Структура и магнитная анизотропия пленок Co/Cu/Co

© Л.А. Чеботкевич, А.В. Огнев, Б.Н. Грудин

Дальневосточный государственный университет, 690950 Владивосток, Россия E-mail: lach@phys.dvgu.ru

(Поступила в Редакцию 16 декабря 2003 г.)

Исследовалось поведение энергии магнитной анизотропии поликристаллических ультрадисперсных пленок Co/Cu/Co с изменением толщины медных и кобальтовых слоев. Установлено влияние структурных изменений (размера и распределения дефектов, периода и амплитуды шероховатостей) на компоненты поверхностной и объемной анизотропии. Параметры структурных неоднородностей и их распределение по поверхности пленок определялись с использованием двумерных Фурье-спектров электронномикроскопических изображений пленок.

Работа поддержана федеральным бюджетом Российской Федерации "Исследование и разработки по приоритетным направлениям развития науки и техники гражданского назначения" Минпром России (договор № 3-02.ДВГУ в рамках государственного контракта № 40.012.1.1.1151) и бюджетом Минобразования России (грант "Молодые ученые России").

1. Введение

Наноструктурные объекты в последнее десятилетие являются предметом интенсивных исследований, поскольку на них базируется современная нанотехнология. Успехи в этих областях были достигнуты благодаря стремительному совершенствованию технологии получения и исследования микро- и наноструктур. Кроме практического применения многослойные магнитные структуры представляют интерес и как объекты с совершенно новыми магнитными и магниторезистивными свойствами. В настоящее время актуальными являются исследования, направленные на изучение влияния косвенной обменной связи на магнитные свойства многослойных пленок.

В настоящей работе исследуется влияние распределения структурных дефектов и шероховатостей поверхности на компоненты констант магнитной анизотропии Co/Cu/Co пленок.

2. Методика эксперимента

Образцы Со/Си/Со получали магнетронным распылением на постоянном токе в атмосфере рабочего газа Ar ($P_{\rm Ar} = 5 \cdot 10^{-3}$ Torr). Пленки осаждали на естественно окисленные монокристаллы (111)Si при комнатной температуре. Толщина слоев контролировалась по времени напыления. Скорость осаждения Со и Си составляла 0.1 и 0.08 nm/s соответственно. Структура пленок исследовалась методами электронной микроскопии и микродифракции электронов. Все исследуемые пленки — поликристаллические с размером зерна ~ 5–6 nm. Намагниченность измерялась индукционным методом на автоматизированном вибромагнетометре.

Для измерения поля анизотропии использовался метод ферроромагнитного резонанса (ФМР). Для определения угловой дисперсии осей анизотропии φ_a ис-

пользовалась методика, предложенная в работе [1], где величина угловой дисперсии осей анизотропии φ_a определялась по углу, в пределах которого не изменяется величина резонансного поля при вращении пленки в ее плоскости.

3. Экспериментальные результаты и их обсуждение

Методом ФМР измерялось поле магнитной анизотропии $H_a = (H_r^{h.a.} - H_r^{e.a.})/2$ пленок. Здесь $H_r^{h.a.}$ и $H_r^{e.a.}$ — резонансные поля в направлении оси трудного (ОТН) и легкого намагничивания (ОЛН) соответственно. Зависимость констант магнитной анизотропии $(K_u = H_a I_{eff}/2,$ где I_{eff} — намагниченность пленки) осажденных пленок (Co/Cu)_n от толщины кобальтовых слоев представлена на рис. 1. Значения K_u рассчитаны

Рис. 1. Зависимость константы наведенной магнитной анизотропии K_u от толщины ферромагнитных слоев Со для пленок Co/Cu(d_{Cu})/Co: $1 - d_{Cu} = 0.7$, $2 - d_{Cu} = 1.0$ и $3 - d_{Cu} = 1.6$ nm.

