Структура титаната кадмия

© Н.В. Шпилевая, Ю.В. Кабиров, М.Ф. Куприянов

Ростовский государственный университет, 344090 Ростов-на-Дону, Россия E-mail: shpilevay@mail.ru

(Поступила в Редакцию в окончательном виде 16 февраля 2004 г.)

Методом порошковой дифракции проведена расшифровка структуры ильменитной фазы и уточнена структура перовскитовой фазы титаната кадмия. Исследовано влияние радиационных эффектов (*γ*-излучение) на структуру и свойства перовскитовой фазы. Обсаждается природа релаксации диэлектрических параметров перовскитовой фазы титаната кадмия.

Как показывают исследования двойных оксидов $ATiO_3(A - Ba, Pb, Sr, Ca, Cd, Mg, Mn, Zn, Co)$ со структурой типа перовскита, в них допустимы достаточно широкие вариации структурных состояний и соответствующих физических свойств. Эти вариации могут быть обусловлены либо отклонением от стехиометрии $ATiO_3$ (по заселенности позиций типа A и O), либо образованием других (неперовскитовых) фаз, либо наличием разного вида и степеней структурного порядка различного масштаба (в масштабе элементарной ячейки, кристаллита или кристаллического блока, кристалла).

Проведенные ранее исследования показали, что в зависимости от условий кристаллизации CdTiO₃ может иметь либо ильменитную [1,2], либо перовскитовую структуру [3]. Высокотемпературным отжигом осуществляется переход от ильменитной фазы к перовскитовой [4,5]. Элементарные ячейки перовскитовой фазы CdTiO₃ (P) при нормальных условиях, определенные в [6,7] и [2,8], различались. В [6,7] четырехкратная сверхструктурная по отношению к перовскитовой элементарной ячейке ромбическая ячейка характеризовалась параметрами: $\mathbf{A}_O = \mathbf{a}_p + \mathbf{c}_p$, $\mathbf{B}_{O} = 2\mathbf{b}_{p}, \ \mathbf{C}_{O} = \mathbf{a}_{p} - \mathbf{c}_{p} \ (A_{O} = 5.348 \text{ Å}, \ B_{O} = 7.615 \text{ Å},$ $C_O = 5.417$ Å), где a_p, b_p и c_p — параметры перовскитовой моноклинной подъячейки с двумя возможными пространственными группами (*Pnma* или *Pc2*₁*n*). В [2,8] CdTiO₃ (P) характеризуется элементарной ромбической ячейкой с $\mathbf{A}_O = 2(\mathbf{a}_p + \mathbf{c}_p), \ \mathbf{B}_O = 2\mathbf{b}_p, \ \mathbf{C}_O = 2(\mathbf{a}_p - \mathbf{c}_p)$ $(A_O = 10.607 \text{ Å}, B_O = 7.606 \text{ Å}, C_O = 10.831 \text{ Å})$ и группами Стса или Стта. Известно, что CdTiO₃ (P) при низких температурах переходит в сегнетоэлектрическое состояние [9,10], а в ильменитной фазе CdTiO₃ (I) подобные свойства не обнаружены. Проведенные в [8] исследования температурно-частотных зависимостей диэлектрической проницаемости кристалла CdTiO₃ (P) до и после α- и γ-облучения обнаружили в них признаки сильной диэлектрической релаксации при температурах $T \sim 200-300^{\circ}$ С. Исследования электропроводности монокристалла CdTiO₃ (P) [5] выявили ее аномалии в том же температурном интервале. Модификация CdTiO₃ (I)в структурном отношении впервые изучалась в [1].

Задачи настоящего исследования состояли в следующем.

1) Расшифровать структуру CdTiO₃ (I), которая может представлять интерес как потенциальный сегнетоэлектрический структурный аналог LiNbO₃ [11].

2) Уточнить структуру CdTiO₃ (P).

3) Исследовать влияние радиационных дефектов (γ -излучение) на структуру и свойства CdTiO₃ (P) для проверки гипотезы о роли наноразмерных эффектов в процессе фазового перехода ильменит–перовскит в CdTiO₃.

