Кинетика межатомных корреляций в сплаве Ni–11.8 at.% Мо

© С.М. Бокоч, Н.П. Кулиш

Киевский национальный университет им. Т. Шевченко, Киев, Украина E-mail: srg@univ.kiev.ua

(Поступила в Редакцию 18 августа 2003 г.)

Исследована кинетика межатомных корреляций в низкоконцентрационных сплавах Ni–Mo (8–18 at.% Mo) на основе данных измерения остаточного электросопротивления при изотермическом и изохронном отжигах, а также с помощью метода диффузного рассеяния рентгеновских лучей. Изучение кинетики атомного упорядочения при низких температурах (~ 373 K) свидетельствует о сосуществовании кластеров различных упорядоченных структур, которые сложным образом трансформируются в зависимости от зафиксированной структуры ближнего порядка в различных температурных областях. Так, в низкоконцентрационных сплавах Ni–Mo наблюдается спинодальное упорядочение структур типа N_2M_2 , N_3M , N_4M .

Как следует из диаграммы состояния, в сплавах Ni-Мо формируется несколько равновесных упорядоченных фаз: β -Ni₄Mo ($D1_a$), γ -Ni₃Mo ($D0_{22}$) и δ -NiMo (P2₁2₁2₁), содержащих 20, 25 и 50 at.% Мо соответственно. Наиболее детально в этой системе изучены процессы упорядочения при стехиометрических и близких к ним составах [1-6]. Особенностью этих сплавов в области концентраций 8-33 at.%, как и ряда других сплавов: Au₄V, Au₄Fe, Au₄Mn, Au₄Cr, является присутствие диффузных максимумов типа $\{1\frac{1}{2}0\}$ в образцах, закаленных из области ГЦК разупорядоченной фазы. Из рис. 1 видно, что положения этих максимумов отличаются от размещения сверхструктурных отражений, соответствующих равновесным фазам с дальним порядком (сверхструктурные максимумы $D0_{22}$ -фазы находятся в полжениях $\frac{1}{5}$ {420} и $\frac{1}{3}$ {420}. В сплавах Ni–Mo процессы упорядочения протекают при зарождении и конкуренции ряда структур с дальним порядком. Все эти сверхструктуры Ni₄Mo $(D1_1)$, Ni₃Mo $(D0_{22})$, Ni₂Mo (Pt_2Mo) , Ni_2Mo_2 ($I4_1/amd$) можно описать с помощью статических концентрационных волн [7], амплитуда которых связана с параметрами дальнего порядка. В атомном представлении указанные структуры характеризуются определенным заполнением атомами Ni и Мо плоскостей семейства {420} (рис. 2).

В зависимости от стехиометрии сплавов переход от закаленного состояния, которому соответствуют диффузные максимумы в положениях типа $\{1\frac{1}{2}0\}$, к состоянию дальнего порядка сопровождается появлением и развитием различных промежуточных структур. Так, для сплава Ni₄Mo, исходя из непрерывного протекания интенсивности от специальных точек $\{1\frac{1}{2}0\}$ к положениям $\frac{1}{5}$ {420}, которое наблюдается при низкотемпературном отжиге, предполагают, что имеет место превращение структуры M₂N₂ в D1_a-структуру. Такое превращение соответствует непрерывному переходу, который на первом этапе может способствовать развитию M2N2-структуры, сопровождающемуся возрастанием интенсивности диффузных максимумов $\{1\frac{1}{2}0\}$, с дальнейшим ее угасанием и генерацией концентрационной волны $\frac{1}{5}$ {420}. Отжиг при температурх, близких к температуре перехода порядок-беспорядок T_C , приводит к фазовому превращению первого рода, при котором наблюдаются зарождение и рост частиц $D1_a$ -структуры, сопровождающиеся появлением сверхструктурных отражений $\frac{1}{5}$ {420}.

