснения зарядовой поляризации ионов железа, согласно которой зарядовое упорядочение ионов железа (III) (типа Fe^{2+} , Fe^{4+}) является причиной появления обнаруженных экспериментально [18] полупроводящих свойств в фазе Pb_{1.5}Fe(CN)₆.

Наряду с расчетами электронной структуры и магнитных характеристик Pb_{1.5}Fe(CN)₆ выполнен анализ химических взаимодействий с помощью PMX.

Для оценки парных взаимодействий использовалась малликеновская заселенность перекрывания связи Q — одна из характеристик ковалентной составляющей химической связи в твердом теле. Для кристалла с учетом трансляционной симметрии волновой функции φ_i заселенность перекрывания кристаллических орбиталей (ЗПКО) между атомом, находящимся в точке **l**,

Таблица 3. Длина связи (L) и ЗПКО (Q) в фазах $Pb_2Fe(CN)_6$ и $Pb_{1.5}Fe(CN)_6$

Кристалл	Į	Pb-N1	Pb-N2	Fe-C	C-N
$Pb_2Fe(CN)_6$	L, Å	2.429	2.901	1.926	1.131
	Q, e	0.258	0.018	0.571	1.699
$Pb_{1.5}Fe(CN)_6$	L, Å	2.442	2.911	1.932	1.145
	Q, e	0.264	0.042	0.569	1.667

и атомом с центром в точке **m** имеет вид

$$\begin{aligned} \mathcal{Q}_{lm} &= 2\sum_{k}\sum_{i\in l}\sum_{j\in m}\exp(i\mathbf{k}(\mathbf{m}-\mathbf{l}))c_{k}^{i*}c_{k}^{j}\\ &\times \int \varphi_{i}^{*}(\mathbf{r}-\mathbf{l})\varphi_{j}(\mathbf{r}-\mathbf{m})d\mathbf{r}, \end{aligned}$$

где *k* нумерует занятые кристаллические орбитали.

Результаты анализа ЗПКО, рассчитанных по приведенному выше уравнению, представлены в табл. 3. Для сравнения приводятся значения ЗПКО для Pb₂Fe(CN)₆. Очевидно, что основную роль в химическом связывании в структуре ГЦФ играют сильные ковалентные взаимодействия Fe-C и C-N в слоях, образованных октаэдрами Fe(CN)₆. ЗПКО для связей C-N почти в 3 раза выше, чем ЗПКО для связей Fe-C. Вклад длинных связей Pb-N2 мал. При переходе от Pb₂Fe(CN)₆ к Pb_{1.5}Fe(CN)₆ наблюдаются усиление связей Pb-N, незначительное понижение прочности связи Fe-C и ослабление взаимодействий С-N. Величины ЗПКО для связей Fe-C, C-N хорошо коррелируют со значениями их длин (табл. 3). Иная ситуация имеет место для взаимодействий Pb-N. При увеличении длины связи Pb-N в Pb_{1.5}Fe(CN)₆ ее прочность повышается. Наблюдаемая тенденция изменения прочности связей в ГЦФ (III) свинца свидетельствует о подвижности электронной плотности в системе связей \ldots – Fe – C \equiv N – Pb – \ldots Усиление взаимодействий Рb-N вызвано переносом электронной плотности от атомов азота вблизи вакансии к атомам свинца. Эффект смещения электронной плотности от ионов железа к вакансии свинца через цепочку C-N-связей, приводящий к понижению прочности связи Fe-C и повышению прочности смежных с вакансией связей Pb-N, подтверждается магнитными расчетами электронного спектра. Наблюдается смещение 6s-состояний свинца в низкоэнергетическую область электронного спектра для фазы $Pb_{1.5}Fe(CN)_6$ (рис. 3, *a*) по сравнению с $Pb_2Fe(CN)_6$.

Итак, использование метода ТВ–LМТО в приближении LSDA + U позволило выполнить расчеты электронной структуры недавно синтезированного гексацианоферрата (III) свинца. Полученный полупроводниковый характер проводимости Pb_{1.5}Fe(CN)₆ совпадает с экспериментальными данными. Особенность электронной структуры данного класса соединений заключается в сильном расщеплении 3*d*-состояний атомов железа на два узких пика, соответствующих t_{2g} - и e_g -типам кубической симметрии вблизи уровня Ферми. Полупроводниковый характер проводимости в Pb_{1.5}Fe(CN)₆ возможен при зарядовом упорядочении ионов железа (III) типа Fe²⁺, Fe⁴⁺. Сильные ковалентные взаимодействия наблюдаются в железо-углерод-азотных октаэдрах. Взаимодействия Pb–N имеют смешанный ионноковалентный характер.

Список литературы

- Е.В. Поляков, Т.А. Денисова, Л.Г. Максимова, Н.А. Журавлев, Л.Ю. Булдакова. ЖНХ 45, 2, 334 (2000).
- [2] V.G. Zubkov, A.P. Tyutyunnik, I.F. Berger, L.G. Maksimova, T.A. Denisova, E.V. Polyakov, I.G. Luplun. Solid State Sci. 3, 3, 361 (2001).
- [3] И.В. Танаева. Химия ферроцианидов. Наука, М. (1971).
- [4] В.В. Павлищук. Теорет. и эксперим. химия 33, 6, 341 (1997).
- [5] Massaaki Ohba, Nobuo Fukita, Hisashi Okawa. J. Chem. Soc. Dalton Trans. 10, 1733 1997).
- [6] И.А. Коваль, К.Б. Яцимирский, С. Трофименко, В.В. Павлищук. Теорет. и эксперим. химия 34, 6, 351 (1998).
- [7] M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaisserman, M. Seuleiman, C. Desplanches, A. Sculler, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, F. Villain. Coord. Chem. Rev. **190-192**, 1023 (1999).
- [8] T. Mallah, S. Thiebaut, M. Verdaguer, P. Veillet. Science 262, 1554 (1993).
- [9] М.В. Рыжов, Т.А. Денисова, В.Г. Зубков, Л.Г. Максимова. ЖСХ 41, 6, 1123 (2000).
- [10] V.P. Zhukov, V.M. Zainullina, V.G. Zubkov, T.A. Denisova, A.P. Tyutyunnik. Solid State Sci. 3, 5, 539 (2001).
- [11] В.М. Зайнуллина, В.П. Жуков, В.Г. Зубков, А.П. Тютюнник, Л.Г. Максимова. Т.А. Денисова. ЖСХ, в печати.
- [12] A.I. Liechtenstein, V.I. Anisimov, J. Zaanen. Phys. Rev. B 52, 8, R 5467 (1995).
- [13] W.R.L. Lambrecht, O.K. Andersen. Phys. Rev. B 34, 4, 2439 (1986); O.K. Andersen, O. Jepsen. Phys. Rev. Lett. 53, 27, 2571 (1984).
- [14] P.-O. Löwdin. J. Chem. Phys. 19, 11, 1396 (1951).
- [15] K. Terakura, T. Oguchi, A.R. Williams, J. Kübler. Phys. Rev. B 30, 8, 4734 (1984).
- [16] M.-H. Whangbo, R. Hoffman. J. Am. Chem. Soc. 100, 6093 (1978).
- [17] S. Alvarez. Tables of parameters for extended Huckel calculations. Universitat de Barcelona, Barcelona (1989).
- [18] В.М. Зайнуллина, В.Г. Зубков, А.П. Тютюнник, Л.Г. Келлерман, С.Н. Шкерин, Л.Г. Максимова. Т.А. Денисова. В сб.: XXI Междунар. Чугаевская конф. по координационной химии. Киев (2003).