Влияние давления на упругие свойства карбида кремния

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: sergei.davydov@mail.ioffe.ru

(Поступила в Редакцию 13 ноября 2003 г.)

В рамках модели Китинга рассчитаны зависимости от давления p упругих постоянных второго порядка C_{ij} и скорости звука в кристаллах 3C-SiC и 2H-SiC. Из зависимости C_{ij} от p получены упругие постоянные третьего порядка C_{ijk} для 3C-SiC.

Работа выполнена при поддержке грантов РФФИ-03-02-16054, INTAS-01-0603 и NATO SfP N 978011.

В связи с широким использованием структур на основе карбида кремния упругие свойства различных политипов SiC вызывают большой интерес. Если внешнее гидростатическое давление p отсутствует, упругие модули второго порядка C_{ij} и скорости звука $v_i(\mathbf{q}) = \sqrt{C_i(\mathbf{q})/\rho}$ ($C_i(\mathbf{q})$ — определенная комбинация C_{ij} , соответствующая распространению в направлении \mathbf{q} звуковой волны с поляризацией n_i ; ρ — плотность кристалла) могут быть рассчитаны в гармоническом приближении, тогда как при $p \neq 0$ необходимо учитывать ангармонизм [1,2], что позволяет уточнить потенциал межатомного взаимодействия.

В работе [3] методом функционала плотности рассчитаны значения C_{ij} , dC_{ij}/dp и $v_i(\mathbf{q})$ для кубической модификации карбида кремния. В настоящей работе мы проанализируем результаты этих расчетов, воспользовавшись моделью силовых констант Китинга [4], хорошо зарекомендовавшей себя при описании упругих свойств кристаллов $A_N B_{8-N}$ [5].

1. 3*C*-SiC: зависимость упругих постоянных второго порядка от давления.

Модель Китинга для тетраэдрических кристаллов содержит две силовые константы: α , описывающую центральное взаимодействие ближайших соседей, т.е. реакцию на изменение длины связи, и β , отвечающую нецентральному взаимодействию вторых соседей, т.е. отклику тетраэдра на изменение угла между $|sp^3\rangle$ -орбиталями. Упругие постоянные второго порядка при этом имеют вид

$$C_{11} = \frac{\alpha + 3\beta}{4a_0}, \quad C_{12} = \frac{\alpha - \beta}{4a_0}, \quad C_{44} = \frac{\alpha\beta}{a_0(\alpha + \beta)}, \quad (1)$$

где 4*a*₀ — постоянная решетки недеформированного кристалла. При этом выполняется тождество

$$R \equiv \frac{C_{44}(C_{11} + C_{12})}{C_S(C_{11} + 3C_{12})} = 1,$$
(2)

где модуль сдвига $C_S = (1/2)(C_{11} - C_{12})$. Отметим, что соотношения (1) и (2) получены для чисто ковалентных кристаллов IV группы (гомополярная связь). Карбид кремния относится к кристаллам с гетерополярной

связью и, строго говоря, описывается моделью Мартина [6], распространившего модель Китинга на ионноковалентные кристаллы. При этом в теории появляются эффективные заряды ионов и соответствующие кулоновские вклады в упругие постоянные. Кроме того, вместо одной нецентральной константы β появляются две (β_1 и β_2), описывающие реакцию на изменение тетраэдрических углов между |sp³>-орбиталями, центрированными на атомах Si и C. Можно, однако, показать, что ионность связи Si-C мала, что позволяет с хорошей точностью пренебречь кулоновскими вкладами. Действительно, в рамках метода связывающих орбиталей Харрисона [7] ковалентность связи кремнийуглерод $\alpha_c = 0.97$ (см., например, [8]), что соответствует ионности $f_i = 1 - \alpha_c^3 \approx 0.09$ по Филлипсу [9]. Положив далее $\beta = (1/2)(\beta_1 + \beta_2)$, придем к модели Китинга.

