Влияние примесных центров Cr на критические свойства слабополярного сегнетоэлектрика LGO

© М.П. Трубицын, М.Д. Волнянский, А.Ю. Кудзин

Днепропетровский национальный университет, 49050 Днепропетровск, Украина

(Поступила в Редакцию 29 января 2004 г.)

ЭПР спектры ионов Cr^{3+} изучены в температурном интервале сегнетоэлектрического фазового перехода кристаллов Li₂Ge₇O₁₅ (LGO). Путем измерения величины расщепления ЭПР линий в полярной фазе исследовано температурное поведение локального параметра порядка. В интервале температур от T_C до $(T_C - T) \sim 40$ К экспериментальная величина критического показателя параметра порядка $\beta = 0.31$ соответствует индексу трехмерной модели Изинга. Анализ имеющихся результатов показывает, что для макроскопических и локальных свойств LGO при удалении от T_C характерен переход от флуктуационного режима к классическому поведению по теории среднего поля. Для температурной зависимости локального параметра порядка в LGO: Сг перехода от изинговского режима ($\beta = 0.31$) к классическому ($\beta = 0.5$) не наблюдается. Отсутствие перехода к классическому поведению объясняется дефектной природой примесных центров Cr^{3+} , которые ослабляют пространственные корреляции в кристаллической модели структурных фазовых перехода к перехода к перехода на основании микроскопической модели структурных фазовых переходов.

Кристаллы гептагерманата лития LGO при охлаждении ниже $T_C = 283.5$ К претерпевают переход из высокотемпературной параэлектрической фазы (пространственная группа симметрии D_{2h}^{14}) в сегнетоэлектрическую фазу (группа C_{2v}^5), спонтанная поляризация возникает вдоль оси с [1–4]. Согласно нейтронографическим данным [5,6], структурные изменения при фазовом переходе определяются поворотами тетраэдров [GeO₄]^{4–} и упорядочением ионов Li⁺ в каналах кристаллической решетки LGO. Изучение колебательных спектров LGO позволило сопоставить мягкой моде осцилляторную динамику германиево-кислородных тетраэдров, а центральному пику — релаксационную динамику литиевой подрешетки [7–9].

Ранее в работах [10–12] сообщалось о результатах изучения фазового перехода в кристаллах LGO по ЭПР спектрам Mn^{2+} . Было показано, что центры марганца замещают ионы Li в позициях второго типа [5,6] и сохраняют локальную симметрию (C_2) узлов идеальной решетки. Принимая во внимание роль Ge–O и Li подсистем в фазовом переходе, безусловный интерес представляет изучение ЭПР спектров парамагнитных ионов, внедренных в германиево-кислородный кризис решетки LGO. Согласно [13,14], такую возможность предоставляют ионы Cr³⁺, замещающие Ge1 в центре кислородных октаэдрических комплексов [5,6].

На основании первого исследования ЭПР в кристаллах LGO: Cr [13] была предложена модель, согласно которой Cr^{3+} в позициях Ge⁴⁺ совместно с компенсирующими избыточный заряд межузельными ионами лития образуют парные центры Cr^{3+} –Li⁺ с направлением электрического дипольного момента вдоль оси **а**. Последующие измерения оптических люминесцентных спектров позволили подтвердить и конкретизировать указанную модель [15,16].

Учитывая вхождение ионов хрома в Ge–O каркас решетки кристаллов LGO, можно надеяться, что ана-

лиз ЭПР спектров Cr^{3+} в окрестности T_C позволит получить новую инофрмацию об особенностях температурного поведения структурных искажений в Ge–O подрешетке. Кроме того, образование парных центров Cr^{3+} –Li⁺ предполагает достаточно сильное искажение кристаллического поля вокруг парамагнитных ионов, что, в частности, приводит к сильному смещению точки фазового перехода [17,18]. Обладая достаточно полной моделью [13,15,16], можно попытаться проанализировать влияние центров Cr^{3+} –Li⁺ на аномалии физических свойств гептагерманата лития.

Измерения ЭПР спектров LGO: Cr^{3+} показали, что при охлаждении ниже T_C происходит дублетное расщепление спектральных компонент, а вблизи T_C наблюдается аномальное уширение резонансных линий [14]. Подобное поведение ЭПР спектров при фазовых переходах является достаточно общим явлением [19]. Расщепление спектральных линий обусловлено возникновением локального параметра порядка в низкосимметричной фазе, тогда как уширение линий отражает рост локальных флуктуаций вблизи T_C . Цель настоящей работы изучение температурной зависимости локального параметра порядка на основании измерения температурного смещения ЭПР линий Cr^{3+} в полярной фазе кристаллов LGO.