Переход от закаленного к равновесному упорядоченному состоянию в сплаве Ni_3Mo является более сложным и обусловлен строением ближнего порядка, с которым связывают появление диффузных максимумов $\{1\frac{1}{2}0\}$. В соответствии с представлениями [8,9] состояние ближнего порядка при закалке образуется как результат зарождения и усиления концентрационных волн, описываемых волновыми векторами **k** в специальных точках высокой симметрии ГЦК структуры $\{1\frac{1}{2}0\}$.

Появление таких волн является следствием нестабильности ГЦК фазы по отношению к таким волнам и имеет место ниже температуры нестабильности T_i . Концентрационные волны $\{1\frac{1}{2}0\}$ соответствуют когерентной структуре Ni₂Mo₂, развитие которой происходит как результат спинодального упорядочения и подчиняется правилам перехода порядок-беспорядок второго рода. Предпочтительная нестабильность ГЦК фазы по отношению к упорядоченной структуре Ni₂Mo₂ по срав-

Рис. 1. Схема размещения узлов, сверхрешеточных отражений и диффузных максимумов в плоскости обратной решетки (001)*. 1 — узлы ГЦК решетки; 2, 3 — узлы $\{1\frac{1}{2}0\}$; 4, 5 — узлы $\frac{1}{5}\{420\}$ $D1_a$; 6, 7 — узлы $\frac{1}{5}\{420\}$ Pt₂Mo.

Рис. 2. Заполнение плоскостей {420}, статические концентрационные волны подъячеечных кластеров для различных сверхструктур, наблюдаемых в сплавах Ni–Mo (проекция [001]).

нению с другими возможными упорядоченными структурами подтверждается расчетами свободной энергии различных структур $F(\eta)$. Она определялась как при подходящем подборе энергий парного взаимодействия для ближайших трех координационных сфер [2], так и при использовании первопринципных концентрационнозависимых значений этих энергий для первых четырех сфер [4]. Кроме термодинамических факторов генерации упорядоченной структуры Ni₂Mo₂ способствует также наибольшее значение скорости усиления свойственной ей концентрационной волны, которая определяется второй производной свободной энергии $F''_{Ni_2Mo_2}$ при параметре дальнего порядка $\eta = 0$, т.е. кривизной зависимости $F(\eta)|_{n=0}$.

Однако, в отличие от сплавов Ni₄Mo, в которых имеет место трансформация лишь одной концентрационной волны типа $\{1\frac{1}{2}0\}$, в сплавах Ni₃Mo наблюдается вторичное упорядочение как следствие нестабильности образовавшейся нестехиометрической частично упорядоченной структуры Ni₂Mo₂ при $T \to 0$ K. При вторичном упорядочении в данной структуре Ni₂Mo₂ в первом случае возможно развитие длинноволновых концентрационных волн с волновым вектором $\mathbf{k}(\langle 000 \rangle)$, что приводит к распаду этой структуры на фазовую смесь, содержащую разупорядоченный твердый раствор и стехиометрическую упорядоченную структуру Ni₂Mo₂. Возможна реализация и другого типа вторичного упорядочения, когда формируется концентрационная волна (100), которая приводит к структуре $D0_{22}$. В третьем случае вторичного упорядочения в нестехиометрической структуре Ni₂Mo₂, генерируемой концентрационной волной $\{1\frac{1}{2}0\}$, появляется такая же волна, но с волновым вектором \mathbf{k}_2 , перпендикулярным первоначальной волне с вектором \mathbf{k}_1 . Взаимодействие данных волн приводит к рождению « N_3M »-структуры. Поэтому если на начальном этапе упорядочение в закаленном образце возникает как результат нестабильности по отношению к структуре Ni₂Mo₂, то с течением времени отжиг при различных температурах приводит к спектру различных структур, появление которых обусловлено вторичным упорядочением [3].