Подставляя найденные в [3] значения упругих модулей ($C_{11} = 385$, $C_{12} = 135$, $C_{44} = 257$ GPa) в выражение (2), получим $R \approx 1.35$, что уже вызывает некоторые сомнения в справедливости экспериментальных данных, так как для кристаллов алмаза и кремния соотношение (2) выполняется с точностью до 1% [4]. Сравнение данных работы [3] с приведенными в [5] экспериментальными значениями упругих постоянных C-SiC ($C_{11} = 410.5, C_{12} = 164, C_{44} = 194 \, \text{GPa}$), для которых соотношение (2) выполняется с очень высокой точностью, показывает увеличивающееся расхождение в ряду $C_{11} \rightarrow C_{12} \rightarrow C_{44}$: отношения C_{ii} (из [3])/ C_{ii} (из [5]) равны соответственно 0.94, 0.82 и 1.32. Следует, однако, отметить, что в отличие от С₄₄, значения второго модуля сдвига $C_S = (1/2)(C_{11} - C_{12})$, определяемого только константой β , почти совпадают: $C_S = 125$ [3] и 123 GPa [5]. Неплохо согласуются и объемные модули сжатия $B = (1/3)(C_{11} + 2C_{12})$: B = 218 [3] и 246 GPa [5]. В наших дальнейших расчетах будем исходить из экспериментальных данных [5], что дает $\alpha = 98 \text{ N/m}$ и $\beta = 27 \, \text{N/m}$. В модели Китинга параметр Клейнмана $\xi = (\alpha - \beta)/(\alpha + \beta) \approx 0.57$, что превышает полученное в [5] значение $\xi = 0.41$. Предположим (как это делалось нами при расчете упругих свойств полуметаллов V группы [10]), что под действием давления силовые константы изменяются ($\alpha \rightarrow \tilde{\alpha} = \alpha + ap$, $\beta \rightarrow \beta = \beta + bp$, где aи b — константы размерности длины). Тогда упругие

Рис. 1. Зависимость упругих постоянных кристалла 3*C*-SiC от давления. $I - \tilde{C}_{11}, 2 - \tilde{C}_{12}, 3 - \tilde{C}_{44}, 4 - \tilde{B}, 5 - \tilde{C}_{S}$.

постоянные могут быть представлены в виде

$$\tilde{C}_{11} = C_{11} + \frac{a+5b}{4a_0}p, \quad \tilde{C}_{12} = C_{12} + \frac{a-b}{4a_0}p,$$
$$\tilde{C}_{44} = \frac{\alpha\beta + (\alpha b + a\beta)p + abp^2}{(\alpha + \beta) + (a + b)p}.$$
(3)

Здесь и далее все величины, зависящие от давления, будем помечать тильдой. Для нахождения констант a и b воспользуемся результатами работы [3], где получены следующие значения $d\tilde{C}_{ij}/dp$: $d\tilde{C}_{11}/dp = 3.49$ и $d\tilde{C}_{12}/dp = 4.06.^1$ Отсюда имеем a = 17.08 Å и b = -0.62 Å. Отметим, что константу b мы определяли по значению $d\tilde{C}_S/dp$.

Результаты расчета зависимости C_{ij} от p представлены на рис. 1. Сравнение с соответствующими зависимостями работы [3] показывает, что существенно различаются только кривые $\tilde{C}_{44}(p)$; если в [3] имеет место монотонное, хотя и слабое увеличение модуля сдвига \tilde{C}_{44} с давлением, то в нашем случае $\tilde{C}_{44}(p)$ сначала возрастает от $\tilde{C}_{44}(0) = 194$ GPa до максимального значения 198 GPa при $p_m = 21.5$ GPa, а затем плавно уменьшается до 178 GPa при p = 100 GPa. Значение p_m можно найти из условия $d\tilde{C}_{44}/dp = 0$, которое приводит к уравнению

$$p^{2} + 2\frac{\alpha + \beta}{a + b}p + \frac{a\beta^{2} + b\alpha^{2}}{ab(a + b)} = 0.$$

$$\tag{4}$$

2. 3*C*-SiC: зависимость скорости звука от давления. Для расчета скорости звука $v_i(\mathbf{q}) = \sqrt{C_i(\mathbf{q})/\rho}$ необ-