1. Экспериментальные результаты

Исследованы кристаллы LGO, выращенные по методу Чохральского и активированные ионами Cr (0.01% wt.). Регистрация ЭПР спектров осуществлялась в 3 cm диапазоне при помощи серийного радиоспектрометра Radiopan SE/X 2547. Температура образцов регулировалась нагреванием паров азота при помощи стандартного криостата. Измерения ориентационных зависимостей ЭПР в параэлектрической фазе LGO: Cr [14] позволили выделить четыре сопряженных спектра ($k_M = 4$) триклинной симметрии C_1 . Направления главных осей сопряженных спектров \mathbf{Z}_i (i = 1, 2, ...4), выбранных вблизи оси **с** по максимальным расщеплениям между крайними линиями тонкой структуры, определяются полярным и азимутальным углами $\theta = 14^\circ$, $\varphi = 30^\circ$ по отношению к кристаллическому базису [14]. В системе магнитных осей ЭПР спектры могут быть описаны ромбическим спиновым гамильтонианом [20,21].

$$\mathscr{H} = g\beta_B \mathbf{BS} + D\left(S_Z^2 - \frac{1}{3}S(S+1)\right) + E\left(S_X^2 - S_Y^2\right)$$
(1)

с параметрами (T = 298 K): g = 1.978, $D = 1300 \cdot 10^{-4} \text{ cm}^{-1}$, $E = -330 \cdot 10^{-4} \text{ cm}^{-1}$. Полученные данные [14] согласуются с результатами ЭПР исследований в *Q*-диапазоне радиочастотного поля (36 GHz) и подтверждают модель центров Cr^{3+} в структуре LGO, предложенную авторами [13].

Рис. 1. Температурная зависимость положения ЭПР линии $M_s = -3/2 \leftrightarrow -1/2$ выше T_C и расщепленных компонент ниже T_C . Кружки — эксперимент. Линии рассчитаны с помощью (3), (5): сплошные — для $(T_C - 40 \text{ K}) < T < (T_C + 20 \text{ K})$, итриховые — для $T < (T_C - 40 \text{ K})$. LGO: Cr^{3+} , **B** || **a**. На вставках вверху — температурная зависимость расстояния между расщепленными компонентами ЭПР линии, представленная в различных масштабах: $a - \Delta B^2(T_C - T)$ и $b - \Delta B^{1/\beta}(T_C - T)$ ($\beta = 0.31$).

При охлаждении ниже Т_С ансамбль из четырех сопряженных центров Cr³⁺ разбивается на две группы структурно-неэквивалентных центров кратностью $k_M = 4$ каждая [13,14]. Локальная симметрия (C_1) центров при фазовом переходе не меняется и дублетное расщепление резонансных линий регистрируется для любых направлений внешнего магнитного поля В относительно осей кристалла. Измерения температурных зависимостей спектров были проведены для главных направлений магнитного поля вдоль кристаллических осей и проанализированы для В || а. Для этой ориентации сопряженные в парафазе спектры совпадают и положения электронных переходов характеризуются слабой угловой зависимостью при отклонении магнитного поля от оси а [14]. Поэтому незначительные погрешности при ориентировке образца не приводят к существенным искажениям спектрального контура.

Температурная зависимость положения низкополевой резонансной линии $M_S = -3/2 \leftrightarrow -1/2$, измеренная при **B** || **a**, представлена на рис. 1. Видно, что по мере приближения к точке фазового перехода сверху линия ЭПР слабо смещается в сторону высоких полей. Ниже температуры $T_C = 283.4$ К происходит расщепление линии на две компоненты, которые при дальнейшем охлаждении смещаются от положения сигнала в высокосимметричной фазе.

2. Температурная зависимость локального параметра порядка

В окрестности фазового перехода II рода резонансные поля *B*, при которых регистрируется поглощение мощности радиочастотного излучения, могут быть разложены в ряд по степеням локального параметра порядка

$$B = B_0 + a_1 \cdot \eta + \frac{1}{2} a_2 \cdot \eta^2 + \dots$$
 (2)

Здесь η — локальный параметр порядка, отвечающий изменениям структуры в окружении магнитного иона при фазовом переходе, B_0 обозначает положение резонансной линии в высокосимметричной фазе ($\eta = 0$), коэффициенты a_1 , a_2 определяются положением магнитного иона в элементарной ячейке и направлением поля **В** относительно осей кристалла.