1450		

		$K_v, 10^4$	erg/cm ³		$K_s, 10^{-3} \mathrm{erg/cm^3}$				
$d_{\rm Cu}$, nm	эксп	еримент	p	асчет	эксп	еримент	расчет		
	до отжига	после отжига	до отжига	после отжига	до отжига	после отжига	до отжига	после отжига	
0.7 1.0 1.6	7.1 7.5 6.9	2.3	7.3	5.7	1.3 5.5 5.0	-7.0	5.8	-8.6	

Таблица 1. Магнитная анизотропия пленок Co/Cu/Co до и после отжига при $T_{ann} = 350^{\circ}$ C, $t_{ann} = 30$ min

с учетом зависимости намагниченности от толщины ферромагнитных слоев ($I_{\text{eff}} = f(d_{\text{Co}})$) (рис. 2). С увеличением толщины кобальтовых слоев значение константы наведенной магнитной анизотропии возрастает и выходит на насыщение. В образцах с толщиной медной прослойки $d_{\text{Cu}} = 0.7$ nm величина наведенной магнитной анизотропии максимальна. Вероятно, это связано с наличием большого количества ферромагнитных мостиков в прослойке Cu и, как следствие, локального увеличения толщины слоев Co.

Величину энергии наведенной магнитной анизотропии $K_{u \text{ eff}}$ можно записать в виде феноменологического выражения [2,3]

$$K_{u\,\mathrm{eff}}=K_v+\frac{2K_s}{d_{\mathrm{Co}}},$$

где K_v и K_s — объемная и поверхностная компоненты наведенной магнитной анизотропии соответственно.

Компонента K_v вызвана анизотропным распределением объемных дефектов (границ между зернами, цепочек из межзеренных границ, микропор). Компонента поверхностной магнитной анизотропии K_s обусловлена морфологией границ раздела (интерфейсов Co/Cu). Коэффициент 2 возникает вследствие того, что каждый ферромагнитный слой имеет две межфазные границы. Если K_v и K_s — константы, то согласно феноменологическому закону с увеличением толщины ферромаг-

Рис. 2. Изменение намагниченности пленок Co/Cu/Co при увеличении толщины слоев кобальта. I — после осаждения, 2 — после отжига при $T_{ann} = 350^{\circ}$ C в течение $t_{ann} = 30$ min.

нитных слоев величина $K_{u\,\text{eff}}d_{\text{Co}}$ линейно возрастает. При $d_{\text{Co}} = -2k_s/K_v$ наблюдается кроссовер ОЛН из плоскости пленки в направление, перпендикулярное поверхности пленки. Величина поверхностной магнитной анизотропии $2K_s$ определялась экстраполяцией зависимости $K_{u\,\text{eff}}d_{\text{Co}} = f(d_{\text{Co}})$ к значению $d_{\text{Co}} = 0$. На рис. 3, *а* представлена зависимость $K_{u\,\text{eff}}d_{\text{Co}} = f(d_{\text{Co}})$ для пленок (Co/Cu)_n с различной толщиной d_{Cu} . Значения констант поверхностной анизотропии K_s приведены в табл. 1.

После отжига при температуре 350° С в течение 30 min компонента поверхностной анизотропии в пленках Co/Cu/Co меняет знак (рис. 3, *b*). Это может быть связано с тем, что в отожженных пленках произошла деградация промежуточной прослойки из-за увеличения размера зерен примерно в 6 раз (R = 28-30 nm) и в немагнитной прослойке образовалось много булавочных отверстий. Между слоями установилась ферромагнитная связь через булавочные отверстия, что позволяет рассматривать такие пленки как однослойные с толщиной, равной суммарной толщине ферромагнитных слоев. Эффективное увеличение толщины Со привело к тому, что вектору намагниченности стало выгодней лежать в плоскости пленки.

Величина объемной магнитной анизотропии, определенная как тангенс угла наклона кривой $K_{u\,\text{eff}}d_{\text{Co}} = f(d_{\text{Co}})$, для всех пленок примерно одинакова (табл. 1). В отожженных пленках объемная компонента наведенной магнитной анизотропии уменьшается.