ходимо вычислить соответствующие комбинации \tilde{C}_{ij} ,

определяющие $C_i(\mathbf{q})$. Они имеют следующий вид (см., например, [3]):

$$C_{[111]}([111]) = \frac{1}{3}(C_{11} + 2C_{12} + 4C_{44}),$$

$$C_{[110]}([110]) = \frac{1}{2}(C_{11} + 2C_{12} + 2C_{44}),$$

$$C_{[100]}([100]) = C_{11},$$

$$C_{[010]}([100]) = C_{[001]}([100]) = C_{[001]}([110]) = C_{44},$$

$$C_{[1\overline{1}0]}([111]) = C_{[11\overline{2}]}([111]) = \frac{1}{3}(C_{11} - C_{12} + C_{44}),$$

$$C_{[1\overline{1}0]}([110]) = \frac{1}{2}(C_{11} - C_{12}).$$
(5)

Первые три комбинации соответствуют продольным акустическим волнам (LA), последние три — поперечным (TA). Далее необходимо учесть, что плотность кристалла $\tilde{\rho}$ также зависит от давления. Представим $\tilde{\rho}$ в виде

$$\tilde{\rho} = \rho \left[1 + (p/B) + \frac{1}{2} (1 - d\tilde{B}/dp)(p/B)^2 \right], \quad (6)$$

где $\rho = 3.21 \text{ g/cm}^3$ [11]. По данным [3] $d\tilde{B}/dp = 3.87$, что вполне удовлетворительно согласуется с экспериментальным значением 3.57 [12].

Результаты расчета скорости звука представлены на рис. 2. Видно, что скорость распространения продольных мод растет с давлением, тогда как скорость поперечных уменьшается. Здесь единственное качественное отличие наших результатов от полученных в работе [3] связано с зависимостью скорости $v_{[001]}([110]) = v_{[010]}([100]) = v_{[001]}([100])$ от давления: в настоящей работе скорость плавно убывает с ростом p, тогда как в [3] функция

Рис. 2. Зависимость скорости звука в кристалле 3*C*-SiC от давления. $I - v_{LA}([111]), 2 - v_{LA}([110]), 3 - v_{LA}([100]), 4 - v_{TA}([100]) = v_{TA}([110]), 5 - v_{TA}([111]), 6 - v_{TA}([110]).$

¹ К сожалению экспериментальные зависимости упругих постоянных второго порядка от давления для карбида кремния нам неизвестны.

Таблица	1. Значения	$\left(\frac{dv_i(\mathbf{q})}{dp}\right)_{p-1}$	$\rightarrow 0$ (B km/s·	GPa). Стро-
ки 1–3 —	данные насто	ящей работы,	строки 4-6 -	— данные [3]

№ п/п	Акустическая мода	q = [100]	q = [110]	q = [111]
1 2 3 4 5	L T T L	$\begin{array}{r} 0.024 \\ -0.007 \\ -0.007 \\ 0.025 \\ 0.007 \end{array}$	$\begin{array}{r} 0.026 \\ -0.019 \\ -0.009 \\ 0.036 \\ 0.021 \end{array}$	$\begin{array}{r} 0.027 \\ -0.015 \\ -0.015 \\ 0.040 \\ 0.000 \end{array}$
6	T T	0.007	0.007	-0.009 -0.009

Таблица 2. Значения параметров Грюнайзена $\gamma_i(\mathbf{q})$. Строки 1–3 — данные настоящей работы, строки 4–6 — данные [3]

№ п/п	Акустическая мода	q = [100]	q = [110]	q = [111]
1	L	0.52	0.52	0.53
2	Т	-0.22	-0.76	-0.55
3	Т	-0.22	-0.22	-0.55
4	L	0.49	0.63	0.66
5	Т	0.17	-0.74	-0.28
6	Т	0.17	0.17	-0.28

 $v_{\text{TA}}(p)$ имеет максимум при $p \approx 50$ GPa. Значения $(dv_i(\mathbf{q})/dp)_{p\to 0}$ представлены в табл. 1, где также приведены результаты работы [3]. Основное расхождение (противоположные знаки наклонов) имеет место для мод, определяемых модулем сдвига \tilde{C}_{44} (см. четвертую комбинацию в формулах (5)).