Поскольку точечная симметрия центров Cr^{3+} (C_1) при фазовом переходе не меняется, для любых направлений **B** разложение резонансных полей (2) содержит как четные, так и нечетные степени η . Согласно данным [10–12], свойства LGO обнаруживают критическое поведение в широкой окрестности T_C . Представив локальный параметр порядка в виде степенной функции $\eta \sim (T_C - T)^{\beta}$ (β — соответствующий критический индекс), для положения расщепленных ниже T_C компонент ЭПР линии на основании (2) получим

$$B_{1,2}(\pm\eta) = B_0 \pm \tilde{a}_1 (T_C - T)^{\beta} + \frac{1}{2} \tilde{a}_2 (T_C - T)^{2\beta}, \quad (3)$$

где $\tilde{a}_1 \sim a_1$, $\tilde{a}_2 \sim a_2$. В соответствии с (2), (3) изменение расстояния между расщепленными компонентами отражает температурную зависимость локального параметра порядка

$$\Delta B = B_1(+\eta) - B_2(-\eta) = 2a_1\eta(T) = 2\tilde{a}_1(T_C - T)^{\beta}.$$
 (4)

Чтобы выявить характер зависимости ΔB от $(T_C - T)$, на вставках к рис. 1 результаты измерений представлены в различных координатах. Видно, что экспериментальная зависимость $\Delta B^2(T_C - T)$ прямой линии не соответствует и, согласно (4), приближение среднего поля $(\beta = 0.5)$ для описания зависимости $\eta(T)$ неприменимо ни на одном из участков исследованного интервала температур. Напротив, зависимость $\Delta B^{1/\beta}(T_C - T)$, построенная в предположении $\beta = 0.31$, линейна вплоть до $(T_C - T) \sim 40$ K (рис. 1). При более низких температурах экспериментальные значения $\Delta B^{1/\beta}(T_C - T)$ отклоняются от прямой линии в сторону меныших величин, что свидетельствует о замедлении температурного роста и насыщении зависимости $\eta(T)$.

Экспериментальные зависимости положения ЭПР линии Cr^{3+} описаны на основании (3) в интервале $(T_C - 40 \text{ K}) < T < (T_C + 20 \text{ K})$, критический индекс β рассматривался в качестве варьируемого параметра. Минимизация среднеквадратичного отклонения расчетных значений от экспериментальных данных дает следующие величины:

$$T_c = 283.38 \,\mathrm{K}; \qquad \beta = 0.31;$$

 $\tilde{a}_1 = 1.60 \, mT/K^{\beta}; \qquad \tilde{a}_2 = 0.25 \, mT/K^{2\beta}.$ (5)

Дрейф позиции линии B_0 выше T_C (рис. 1), обусловленный температурным изменением параметров решетки, был аппроксимирован прямой линией $B_0[mT] = (139.78 - 0.003 \cdot T)$. Рассчитанные при помощи (3), (5) зависимости изображены линиями на рис. 1. Видно, что расчет позволяет достаточно точно описать экспериментальные результаты и дает точку перехода T_C (5), весьма близкую к температуре расщепления резонансных линий (283.4 К).

Значение β , полученное при анализе ЭПР спектров Cr^{3+} (5), в пределах экспериментальной погрешности совпадает с величиной индекса, определенной из температурного смещения ЭПР линий ионов Mn^{2+} [10,11]. Причины проявления критических флуктуаций в столь широкой температурной области обусловлены слабополярной природой сегнетоэлектрического состояния кристаллов LGO [22] и более детально обсуждались ранее [11,12].

Существенным моментом представляется отличие зависимостей локального параметра порядка, которые получены из анализа ЭПР спектров Mn^{2+} [11] и Cr^{3+}

Рис. 2. Зависимости величины расщепления ΔB между компонентами ЭПР линий Mn^{2+} (1) (данные [11]) и Cr^{3+} (2) от ($T_C - T$) в двойном логарифмическом масштабе. LGO: Mn^{2+} , Cr^{3+} .