4) Обсудить природу релаксации диэлектрических параметров CdTiO₃ (P) [8].

1. Эксперимент

Поликристаллические образцы CdTiO₃ (*I*) и CdTiO₃ (*P*) приготовлялись из стехиометрической смеси оксидов CdO и TiO₂ (фаза рутила) по обычной технологии твердофазного синтеза. Исследование образцов методом порошковой дифракции показало, что CdTiO₃ (*I*) образуется при температурах синтеза 600–850°C [12]. При обжиге CdTiO₃ (*I*) при $T \ge 900^{\circ}$ С переходит в CdTiO₃ (*P*).

Рентгеноструктурные исследования поликристаллов CdTiO₃ (*I*) и CdTiO₃ (*P*) при нормальных условиях проведены на дифрактометре "Rigaku" в университете г. Авейру (Португалия) в геометрии Брэгга–Брентано на Cu K_{α} -излучении с использованием графитового моно-хроматора. Съемка велась в интервале $16 < 2\theta < 116^{\circ}$ с шагом сканирования 0.02° и временем набора импульсов t = 2 s. Общее число независимых рефлексов составило 113 для CdTiO₃ (*I*) и 166 для CdTiO₃ (*P*). Дифракционные профили порошковых образцов двух фаз CdTiO₃ обрабатывались с помощью компьютерной программы PowderCell 2.2.

2. Результаты и обсуждение

При определении структуры CdTiO₃ (I) рассматривались возможные структурные модели ромбоэдрических фаз. Элементрная ячейка CdTiO₃ (I) в гексагональной установке имеет параметры $A_H = 5.2403$ Å,

Рис. 1. Фрагменты дифракционных профилей CdTiO₃ (*I*). *а* — модель с пространственной группой *R3c*, *b* — модель с пространственной группой *R3*, *c* — экспериментальный профиль.

Рис. 2. Фрагменты дифракционных профилей CdTiO₃ (*P*). *а* — модель CdTiO₃ (*P*1), *b* — модель CdTiO₃ (*P*2), *c* — экспериментальный профиль.

 $C_H = 14.8380$ Å [1] и содержит шесть формульных единиц. С целью определения пространственной группы симметрии для анализа были выбраны группы R3c, $R\bar{3}c$, $R\bar{3}$, R32, R3m, так как они имеют шести- и восемнадцатикратные правильные системы точек, что существенно уменьшает число уточняемых параметров. Для каждой их этих пространственных групп, используя кристаллохимические правила и сопоставления с родственными структурами, мы определили возможные варианты расположения атомов в ячейке. В результате варьирования атомных параметров в достаточно широких пределах и процедуры уточнения установлено, что минимальный *R*-фактор ($R_p = 14\%$) достигается для модели с пространственной группой $R\bar{3}$ и параметров атомов x, y, z,приведенных в табл. 1. Там же даны длины связей Cd-O и Ті-О. На рис. 1 показаны фрагменты дифракционных картин для моделей CdTiO₃ (I) с пространственными группами R3c, $R\bar{3}$ и экспериментального профиля. Отметим, что данные [1] не представляются достоверными, так как из них следует, что длины связей Cd-O меньше длин Ті–О. Однако в ильменитной структуре ионы Cd²⁺ и Ti⁴⁺ находятся в кислородных октаэдрах. Поскольку ионный радиус Cd^{2+} больше ионного радиуса Ti^{4+} , длины связей Cd–O должны быть больше Ti–O, как нами и определено экспериментально.

При обработке экспериментального профиля CdTiO₃ (*P*) (рис. 2, *c*) рассмотрены варианты элементарных ячеек, определенных в [6,7] и [2,8], ромбических пространственных групп и позиционных атомных параметров. Установлено, что исследуемый порошковый CdTiO₃ (*P*) является двухфазным и состоит из CdTiO₃ (*P*1) с параметрами ячейки, близкими к приведенным в [6,7], и CdTiO₃ (*P*2) с параметрами ячейки, близкими к полученным в [2,8]. Минимальному R_p -фактору соответствует состав образца с 22.4% фазы *P*1 и 77.6% фазы *P*2 с атомными параметрами, приведенными в табл. 2.