Теперь можно вычислить параметры Грюнайзена $\gamma_i(\mathbf{q})$, определяемые соотношением

$$\gamma_i(\mathbf{q}) = \frac{1}{v_i(\mathbf{q})} \frac{dv_i(\mathbf{q})}{dp} B.$$
(7)

Результаты расчета представлены в табл. 2. Вновь основные расхождения имеют место для мод $v_{[001]}([110]) = v_{[010]}([100]) = v_{[001]}([100]).$

3. 2*H*-SiC: зависимость упругих постоянных второго порядка от давления.

В работе [13] Мартин показал, как, зная \tilde{C}_{ij} для структуры сфалерита, определить упругие постоянные второго порядка для вюрцитной структуры. В [14,15] подход Мартина был распространен на политипы с произвольным соотношением сфалеритной и вюрцитной структур. Таким образом, воспользовавшись формулами (1), можно записать выражения для \tilde{C}_{ij} гексагональной структуры карбида кремния 2*H*-SiC, что и было проделано в работе [16]. Подставляя определенные выше значения силовых констант α и β , при p = 0 получим (в GPa): $C_{11} = 476$, $C_{33} = 507$, $C_{44} = 142$, $C_{12} = 147$, $C_{13} = 116$, $C_{66} = (1/2)(C_{11} - C_{12}) = 164.5$. Отметим, что найденные здесь значения упругих постоянных превышают полученные нами ранее в модели Китинга–Харрисона [17] и лучше согласуются с экспериментальными данными [11] (в GPa): $C_{11} = 500$, $C_{33} = 564$, $C_{44} = 168$, $C_{12} = 92$, $C_{66} = 204$ (данные для C_{13} в [11] отсутствуют).

Зависимости C_{ij} от давления представлены на рис. 3, откуда следует, что упругие модули как функции давления распадаются на три группы, близкие как по величине \tilde{C}_{ij} , так и по $d\tilde{C}_{ij}/dp$: \tilde{C}_{11} и \tilde{C}_{33} , \tilde{C}_{12} и \tilde{C}_{13} , \tilde{C}_{44} и \tilde{C}_{66} . Упругие модули первых двух групп растут с давлением, модули третьей группы убывают. К сожалению, какиелибо экспериментальные данные по упругим модулям 2*H*-SiC нам неизвестны.

Интересно отметить, что при произвольном соотношении вюрцитной и сфалеритной фаз (тригональная система, класс 32 [18]) некоторые комбинации упругих постоянных C_{ij}^* (звездочка относится к тригональной структуре) являются инвариантными [14]

$$C_{11}^{*} + C_{12}^{*} = \frac{2}{3}(C_{11} + 2C_{12} + C_{44}),$$

$$C_{13}^{*} = \frac{1}{3}(C_{11} + 2C_{12} - 2C_{44}),$$

$$C_{33}^{*} = \frac{1}{3}(C_{11} + 2C_{12} + 4C_{44}),$$
(8)

где в правой части выражений стоят упругие постоянные кубического кристалла. Отсюда, в частности, следует, что скорость акустической продольной волны $v_{LA}([111])$, определяемая упругой постоянной C_{33}^* , также инвариантна относительно структуры смешанного вюрцитно-сфалерического кристалла.