(рис. 1). Указанное различие показано на рис. 2, где в двойном логарифмическом масштабе представлены зависимости величины расщепления ЭПР линий $\Delta\beta \sim \eta$ от $(T_C - T)$. Результаты анализа спектров Mn^{2+} при удалении от фазового перехода при $T^* \approx (T_C - 10 \, {
m K})$ демонстрируют наличие кроссовера от изинговского поведения на участке зависимости с наклоном 0.3 к классическому поведению на отрезке с наклоном 0.5. Зависимость, полученная при обработке спектров Cr³⁺, свидетельствует об изинговском типе поведения во всей области, где температурный рост локального параметра порядка соответствует степенной функции $\eta \sim (T_C - T)^{\beta}$. Значит, при удалении от T_C переход от изинговского к классическому поведению $\eta(T)$ происходит в окружении активных ионов Mn²⁺ и отсутствует "с точки зрения" центров Cr³⁺. Рассмотрим возможные причины полученного расхождения.

Ослабление пространственных корреляций парными центрами Cr³⁺–Li⁺

Учитывая особенности динамического поведения и роль Ge–O и Li подрешеток структуры LGO при фазовом переходе, полученные результаты можно связать с локализацией зондов — центров Mn^{2+} в структурных каналах на местах Li2 и ионов Cr^{3+} внутри кислородных октаэдров в позициях Ge1. Различное поведение $\eta(T)$ (рис. 2) может отражать специфику критического поведения решеточных смещений в подрешетках.

С другой стороны, следует принять во внимание дефектную природу парамагнитных ионов. Данные ЭПР

указывают на различный характер вхождения парамагнитных ионов. Центры Mn^{2+} сохраняют общие свойства (локальную симметрию) позиций Li2 идеальной решетки. Ионы хрома существенно искажают Ge–O каркас структуры и, внедряясь в позиции Ge1, приводят к образованию дипольных парных центров Cr^{3+} –Li⁺. Поэтому свойства кристаллов LGO, активированных Mn^{2+} и Cr^{3+} , могут отличаться.

Изучение тепловых и акустических аномалий показало, что при удалении от T_C кроссовер от флуктуационного к классическому режиму характерен для поведения макроскопических свойств беспримесных кристаллов LGO [24]. ЭПР центров Mn²⁺, которые располагаются в каналах решетки и не вносят существенных возмущений в Ge-O каркас структуры, адекватно отражает эту особенность [11]. Отсутствие области применимости приближения среднего поля для зависимости n(T), полученной из расщепления ЭПР линий хрома (рис. 1, 2), следует связать с дефектной природой парамагнитных центров, которые искажают Ge-O каркас кристаллической решетки. Качественно это заключение подкрепляется принципиально различным смещением Т_С при введении Mn (не зафиксировано вплоть до введения $\sim 1\%$ wt.) и Cr (~ -70 K/%wt.) [17,18].

Итак, деформации Ge-O структурного каркаса в окружении центров Cr³⁺-Li⁺ приводят к тому, что протяженность флуктуационной области возрастает и переход к классическому поведению при удалении от Т_С оказывается подавленным. Такое изменение критических свойств LGO указывает на эффективное уменьшение радиуса взаимодействия и ограничение пространственного масштаба корреляций параметра порядка в системе с дефектами. Поскольку вблизи Тс поведение термодинамических аномалий отлично от предсказаний теории Ландау [10–12,23,24], попытаемся проанализировать влияние центров Cr³⁺–Li⁺ на свойства LGO при помощи простой микроскопической модели структурных фазовых переходов. В ее рамках потенциальная энергия кристалла может быть представлена в виде суммы энергии структурных ячеек \mathcal{H}_s и энергии взаимодействия \mathcal{H}_{int} между ними [25,26]

$$\begin{aligned} \mathcal{H} &= \mathcal{H}_{s} + \mathcal{H}_{int} \\ &= \sum_{r} \left[\frac{1}{2} \alpha_{1} u_{r}^{2} + \frac{1}{4} \alpha_{2} u_{r}^{4} \right] + \frac{1}{2} \sum_{rr'} J_{rr'} (u_{r} - u_{r'})^{2} \\ &= \left[\frac{1}{2} (\alpha_{1} + 12J) \sum_{r} u_{r}^{2} + \frac{1}{4} \alpha_{2} \sum_{r} u_{r}^{4} \right] - J \sum_{rr'}^{n.n.} u_{r} \cdot u_{r'}, \end{aligned}$$