Точность определяемых параметров составляла для позиционных параметров ± 0.001 Å, для тепловых параметров ± 0.1 Å². На рис. 2 показаны фрагменты дифракционных профилей CdTiO₃ (*P*1), CdTiO₃ (*P*2) и экспериментального профиля.

Поликристаллический образец CdTiO₃ (P) подвергался радиационному воздействию с дозой 10⁷ R (использовалось тормозное γ -излучение электронов с энергией

Таблица 1. Атомные параметры и длины межатомных связей Cd–O, Ti–O в CdTiO₃ (I) (x, y, z даны в долях перовскитовой ячейки)

Атом	x	У	z	$B, Å^2$		
Cd Ti O	0.000 0.000 0.333	0.000 0.000 0.050	0.346 0.150 0.237	1.6 1.0 1.1		
Атом 1	Атом 2	Cd–O, Ti–O, Å				
Cd Cd Ti	O(1) O(2) O(1) O(2)	2.269 2.483 1.804 2.068				

Примечание. Атомы Cd и атомы Ti находятся в октаэдрическом окружении атомов кислорода и имеют с ними связи разной длины: Cd–O(1) и Cd–O(2), Ti–O(1) и Ti–O(2). В — тепловые параметры атомов.

0.000

0.510

0.250

0.720

0.070

0.550

 $B, Å^2$

4.0

4.0

1.1

1.1

1.4

1.4

1.4

1.4

0.000

0.240

0.000

0.220

0.124

0.123

Cd-O, Ti-O, Å

2.710

2.652

2.339

2.432

2.432

1.904

1.969

1.934

1.904

1.934

	Таблица 2	2. Атомные	параметры и	длины межа	атомных связе	й Cd–O, Ti–O	в CdTiO ₃ (Р	1 и Р2)	
СdTiO ₃ (<i>P</i> 1) (пространственная группа <i>Pnma</i>)					СdTiO ₃ (<i>P</i> 2) (пространственная группа <i>Cmca</i>)				
$A_0 = 5$ $B_0 = 7$ $C_0 = 5$.348 Å .615 Å .417 Å	$a_p = c_p = 3.806 \text{ Å}$ $b_p = 3.807 \text{ Å}$ $eta_p = 90.73^\circ$			$A_0 = 10.607 \text{\AA}$ $B_0 = 7.606 \text{\AA}$ $C_0 = 10.831 \text{\AA}$		$a_p = c_p = 3.790 \text{ Å}$ $b_p = 3.803 \text{ Å}$ $\beta_p = 91.0(3)^\circ$		
Атом	x	У	z	$B, Å^2$	Атом	x	У	z	· ·
Cd Ti	0.020 0.500	0.250 0.000	0.022 0.000	2.0 1.2	Cd1 Cd2	0.250 0.000	0.251 0.248	0.250 0.010	

0.253

0.015

Cd–O, Ti–O, Å

2.687

1.4

1.4

Ti1

Ti2

01 O2

O3

04

Атом 1

Cd1

0.270

0.000

0.250

0.000

0.121

0.127

Атом 2

01

P2)

Cd O2 2.654 Cd1 O2 Ti 01 1.895 Cd1 O3 Ti O2 1.906 Cd1 04 Cd2 O4 Ti1 01 Ti1 O3 Ti1 04 Ti2 O2 Ti2 04

 $\sim 20 \, {\rm MeV}$ на микротроне CT), что привело: 1) к увеличению параметров моноклинной подъячейки (при комнатной температуре) $a_p = c_p$ (от 3.8015 до 3.8107 Å), b_p (от 3.8212 до 3.8256 Å) и уменьшению угла моноклинности β_p (от 91.22 до 91.09°); 2) к появлению новых рефлексов, которые отвечают кубической фазе с $a_k = 3.850 \text{ Å}; 3)$ к исчезновению некоторых сверхструктурных отражений (в частности, с d = 1.5217 Å).