Были проведены оценки поверхностной магнитной анизотропии на основе реальной структуры для исследуемых пленок Со/Си/Со. Согласно [4,5], поверхностную магнитную анизотропию можно представить в виде $K_s = K_0 + \Delta K$, где K_0 — константа поверхностной (граничной) анизотропии для идеальной границы, а ΔK — анизотропия, обусловленная шероховатостью границ раздела.

В случае идеальной границы раздела граничная анизотропия в многослойных пленках обусловлена псевдодипольным взаимодействием пар атомов и равна [4]: $K_0 = 3aNW$, где a — постоянная решетки, N — количество атомов в единице объема, $W = W_{\rm CoCo} + W_{\rm CuCu} - 2W_{\rm CoCu}$ — энергия псевдодипольного взаимодействия атомов Co-Co, Cu-Cu, Co-Cu соответственно. Константа анизотропии для идеального интерфейса равна $K_0 = 8.64 \cdot 10^{-2}$ erg/cm².

Рис. 3. Зависимость $K_u d_{Co}$ от толщины слоев Со. a — после осаждения, b — после отжига при $T_{ann} = 350^{\circ}$ С в течение $t_{ann} = 30$ min для пленок Co/Cu(d_{Cu})/Co. $1 - d_{Cu} = 0.7$, $2 - d_{Cu} = 1.0$ и $3 - d_{Cu} = 1.6$ nm.

Рис. 4. Изображение морфологии поверхности пленки методом ACM и значения дисперсии амплитуды σ и длины шероховатости l.

В реальных пленках на величину анизотропии идеального интерфейса оказывают влияние различные причины: шероховатость границ раздела слоев, диффузионное размытие интерфейса, нанокристаллическая структура.

Вклад шероховатостей границ раздела в компоненту поверхностной анизотропии рассчитывался как [4]: $\Delta K_r = -2K_0(\sigma/\lambda)^2$, где σ — дисперсия амплитуды шероховатости (отклонение от средней плоскости), λ период шероховатостей, определяемых из статистически обработанных изображений топографии поверхностей, полученных методом ACM (рис. 4). Для исследуемых образцов $\Delta K_r = -1 \cdot 10^{-5} \text{ erg/cm}^2$.

При определении вклада поликристалличности предполагалось, что ориентация кристаллитов равновероятна. Тогда величину поверхностной анизотропии, обусловленную поликристаллической структурой, можно представить в виде [4]: $\Delta K_p = -0.6K_0$ = $-5.18 \cdot 10^{-2} \text{ erg/cm}^2$.

В процессе осаждения слоев, а также последующей термической обработки возможно диффузионное размытие границ раздела образца. Величина этой компоненты поверхностной анизотропии имеет вид [4]: $\Delta K_d = -K_0(1 - a/h_d)$, где a — параметр решетки, h_d — глубина диффузионного размытия межфазной границы. При $h_d = 1-2$ межатомных расстояния $\Delta K_d = -2.88 \cdot 10^{-2} \text{ егg/cm}^2$.

В этом случае компонента поверхностной магнитной анизотропии реальных границ раздела равна $K_s = 5.8 \cdot 10^{-3} \text{ erg/cm}^2$. Представленный результат согласуется с экспериментально измеренными значениями поверхностной магнитной анизотропии в пленках (Co/Cu)_n (табл. 1).

После отжига при $T_{ann} = 350^{\circ}$ С в пленках происходит деградация межфазных границ из-за увеличения размера зерен и взаимной диффузии. Если положить, что глубина диффузного размытия межфазной границы h_d в отожженных пленках соизмерима с шириной межфазной границы, то K_s меняет знак, что согласуется с экспериментально определенным значением энергии поверхностной анизотропии (табл. 1).