$$(6)$$

где u_r обозначает комбинацию атомных смещений при фазовом переходе в элементарной ячейке с радиусвектором r, $\alpha_1 < 0$, $\alpha_2, J > 0$. Для простоты вторая строка в (6) записана в предположении изотропного взаимодействия с ближайшими соседними ячейками трехмерной решетки. Как правило, гамильтониан (6) анализируется для предельных случаев. Если $|\alpha_1| \ll J$, одночастичный потенциал \mathcal{H}_s характеризуется одним минимумом, фазовый переход соответствует модели смещения и предполагается справедливость приближения среднего поля. В противоположном пределе $|\alpha_1| \gg J$ энергия \mathcal{H}_s имеет два минимума при равновесных смещениях $\pm u_0 = \pm (|\alpha_1|/\alpha_2)^{1/2}$ и фазовый переход определяется возникновением различной заселенности ям. В этом случае (6) сводится к гамильтониану Изинга, структурные измнения соответствуют схеме упорядочения и условия выполнимости приближения среднего поля ухудшаются. Классическое поведение в рамках теории среднего поля сменяется флуктуационным режимом, в котором проявляется универсальный характер критических явлений.

Предположим, что состояние кристаллической матрицы LGO можно описать на основании (6), а присутствие дефектных центров $Cr^{3+}-Li^+$ учесть путем перенормировки параметров модели. Допустим, что некоторая ячейка решетки может содержать дефект с вероятностью *n* и быть бездефектной с вероятностью (1 - n), где $n = N_d/N$ есть отношение числа дефектных ячеек к их общему количеству. Для простоты примем смещения u_r в нормальной и дефектной ячейках одинаковыми. Рассмотрим, как изменяются параметры (6) в присутствии дефектов обсуждаемого типа.

Параметр α_1 изменяется за счет взаимодействия смещений с дипольными моментами дефектов. На основании симметрии параэлектрической фазы (D_{2h}) [1] и направления дефектного диполя **d** || **a** [13,15,16], paspeшенный инвариант низшего порядка имеет вид $d^2 u_r^2$. Добавление к (6) члена вида $(1/2)gd^2 \sum u_r^2$ (g > 0, суммирование ведется по дефектным ячейкам с радиусвектором r_d) приводит к уменьшению $|\alpha_1|$ (понижению температуры перехода) и способствует выполнимости условия приближения среднего поля $|\alpha_1| \ll J$. Влияние парных центров Cr³⁺-Li⁺ на свойства кристаллической матрицы LGO имеет обратную тенденцию, и поэтому изменение параметра α_1 в дефектном кристалле рассматриваться не будет. Перенормировка а2 также несущественна, поскольку она происходит вследствие взаимодействия более высоких порядков и не приводит к появлению каких-либо особенностей.

Поскольку парные центры $Cr^{3+}-Li^+$ увеличивают протяженность флуктуационной области, наиболее существенным представляется изменение корреляционного параметра *J*. Подавление режима среднего поля (предел типа смещения) означает усиление выполнимости неравенства $|\alpha_1| \gg \tilde{J}$ в дефектном кристалле (\tilde{J} обозначает перенормированный корреляционный параметр). Смещения в дефектных ячейках коррелируют со смещениями в соседних (по предположению нормальных) ячейках слабее по сравнению со взаимодействиями в бездефектных областях кристалла. Пусть связь дефектной области с соседними ячейками описывается параметром

Рис. 3. Зависимость температуры перехода T_C кристаллов LGO от содержания примеси Cr, определенная из диэлектрических данных [17].

 $J_d < J.$ Проводя замену $\sum\limits_{r \neq r_d} \to (1-n) \sum\limits_r$ и $\sum\limits_{r_d} \to n \sum\limits_r,$ корреляционный параметр в кристалле с дефектами представим в виде

$$J(n) = (1-n)J + nJ_d.$$
 (7)

Ослабление упругих сил между смещениями в ячейках кристалла с дефектами приводит к уменьшению характерной длины взаимодействия. В рамках модели (6) отношение радиуса корреляции к параметру ячейки выражается как $r_0^2 = -J/\alpha_1$, что указывает на уменьшение радиуса взаимодействия в матрице $\tilde{r}_0 < r_0$ (\tilde{r}_0 радиус корреляции, перенормированный в дефектном кристалле) под влиянием парных центров Cr^{3+} –Li⁺.