Таким образом, в нашем эксперименте не удалось индуцировать облучением фазовый переход из CdTiO₃ (P) в CdTiO₃ (I), как это предполагалось в [8]. Видно, что воздействие данной дозы у-излучения приводит к увеличению линейных параметров ячейки CdTiO₃ (P) и частичному нарушению дальнего порядка (исчезновению ряда сверхструктурных отражений) вследствие возникновения дефектов. Отжиг образца в течение 2h при $T = 700^{\circ}$ С привел к уменьшению параметров a_p, c_p и *b*_p.

Измеренные длины межатомных связей металлкислород в CdTiO₃ (I) (табл. 1) заметно различаются, хотя и атомы Cd, и атомы Ti находятся в октаэдрическом кислородном окружении. Если различия длин Cd-O и Ті-О связаны с различиями ионных радиусов Cd²⁺ и Ti⁴⁺, то наличие двух разных длин для Cd–O и Ti–O можно объяснить сильной деформацией кислородных слоев плотнейшей гексагональной упаковки — выходом части ионов кислорода из слоев упаковки. Этому может соответствовать относительно низкая температура фазового превращения CdTiO₃ (I) в CdTiO₃ (P) (со сменой гексагональной упаковки слоев на кубическую), где ионы Cd находятся в слоях плотнейшей упаковки с большим координационным числом (равным 12) и длины Cd-O заметно увеличены (табл. 2).

Как в ильменитной фазе CdTiO₃ (I), так и в перовскитовых фазах CdTiO₃ (P1) и CdTiO₃ (P2) отмечаются относительно большие значения дефектов Дебая-Валлера у более тяжелых атомов Cd. Это может свидетельствовать о заметных вкладах в указанные параметры кроме теплового движения статических неупорядоченных смещений таких атомов.

Анализ длин межатомных связей CdTiO₃ (P1) и CdTiO₃ (P2) показывает, что если в CdTiO₃ (P1) длины связей Cd-O слабо различаются (табл. 2), то в CdTiO₃ (P2) их различия более существенны и достигают величин порядка 0.3-0.4 Å.

Ранее обнаруженные эффекты релаксации диэлектрической проницаемости (подобные наблюдаемым в [13]) можно объяснить релаксацией пространственных зарядов, обусловленных дефектами структуры.

Авторы выражают благодарность М. Авдееву за помощь в проведении эксперимента.

01

O2

Атом 1

Cd

0.255

0.520

Атом 2

01

0.030

0.250

Список литературы

- [1] E. Posnjak, T.F.W. Barth. Z. Kristallogr. 88, 1971 (1934).
- [2] H.D. Megaw. Proc. Phys. Soc. 58, 328, 133 (1946).
- [3] W.H. Zachariasen. Math. Naturvid. Klasse 1, 165 (1928).
- [4] М.Л. Шолохович, О.П. Крамаров, Б.Ф. Проскуряков, Е.И. Экнадиосянц. Кристаллография 13, 1102 (1968).
- [5] Ю.В. Кабиров, Б.С. Кульбужев, М.Ф. Куприянов. ФТТ 43, 10, 1890 (2001).
- [6] H.F. Kay, J.L. Miles. Acta Cryst. 10, 213 (1957).
- [7] S. Sasaki, Ch.T. Prewitt, J.L. Bass, W.A. Schulze. Acta Cryst. 43, 1668 (1987).
- [8] Ю.В. Кабиров, М.Ф. Куприянов, Я. Дец, П. Вавжала. ФТТ 42, 7, 1291 (2000).
- [9] Г.А. Смоленский. ДАН СССР 70, 405 (1950).
- [10] H.Y. Sun, T. Nakamura, Y.J. Sun, Y. Inaguma, M. Iton. Ferroelectrics 217, 137 (1998).
- [11] B.T. Mattias, J.R. Remeika. Phys. Rev. 76, 12, 1886 (1949).
- [12] Ю.В. Кабиров, Б.С. Кульбужев, М.Ф. Куприянов. ЖСХ 42, 5, 972 (2001).
- [13] O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione. Phys. Rev. B 49, 12, 7868 (1994).