Изложенные представления о начальном этапе превращений от ближнего к равновесному дальнему порядку в сплавах Ni-Mo получены из результатов электронно-микроскопических исследований образцов стехиометрических составов. Такие исследования не позволяют получить количественное описание строения ближнего порядка в генерируемых структурах. Это особенно важно в случае низкоконцентрационных, существенно отдаленных от стехиометрии сплавов. Для них, учитывая спинодальный характер упорядочения отмеченных структур, который должен наблюдаться в широком интервале концентраций, с одной стороны, можно ожидать формирование аналогичных описанным концентрационных волн, а с другой — отсутствие отдельных конкурирующих структур, связанных с равновесными интерметаллическими упорядоченными фазами. Как показывает сравнение процессов упорядочения в сплавах Ni₄Mo и Ni₃Mo на начальном этапе, они заметно отличаются, поэтому нельзя предугадать строение ближнего порядка при концентрациях сплавов ниже области существования упорядоченной фазы Ni₄Mo.

В настоящей работе с целью изучения трансформации строения ближнего порядка в низкоконцентрационных сплавах Ni–Mo были выбраны образцы, содержащие 8, 11.8, 14, 18 at.% Мо. Качественно строение ближнего порядка определялось при исследовании изохронных и изотермических зависимостей остаточного электросопротивления, а его количественные характеристики с использованием метода диффузного рассеяния рентгеновских лучей.

Следует отметить, что при отсутствии структурных изменений в области твердого раствора поведение остаточного электросопротивления очень чувствительно к эволюции строения ближнего порядка [10]. Однако из-за интегрального характера этого эффекта (как и в случае электронно-дифракционных исследований) невозможно получить детальное описание изменений в поведении межатомных корреляций с помощью измерений остаточного электросопротивления. Однозначно описание кинетики ближнего порядка может быть получено только при изучении диффузного рассеяния рентгеновских лучей (или упругого некогерентного рассеяния тепловых нейтронов).

1. Остаточное электросопротивление сплавов Ni–Mo

Приготовление образцов сплавов Ni-Mo для различных методов исследований было различным. Так, для измерений остаточного электросопротивления использовались поликристаллические образцы всех указанных составов. Они выплавлялись в высокочастотной индукционной печи в алундовом тигле в атмосфере очищенного аргона с использованием в качестве шихтовых материалов Ni вакуумного переплава чистотой 99.95% и Мо чистотой 99.99%. Отливки гомогенизировались при температуре 1123 К в течение 75 h. В последующем из отливок были получены прутки, которые вытягивались в проволоку и прокатывались в полоски толщиной около 0.1 mm. Пластическая деформация, которая проводилась при комнатной температуре, при этом составила не менее 1000%. Такое исходное состояние образца соответствует деформированному состоянию. В дальнешем деформированный таким образом образец отжигался при температуре 1273 К в течение 2h в вакууме и медленно (со скоростью 2 K/min) охлаждался до комнатной температуры. Такая обработка позволяет получить иное по сравнению с деформацией исходное состояние ближнего порядка, которое соответствует отожженному состоянию. Для исследований было получено и третье исходное состояние ближнего порядка, закаленное состояние, которому соответствовал отжиг (при 1223 К в течение 1 h в вакууме) деформированного образца с последующей закалкой в растворе 10 wt.% NaOH в воде (при комнатной температуре) в специальной установке.

Все образцы с каждым из указанных исходных состояний подвергались изохронному отжигу. Такой отжиг

Рис. 3. Изохронные зависимости остаточного электросопротивления в сплаве Ni–11.8 at.% Мо для различных исходных состояний: отожженного (1), закаленного (2), деформированного (3).

проводился при температурах с интервалом 30 К в области 323–1073 К. После отжига в течение 10 min при каждой из температур в вакууме образцы были закалены. Измерения остаточного удельного электросопротивления осуществлялись четырехзондовым потенциометрическим методом в жидком азоте. Точность определения относительного остаточного электросопротивления $\Delta \rho / \rho$ составила 0.001%. Кинетика остаточного электросопротивления для отожженных и закаленных образцов исследовалась при изотермическом отжиге. Температура такого отжига составила $T_a = 323$, 373 К.