Попробуем сделать некоторые количественные оценки. Рассмотрим зависимость температуры перехода от содержания примеси Сг. Для модели (6) точка фазового перехода дается выражением

$$T_C(n) = -C \cdot \frac{\alpha_1}{\alpha_2} \tilde{J}(n), \tag{8}$$

где коэффициент пропорциональности *С* принимает различные численные значения в пределах смещения и перехода порядок–беспорядок [25,26]. Отсюда для относительного смещения точки перехода получим

$$\frac{T_C(0) - T_C(n)}{T_C(0)} = \left(1 - \frac{J_d}{J}\right) \cdot n,\tag{9}$$

что согласуется с линейным характером экспериментальной зависимости T_C от концентрации (рис. 3). Учитывая поправку на соотношение молярных масс формульной единицы LGO и активационной добавки Cr_2O_3 , а также число формульных единиц (Z = 4) на элементарную ячейку, получим $J_d \approx 0.3 \cdot J$. Значит, взаимодействие дефектной ячейки с соседними оказывается в 3 раза слабее, чем упругие силы в областях бездефектной структуры. В соответствии с принятыми допущениями концентрированное уменьшение радиуса корреляции в кристаллической матрице LGO, содержащей парные центры $Cr^{3+}-Li^+$, составляет $\tilde{r}_0^2 \approx r_0^2 \cdot (1-0.7 \cdot n)$.

4. Обсуждение результатов

Уточним следующий вопрос. Кроссовер от флуктуационного режима к классическому поведению наблюдался при изучении локального параметра порядка по ЭПР спектрам Mn²⁺ [10,11], тепловых и акустических свойств LGO [23,24]. Однако для температурного хода локальной восприимчивости, полученного из уширения ЭПР линий Mn²⁺ [12], и зависимости диэлектрической проницаемости [27] переход от критического к поведению теории среднего поля зафиксирован не был. Это может быть обусловлено следующими обстоятельствами. Во-первых, температурная протяженность флуктуационной области оказывается разной для различных свойств физической системы [25]. Во-вторых, удовлетворительная точность измерения аномальных вкладов в ширину ЭПР линии и диэлектрическую проницаемость возможна лишь для ограниченных интервалов $(T - T_C) \sim 10$ и ~ 20 K соответственно. Напротив, при изучении температурных зависимостей локального параметра порядка (рис. 1, 2) по мере удаления от Т_С расщепление ЭПР линий увеличивается и точность измерений возрастает. Поэтому отсутствие экспериментальных свидетельств о наличии кроссовера в [12,27] может быть следствием относительной малости температурных интервалов, для которых возможно надежное выделение аномальных вкладов в ширину ЭПР линии и диэлектрическую проницаемость.

Подчеркнем, что выражение констант взаимодействия в виде (7) фактически означает замену дискретной среды (6) континуумом, где дефектные искажения усредняются по объему кристалла. Поэтому представленный анализ следует рассматривать как качественную иллюстрацию влияния парных дефектов $Cr^{3+}-Li^+$ на критические свойства кристаллов гептагерманата лития. Сделанные допущения, однако, не меняют основной вывод об уменьшении радиуса корреляции в кристаллической матрице LGO, содержащей парные центры $Cr^{3+}-Li^+$.

5. Выводы

В температурном интервале сегнетоэлектического фазового перехода кристаллов LGO исследованы ЭПР спектры ионов хрома, замещающих Ge1 в центре октаэдрических кислородных комплексов и вместе с межузельными ионами лития образующих парные центры Cr³⁺–Li⁺.

При охлаждении ниже точки перехода T_C зафиксировано расщепление ЭПР спектра Cr^{3+} на две структурно неэквивалентные группы спектров, каждая из которых обладает магнитной кратностью $k_M = 4$. Температурные

зависимости положения расщепленных компонент ЭПР линий описаны на основании разложения резонансных полей по степеням локального параметра порядка.

Путем измерения величины расщепления ЭПР линий Cr^{3+} в полярной фазе LGO установлено, что в интервале температур от T_C до $(T_C - T) \sim 40$ К степенной характер зависимости локального параметра порядка согласуется с трехмерной моделью Изинга ($\beta = 0.31$).