Знание зависимости \tilde{C}_{ij} от *p* позволяет определить соответствующие зависимости скорости звука от давления. В работе [3] вычислялась зависимость $v_h(p)$ для поперечной акустической волны, распространяющейся в направлении $(\mathbf{x} + \mathbf{y})/\sqrt{2}$, где **x** совпада-

Рис. 3. Зависимость упругих постоянных кристалла 2*H*-SiC от давления. $1 - \tilde{C}_{11}$, $2 - \tilde{C}_{33}$, $3 - \tilde{C}_{44}$, $4 - \tilde{C}_{12}$, $5 - \tilde{C}_{13}$, $6 - \tilde{C}_{66}$.

Рис. 4. Зависимость скорости звука v_h в кристалле 2*H*-SiC от давления.

ет с направлением гексагональной *с*-оси, а у лежит в базовой плоскости, препендикулярной *с*-оси.² При этом полагали, что $v_h(p) = \sqrt{C_{66}^h/\rho} = \sqrt{\bar{C}_{66}/\rho}$ и $\bar{C}_{66} = (1/6)(C_{11}^c - C_{12}^c + 4C_{44}^c)$, где верхние индексы указывают на гексагональную (*h*) или кубическую (*c*) модификацию. В [13], однако, показано, что $C_{66}^h = \bar{C}_{66} - \Delta^2/\bar{C}_{44}$, где $\bar{C}_{44} = (1/3)(C_{11}^c - C_{12}^c + C_{44}^c)$ и $\Delta = (C_{11}^c - C_{12}^c - 2C_{44}^c)/3\sqrt{2}$ (см. поправки в [14,15]). Рассчитанная нами на основании теории [13] зависимость $v_h(p)$ представлена на рис. 4. В отличие от работы [3], где изменение скорости δv_h в интервале давлений от нуля до 100 GPa равно 0.35 km/s, полученное в настоящей работе значение $\delta v_h \approx 1$ km/s.

4. 3C-SiC: упругие постоянные третьего порядка.

Модель силового поля для расчета упругих постоянных третьего порядка \tilde{C}_{ijk} кубических кристаллов также была предложена Китингом [19]. В рамках этой модели имеем

 $C_{111} = \gamma - \delta + 9\varepsilon,$ $C_{112} = \gamma - \delta + \varepsilon,$ $C_{123} = \gamma + 3\delta - 3\varepsilon,$ $C_{144} = \gamma (1 - \xi)^2 + \delta (1 + \xi)^2 + \varepsilon (1 + \xi) (3\xi - 1) + C_{12}\xi^2,$ $C_{166} = \gamma (1 - \xi)^2 - \delta (1 + \xi)^2 + \varepsilon (1 + \xi) (3 - \xi) + C_{12}\xi^2,$ $C_{456} = \gamma (1 - \xi)^3.$ (9)

Здесь γ , δ и ε — ангармонические силовые константы, первая из которых относится к центральному взаимодействию ближайших соседей, а последние две — к нецентральному взаимодействию вторых соседей, ξ — параметр Клейнмана.³ Для нахождения этих констант воспользуемся данными работы [20], где для кубических кристаллов была определена связь упругих постоянных C_{ij} и C_{ijk} с производными $d\tilde{C}_{ij}/dp$

$$\frac{d\tilde{C}_{11}}{dp} = -1 - \frac{C_{11} + C_{111} + 2C_{112}}{3B},$$
$$\frac{d\tilde{C}_{12}}{dp} = 1 - \frac{C_{12} + C_{123} + 2C_{112}}{3B},$$
$$\frac{d\tilde{C}_{14}}{dp} = -1 - \frac{C_{44} + C_{144} + 2C_{166}}{3B}.$$
(10)

Подчеркнем, что эти соотношения справедливы лишь в линейном по давлению приближении. Уравнения (10) позволяют найти константы γ , δ и ε при условии, что нам известны значения $d\tilde{C}_{ij}/dp$. Поскольку величина производной $d\tilde{C}_{44}/dp$ вызывает определенные сомнения, упростим задачу, положив $\varepsilon = -\delta$. Для кремния это равенство выполняется точно [19], однако и для других полупроводниковых кристаллов константы δ и ε являются величинами одного порядка и противоположных знаков (см., например, работы [21,22] и ссылки в них). Кроме того, константа γ приблизительно на порядок больше δ и $|\varepsilon|$, поэтому сделанное нами упрощение не вносит большой ошибки в расчет.