На рис. 3 приведены изохронные кривые остаточного электросопротивления для указанных трех исходных состояний в сплаве Ni–11.8 at.% Мо. Для других концентраций сохраняются те же особенности поведения остаточного электросопротивления, что свидетельствует об аналогичности процессов упорядочения в исследуемой области составов сплавов Ni–Mo.

Видно, что в исходном состоянии значения остаточного электросопротивления существенно отличаются. В отожженном состоянии остаточное электросопротивление больше, чем при других обработках. Естественно, что дефектная структура во всех исходных состояниях различная, однако наблюдаемые отличия в остаточном электросопротивлении так значительны, что их нельзя объяснить рассеянием электронов на дефектах. Поэтому можно предположить, что причиной таких отличий является различие в строении ближнего порядка твердого раствора, которое имеет место в каждом из исходных состояний. С ростом температуры изохронного отжига, т.е. при фиксировании значений остаточного электросопротивления для состояний, которые появляются в сплавах при различных температурах, поведение электросопротивления до T = 773 К (для сплава Ni–11.8 at.% Мо, рис. 3) зависит от исходного состояния.

Рис. 4. Кинетика остаточного электросопротивления закаленного сплава Ni–11.8 at.% Мо. (Температура закалки $T_q = 1223$ K).

Так, для отожженных образцов (кривая 1) в отличие от закаленных (кривая 2) и деформированных (кривая 3) остаточное электросопротивление при низких температурах уменьшается.

Для деформированного состояния изохронный отжиг сопровождается ростом электросопротивления, в то время как после закалки оно проходит через максимум.

При более высоких температурах изохронного отжига, начиная с температур $T \approx 573-623$ К, электросопротивление для всех исходных состояний возрастает, хотя его величины отличаются. После отжига при температуре $T \approx 773$ К значение остаточного электросопротивления для всех исходных обработок совпадает и наблюдается его резкое падение.

На рис. 4 показана эволюция изменения остаточного электросопротивления, полученная при изотермическом отжиге для закаленного образца. Температура отжига $T_a = 373$ К соответствует первому максимуму изохронной кривой, полученной после закалки образца (кривая 2 на рис. 3). Видно, что вначале наблюдается резкий рост электросопротивления, который в последующем замедляется, стремясь к насыщению.

Поведение изохронных и изотермических кривых остаточного электросопротивления свидетельствует о сложности процессов упорядочения, протекающих при различных температурах и временах отжига в низкоконцентрационных сплавах Ni-Mo.

2. Строение ближнего порядка в сплаве Ni–11.8 at.% Мо и обсуждение результатов

Для исследования строения ближнего порядка методом диффузного рассеяния рентгеновских лучей был выбран монокристалл сплава Ni-11.8 at.% Mo. Монокристалл размером $2.5 \times 6 \times 6$ mm выращен в алундовом тигле с конической затравочной частью в атмосфере аргона. Для исследуемого образца внешняя грань вырезана параллельно плоскости (100). Образец изучался при использовании двух исходных состояний: отожженного и закаленного. Оба исходных состояния были получены аналогично состояниям образцов, которые использовались для измерений остаточного электросопротивления. Для изучения кинетики интенсивности, обусловленной ближним порядком, закаленный образец подвергался изотермическому отжигу при температуре $T_a = 373$ K, который проводился таким же образом, как и при изучении остаточного электросопротивления.