Для оценки объемной компоненты магнитной анизотропии, обусловленной распределением структурных

Пленки Со/Си/Со	Частотные диапазоны											
	первый			второй			третий			четвертый		
	λ_1 , nm	γ_1	$ heta_1,^\circ$	λ_2 , nm	γ_2	$ heta_2,^\circ$	λ_3 , nm	<i>¥</i> 3	$ heta_3,^\circ$	λ_4 , nm	γ_4	$ heta_4,^\circ$
До отжига После отжига	23.4	1.0	_	54 44.0	1.6 1.1	0 120	72	2.6	175 _	104.5 85.0	2.3 1.4	170 100

Таблица 2. Параметры распределения структурных неоднородностей по поверхности Со/Си/Со пленки

Рис. 5. *а*, *b* — электронно-микроскопическое изображение структуры Co/Cu/Co пленки; *c*, *d* — зависимость интегральной энергии частотных характеристик в кольцевых зонах от длины волны; *e*, *f* — двумерные Фурье-спектры. *a*, *c*, *e* — до отжига, *b*, *d*, *f* — после отжига при $T_{ann} = 350^{\circ}$ C в течение $t_{ann} = 30$ min. На частях *e*, *f* по радиусам отложены периоды неоднородностей λ .

	Частотные диапазоны										
Co/Cu/Co	пер	вый	BTC	рой	тре	тий	четвертый				
	l_1 , nm	d_1 , nm	l_2 , nm	d_2 , nm	<i>l</i> ₃ , nm	d_3 , nm	<i>l</i> ₄ , nm	d_4 , nm			
До отжига T _{ann} = 350°С	5	1	10 74	1 2	20	1	30 203	1 2			

Таблица 3. Размеры структурных неоднородностей

неоднородностей необходимо знать не только линейные размеры неоднородностей, но и их взаимную ориентацию и распределение по пленке. Электронномикроскопические изображения пленок визуализируются иерархией структурных неоднородностей. Однако получить количественные оценки распределения дефектов для многослойных структур сложно. Для оценки параметров структурных неоднородностей проводился спектральный Фурье-анализ электронно-микроскопических изображений. Были получены цифровые двумерные спектры Фурье, которые рассчитывались на ЭВМ. Двумерный Фурье-спектр каждого изображения разбивался на 36 кольцевых секторов. В каждом секторе определялась средняя мощность спектральных компонент, характеризующая частотный состав изображения. Затем исследовалась спектральная энергия структурных неоднородностей, входящих в разные частотные диапазоны. Интегральные частотные характеристики для удобства выражены в эквивалентных длинах волн λ . На рис. 5 представлена зависимость интегральной энергии частотных характеристик в кольцевых зонах от длины волны пространственных неоднородностей. Спектральный Фурье-анализ электронно-микроскопических изображений структуры трехслойных пленок показал, что спектр структурных неоднородностей имеет несколько максимумов, т. е. несколько выделенных периодов в распределении неоднородностей. Распределение структурных неоднородностей в пленке оценивалось по энергии спектральных составляющих в радиальных спектрах, в которые входят наблюдаемые локальные максимумы. Полученные двумерные Фурье-спектры позволили определить коэффициент анизотропности распределения γ дефектов по пленке и угол разориентации дефектов θ , входящих в разные частотные диапазоны. Параметры структурных неоднородностей приведены в табл. 2. Можно выделить четыре типа неоднородностей (периодов неоднородностей), соответствующих локальным максимумам энергии (табл. 2). После отжига в пленке выявлено всего два локальных максимума (рис. 5).

С учетом параметров структурных неоднородностей пленки до и после отжига были проведены оценки объемной компоненты магнитной анизотропии K_v , обусловленной структурными дефектами.