Имеющиеся экспериментальные данные указывают, что при удалении от T_C переход от флуктуационного к классическому режиму присущ термодинамическим аномалиям беспримесных кристаллов LGO. Отсутствие кроссовера в поведении свойств LGO: Сг связывается с ослаблением пространственных корреляций в матрице с дефектными центрами Cr^{3+} –Li⁺. Влияние парных центров Cr^{3+} –Li⁺ на критические свойства LGO обсуждается на основании микроскопической модели структурных фазовых переходов.

Список литературы

- H. Volenkle, F. Wittman, H. Nowotny. Monatsh. Chem. 101, 46 (1970).
- [2] S. Haussuhl, F. Wallrafen, K. Recker, J. Eckstein. Z. Kristallogr. 153, 329 (1980).
- [3] M. Wada, A. Sawada, Y. Ishibashi. J. Phys. Soc. Jap. 50, 6, 1811 (1981).
- [4] H. Terauchi, S. Iida, Y. Nishihata, M. Wada, A. Sawada, Y. Ishibashi, J. Phys. Soc. Jap. 52, 7, 2312 (1983).
- [5] Y. Iwata, N. Koyana, I. Shibuya. Ann. Rep. Res. React. Inst. Kyoto Univ. 19, 11 (1986).
- [6] Y. Iwata, I. Shibuya, M. Wada, A. Sawada, Y. Ishibashi. J. Phys. Soc. Jap. 56, 7, 2420 (1987).
- [7] H. Orihara, M. Wada, Y. Ishibashi. J. Phys. Soc. Jap. 52, 4, 1478 (1983).
- [8] A. Volkov, G. Kozlov, Yu. Goncharov, M. Wada, A. Sawada, Y. Ishibashi. J. Phys. Soc. Jap. 54, 2, 818 (1985).
- [9] M. Horioka, A. Sawada, M. Wada. J. Phys. Soc. Jap. 58, 10, 3793 (1989).
- [10] М.П. Трубицын, М.Д. Волнянский, А.Ю. Кудзин. Кристаллография 36, 6, 1472 (1991).
- [11] М.П. Трубицын. ФТТ 40, 1, 114 (1998).
- [12] М.П. Трубицын, М.Д. Волнянский, А.Ю. Кудзин, Т.Л. Кузьменко. ФТТ 40, 1, 111 (1998).
- [13] А.А. Галеев, Н.М. Хасанова, А.В. Быков, В.М. Винокуров, Н.М. Низамутдинов, Г.Р. Булка. В сб.: Спектроскопия, кристаллохимия и реальная структура минералов и их аналогов. Казанский ун-т, Казань (1990). С. 77.
- [14] М.П. Трубицын, М.Д. Волнянский, И.А. Бусоул. ФТТ 40, 6, 1102 (1998).
- [15] С.А. Басун, А.А. Каплянский, С.П. Феофилов. ФТТ 34, 11, 3377 (1992).
- [16] С.А. Басун, А.А. Каплянский, С.П. Феофилов. ФТТ 36, 11, 3429 (1994).
- [17] М.Д. Волнянский, А.Ю. Кудзин. ФТТ 33, 7, 2228 (1991).
- [18] М.Д. Волнянский. Автореф. докт. дис. ДГУ, Днепропетровск (1993).
- [19] K.A. Muller, J.C. Fayet. In: Structural Phase Transitions II / Ed. by K.A. Muller & H. Thomas. Springer–Verlag, Berlin– N.Y. (1991). Vol. 45. P. 1.

- [20] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1972). Т. 1. 651 с.
- [21] М.Л. Мейльман, М.И. Самойлович. Введение в спектроскопию ЭПР активированных монокристаллов. Атомиздат, М. (1977). 272 с.
- [22] А.К. Таганцев. Письма в ЖЭТФ 45, 7, 352 (1987).
- [23] Б.А. Струков, М.Ю. Кожевников, Е.Л. Соркин, М.Д. Волнянский. ФТТ 32, 9, 2823 (1990).
- [24] Б.А. Струков, М.Ю. Кожевников, М.Д. Волнянский, Х.А. Низомов. Кристаллография 36, 4, 942 (1991).
- [25] А. Брус, Р. Каули. Структурные фазовые переходы. Мир, М. (1984). 408 с.
- [26] Б.А. Струков, А.П. Леванюк. Физические основы сегнетоэлектрических явлений в кристаллах. Наука, М. (1983). 240 с.
- [27] А.Ю. Кудзин, М.Д. Волнянский, М.П. Трубицын, И.А. Бусоул. ФТТ 40, 9, 1698 (1998).