Тогда, исходя из двух первых соотношений (9) и результатов работы [3], получим $\gamma = -862$ GPa и $\delta = 82$ GPa.

Окончательно находим (в GPa): $C_{111} = -1680$, $C_{112} = -1026$, $C_{123} = -371$, $C_{144} = 3$, $C_{166} = -621$, $C_{456} = -69.5$. Хотя экспериментальные значения упругих постоянных третьего порядка карбида кремния нам неизвестны, сопоставление результатов расчета с величинами C_{ijk} для кристаллов Si, Ge, InSb и GaAs [19,21] показывает, что полученные нами значения вполне разумны. Действительно, у всех этих кристаллов только постоянная C_{144} положительна, причем на один-два порядка меньше $|C_{111}|$. Далее, наблюдаются следующие неравенства: $|C_{111}| > |C_{112}| > |C_{166}| > |C_{123}|$, $|C_{456}| > C_{144}$. Те же закономерности получены и нами.

Воспользовавшись последней формулой из (9) и определенными выше значениями ангармонических констант, рассчитаем величину производной $d\tilde{C}_{44}/dp$. Получаем $d\tilde{C}_{44}/dp = -1.08$. Согласно приведенным в разделе 1 расчетным данным, усредненное в интервале давлений от 0 до 100 GPa значение $d\tilde{C}_{44}/dp \approx -0.18$, что совпадает хотя бы по знаку. По данным работы [3] $d\tilde{C}_{44}/dp = 1.58$, что и приводит к ошибочному, на наш взгляд, выводу о немонотонной зависимости скорости распространения $v_{\text{TA}}(p)$ (см. раздел 2).

² Это направление распространения акустической волны интересно прежде всего тем, что соответствующая сдвиговая орторомбическая деформация ведет к переходу вюрцитной структуры в структуру NaCl [3].

³ Здесь, как и в случае упругих постоянных второго порядка, вновь пренебрегаем кулоновскими вкладами и полагаем $\delta = (1/2)(\delta_1 + \delta_2)$ и $\varepsilon = (1/2)(\varepsilon_1 + \varepsilon_2)$, где индексы 1 и 2 относятся к атомам кремния и углерода соответственно.

Рис. 5. Зависимость отношения силовых констант нецентрального и центрального взаимодействия $\tilde{\beta}/\tilde{\alpha}$ от давления.

При определении констант γ и δ по формулам (10) мы использовали значения $d\tilde{C}_{11}/dp$ и $d\tilde{C}_{12}/dp$ из [3]. Однако, представив эти производные соответственно в виде $(a + 3b)/4a_0$ и $(a - b)/4a_0$, мы можем проверить найденные нами выше значения констант a и b. Тогда получаем a = 17.14 Å, b = -0.59 Å, что отлично согласуется с использованными ранее значениями a = 17.08 Å, b = -0.62 Å (см. раздел 1). Столь хорошее соответствие полученных различными способами силовых констант является следствием слабой нелинейности $\tilde{C}_{44}(p)$.

Вычислим теперь интегральный параметр Грюнайзена $\bar{\gamma}$, который определяется следующей формулой [22]:

$$\bar{\gamma} = -\frac{5\alpha - \beta + 4a_0(3\gamma - \delta + \varepsilon)}{6(\alpha + \beta)},\tag{11}$$

вновь положив $\varepsilon = -\delta$. Тогда имеем $\bar{\gamma} = 0.98$, что практически совпадает с параметром Грюнайзена γ_{LA} , рассчитанным в работе [23] для продольных акустических волн.