Диффузное рассеяние рентгеновских лучей измерялось при использовании жесткого Мо K_{α} -излучения, что позволяло с помощью выбора режима работы установки выделить из спектра лучей, монохроматизированных одномерно-изогнутым кристаллом LiF, высокие гармоники и флюоресцентную составляющую [11]. Применение жесткого излучения при наклонной геометрии дифрактометрии образцов и использование слабопоглощающего плавленого кварца в качестве эталона для перевода интенсивности в абсолютные электронные единицы требует введения поправок на угловую зависимость поглощения [12]. С учетом этих поправок выражение для перевода интенсивности диффузного рассеяния от образца в электронные единицы $I_{sp}(\theta)$ при использовании значений интенсивности от эталона на угле θ_0 равно

$$I_{sp}(\theta) = I_{st}(\theta_0) \frac{I_{sp}(\theta_0)(n/2\mu L)_{sp}}{I_{st}(\theta_0)(n/2\mu L)_{st}} \\ \times \frac{1 + \gamma' \cos^2 2\theta_M \cos^2 2\theta_0}{1 + \gamma' \cos^2 2\theta_M \cos^2 2\theta}.$$
 (1)

Здесь $I_{st}(\theta_0)$ — экспериментально измеренная интенсивность рассеяния от плавленого кварца, L_{st} и L_{sp} поправки к фактору поглощения μ для эталона и образца соответственно. Степень несовершенства монохроматора учитывает параметр γ' , который для используемого кристалла LiF оказался близким к единице.

Разделение компонент, обусловленных ближним порядком, статическими и динамическими искажениями, которые модулируют диффузное рассеяние в сплавах [13–15], выполнено с использованием метода Коэна–Георгопоулоса [16–18]. Такое разделение основано на различии в симметрии модуляции диффузного фона в обратном пространстве указанными компонентами рассеяния. Двухфононное и многофононное тепловое диффузное рассеяние определялись расчетным путем [11]. Распределение интенсивности диффузного рассеяния рентгеновских лучей изучалось в положениях, эквивалентных точкам $\frac{1}{4}(420)$ (Ni₂Mo₂), $\frac{1}{5}(420)$ (Ni₄Mo), $\frac{1}{3}(420)$ (Ni₂Mo), а также в их окрестностях, охватывающих часть неприводимой зоны Брюллюэна, на плоскости обратного пространства (001)*.

Параметры ближнего порядка Уоррена-Каули α_{lmn} для атомных положений с координатами *lmn* мы рас-

Рис. 5. Распределение интенсивности ближнего порядка $I_{\text{SRO}}(h_1, h_2, h_3)$ в плоскости $(001)^*$ (*a*) и параметры ближнего порядка $\alpha(r)$ (*b*) для отожженного (I) и закаленного (II) состояний сплава Ni–11.8 at.% Мо.

считывали, производя обратное Фурье-преобразование с полученными значениями интенсивности ближнего порядка $I_{\text{SRO}}(h_1, h_2, h_3)$ в данной точке обратного пространства с координатами $h_1h_2h_3$ в соответствии с выражением

$$\alpha_{lmn} = k \sum_{h_1, h_2, h_3=0}^{1} I_{\text{SRO}}(h_2, h_2, h_3) \cos(\pi h_1 I) \\ \times \cos(\pi h_2 m) \cos(\pi h_3 n).$$
(2)

Здесь *k* — нормировочный множитель, зависящий от положения атома.

Изучение строения ближнего порядка сплава Ni-11.8 at.% Мо в исходном отожженном состоянии показывает, что интенсивность $I_{\text{SRO}}(h_1, h_2, h_3)$ В основном сосредоточена в положениях $\{1\frac{1}{2}0\}$ и $\frac{1}{5}\{420\}$ и их окрестностях, в частности, вдоль направления [210]. В точке $\frac{1}{2}$ {420} интенсивность ближнего порядка мала, рис. 5, *a* (I). Параметры ближнего порядка $\alpha(lmn)$ приведены на рис. 5, b (I). Несмотря на ограниченность объема обратного пространства, в котором были отделены интенсивности $I_{\text{SRO}}(h_1, h_2, h_3)$, используемые для расчета $\alpha(lmn)$, эти параметры хорошо согласуются с полученными ранее для этого же исходного состояния при выборе большого числа точек *h*₁*h*₂*h*₃ [19–21].