Для нахождения результирующей константы магнитной анизотропии определяли поле анизотропии. В осажденных пленках неоднородности, входящие в первый диапазон, распределены по пленке изотропно ($\gamma = 1$) (рис. 5, *e*). Изотропно распределенные дефекты (напряжения) не вносят вклада в наведенную магнитную анизотропию. В осажденных пленках присутствует три, а после отжига — две системы анизотропно распределенных дефектов, вносящих вклад в магнитную анозотропию (табл. 2 и рис. 5, *e*, *f*). Поле анизотропии, обусловленное объемными дефектами в осажденной пленке, равно

$$H_a^{v} = \begin{cases} H_2^2 + H_3^2 + H_4^2 - 2H_2H_3\cos(\theta_3 - \theta_2) + \\ + 2H_4[H_2^2 + H_3^2 - 2H_2H_3\cos(\theta_3 - \theta_2)]^{1/2} \times \\ \times \cos(\theta_2 - \theta_4 + \gamma) \end{cases}^{1/2},$$

$$\gamma = \arccos \frac{H_3\cos(\theta_3 - \theta_2) - H_2}{[H_2^2 + H_3^2 - 2H_2H_3\cos(\theta_3 - \theta_2)]^{1/2}}.$$

Для отожженной пленки

$$H_a^v = [H_2^2 + H_4^2 + 2H_2H_4\cos(\theta_4 - \theta_2)]^{1/2}$$

Здесь H_i — компоненты поля анизотропии, обусловленные неоднородностями *i*-го диапазона, которые рассчитывались по формуле

$$H_i = 2(N_b - N_a)(\Delta I)^2 c_i / I_{\text{eff}},$$

где N_a, N_b — размагничивающие факторы вдоль осей *a* и *b* дефекта, ΔI — скачок намагниченности на границе дефекта, c_i — концентрация дефектов *i*-го типа. $\Delta I = I_s - I_{def}$; так как $I_{eff} = I_s V + I_{def}(1 - V)$, где *V* — объем зерен, то $\Delta I = (I_s - I_{eff})/(1 - V)$, где

Рис. 6. Зависимость отношения $\Delta I/I_s$ (1) и размера зерна R (2) от температуры отжига Co/Cu/Co пленок.

 I_s — табличное значение, а V и I_{eff} определены экспериментально (рис. 6). Концентрация дефектов каждого диапазона определялась как $c_i = S_i/1 \text{ cm}^2$, $S_i = S_0 n_i$, где $S_0 = l \cdot d$ — площадь отдельного дефекта *i*-го диапазона, а $n_i = 1/\lambda_i^2$ — плотность дефектов *i*-го диапазона. Здесь l и d — длина и ширина дефектов *i*-го диапазона соответственно (табл. 3). Рассчитанные значения объемных компонент магнитной анизотропии $K_v = H_a^v I_f/2$ приведены в табл. 1. Видно хорошее согласие рассчитанных значений с экспериментально измеренными значениями.

4. Заключение

В результате проведенных исследований было установлено следующее.

1) В поликристаллических, мелкодисперсных и многослойных пленках присутствует иерархия структурных неоднородностей, отличающихся размерами, периодами (плотностью) и распределением по поверхности пленок.

2) Термическая обработка сопровождается изменением размеров, периодов и распределения структурных неоднородностей по пленке.

3) Длинноволновые шероховатости поверхности не вносят вклада в поверхностную анизотропию.

4) Деградация немагнитной прослойки сопровождается изменением знака поверхностной магнитной анизотропии в Co/Cu/Co пленках с тонкими ферромагнитными слоями.

5) Оценки компонент энергии поверхностной и объемной анизотропии на основе реальной структуры поликристаллических многослойных пленок согласуются с экспериментально измеренными значениями.

Список литературы

- [1] Ю.В. Корнев, Т.В. Бородина. ФММ 55, 3, 472 (1983).
- [2] M. Kowalewski, C.M. Schneider, B. Heinrich. Phys. Rev. B 47, 14, 8748 (1993).
- [3] D. Givord, O.F.K. McGrath, C. Meyer, J. Rothman. J. Magn. Magn. Mater. 157/158, 245 (1996).
- [4] Д.Б. Розенштерн, М.Г. Тетельман, А.А. Фраерман. Поверхность 4, 15 (1993).
- [5] P. Bruno. Phys. Rev. B 39, 865 (1989).