В заключение отметим, что исследование влияния давления на тетраэдрические кристаллы интересно прежде всего в связи с наличием фазового перехода от структуры сфалерита или вюрцита к структуре каменной соли при высоком давлении (см., например, работы [24-26] и ссылки в них). В рамках модели Китинга-Мартина отношение силовых констант β/α уменьшается с ростом ионности f_i связи, т.е. при переходе от чисто ковалентных полупроводников IV группы к тетраэдрическим соединениям A_1B_7 , лежащим по шкале f_i на границе с кристаллами, обладающими структурой NaCl [5,6,9,21,24]. На рис. 5 представлено отношение $\beta/\tilde{\alpha}$ в зависимости от давления *p*. Из этого рисунка следует, что влияние нецентральных сил по сравнению с силами центральными с давлением уменьшается, что и характерно для ионных кристаллов.

Таким образом, в настоящей работе мы показали, что простая модель Китинга может успешно конкурировать с расчетами из первых принципов и давать при этом более адекватное описание целого ряда упругих характеристик тетраэдрических кристаллов.

Список литературы

- [1] Г. Лейбфрид. Микроскопическая теория механических и тепловых свойств кристаллов. ГИФМЛ, М. (1963).
- [2] Х. Бёттер. Принципы динамической теории решетки. Мир, М. (1986).
- [3] M. Prikhodko, M.S. Miao, W.R.L. Lambrecht. Phys. Rev. B 66, 125 201 (2002).
- [4] P.N. Keating. Phys. Rev. 145, 2, 637 (1966).
- [5] С.П. Никаноров, Б.К. Кардашев. Упругость и дислокационная неупругость кристаллов. Наука, М. (1985).
- [6] R.M. Martin. Phys. Rev. B 1, 11, 4005 (1970).
- [7] У. Харрисон. Электронная структура и свойства твердых тел. Т. 1. Мир, М. (1983).
- [8] С.Ю. Давыдов, С.К. Тихонов. ФТП 32, 9, 1057 (1998).
- [9] J.C. Phillips. Rev. Mod. Phys. 42, 3, 317 (1970).
- [10] В.М. Грабов, С.Ю. Давыдов, Ю.П. Миронов, А.М. Джумиго. ФТТ 27, 7, 2017 (1985).
- [11] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991).
- [12] И.В. Александров, А.Ф. Гончаренко, С.М. Стишов,
 Е.В. Яковенко. Письма в ЖЭТФ 50, 3, 116 (1989).
- [13] R.M. Martin. Phys. Rev. B 6, 12, 4546 (1972).
- [14] А.И. Губанов, С.Ю. Давыдов. ФТТ 17, 5, 1463 (1975).
- [15] С.Ю. Давыдов, С.К. Тихонов. ФТТ 37, 7, 2221 (1995).
- [16] С.Ю. Давыдов, А.В. Соломонов. Письма в ЖЭТФ 25, 15, 23 (1999).
- [17] С.Ю. Давыдов, С.К. Тихонов. ФТП 30, 7, 1300 (1996).
- [18] Дж. Най. Физические свойства кристаллов. Мир, М. (1967).
- [19] P.N. Keating. Phys. Rev. 149, 2, 674 (1966).
- [20] P. Birch. Phys. Rev. 71, 5, 809 (1947).
- [21] С.Ю. Давыдов. Автореф. канд. дис. ФТИ им. А.Ф. Иоффе АН СССР, Л. (1974).
- [22] M.I. Bell. Phys. Stat. Sol. (b) 53, 3, 675 (1972).
- [23] K. Karch, P. Pavone, W. Windl, O. Schutt, D. Strauch. Phys. Rev. B 50, 24, 17054 (1994).
- [24] J.C. Phillips. Bonds and bands in semiconductors. Academic, N.Y. (1960).
- [25] J.A. Majewski, P. Vogl. Phys. Rev. B 35, 18, 9666 (1987).
- [26] A.J. Skinner, J.P. LaFemia. Phys. Rev. B 45, 7, 3557 (1992).