Сопоставление полученных параметров $\alpha(lmn)$ с параметрами ближнего порядка для структур $D1_a$, $D0_{22}$, N_3M , N_2M_2 свидетельствует в пользу существования в указанном исходном состоянии преимущественно ближнего порядка, который можно отнести к $D1_a$ -типу. Наличие достаточно интенсивных диффузных максимумов в положениях $\{1\frac{1}{2}0\}$ указывает, что строение ближнего порядка сложнее и представляет собой смешанное состояние, включающее также ближний порядок N_2M_2 -типа.

При закалке образца от 1223 К картина распределения диффузного рассеяния, связанного с ближним порядком, резко меняется. Интенсивность $I_{\text{SRO}}(h_1, h_2, h_3)$ в положениях $\{1\frac{1}{2}0\}$ и в окрестных точках увеличивается в несколько раз. Так, для отожженного состояния в этом положении она равняется 31.4, а для закаленного достигает 70.9 el.un./at. Возрастает также интенсивность в точках $\frac{1}{3}$ {420} и их окрестностях, рис. 5, *a* (II). Преимущественное упорядочение по типу N_2M_2 -структуры подтверждается также рассчитанным набором парамет-

Рис. 6. Кинетика интенсивности ближнего порядка I_{SRO} в положениях N_2M_2 (1), N_4M (2), N_2M (3).

ров $\alpha(lmn)$, рис. 5, b (II). Обращает на себя внимание заметное увеличение параметра $\alpha(lmn)$ на шестой координационной сфере, что свойственно структуре N_2M_2 . Однако в этом случае нельзя утверждать об исключительности существования только ближнего порядка N_2M_2 -типа.

Полученное распределение интенсивности ближнего порядка указывает, что в закаленном состоянии строение ближнего порядка соответствует сосуществованию спинодального упорядочивающихся N_2M_2 -, N_2M и N_4M -структур. Если сопоставить полученные результаты спинодального упорядочения со значениями остаточного электросопротивления в отожженном и закаленном исходных состояниях, то очевидно, что преобладание в сплаве ближнего порядка $D1_a$ -типа для отожженных образцов приводит к росту их электросопротивления. Формирование преимущественно ближнего порядка N_2M_2 -типа в закаленном состоянии проявляется в уменьшении электросопротивления.

Изотермический отжиг закаленного образца в течение 4 min при 373 K приводит к резкому падению интенсивности $I_{\text{SRO}}(h_1, h_2, h_3)$ в точке $\{1\frac{1}{2}0\}$, в то время как интенсивности в двух других точках практически сохраняются (рис. 6). С другой стороны, наблюдается рост интенсивности в тяжах, направленных от точки $\{1\frac{1}{2}0\}$ к положениям $\frac{1}{3}\{420\}$ и $\frac{1}{5}\{420\}$. Эти интенсивности, особенно вблизи точки $\frac{1}{3}\{420\}$, даже превышают величину $I_{\text{SRO}}(h_1, h_2, h_3)$ в положениях сверхструктур $D1_a$ и N_2M_2 , рис. 7, a (I).

Рис. 7. Распределение интенсивности ближнего порядка $I_{\text{SRO}}(h_1, h_2, 0)$ в плоскости $(001)^*$ (*a*) и параметры ближнего порядка $\alpha(r)$ (*b*) для изотермически отожженных при $T_a = 373$ К в течение 4 (I) и 6 min (II) закаленных образцов Ni–11.8 at.% Мо.

Таким образом, вместе с разрушением упорядоченной структуры N₂M₂, описываемой единичной концентрационной волной $\{1\frac{1}{2}0\}$, происходят, как отмечалось для начальных стадий упорядочения в сплавах Ni₃Mo [2,3], процессы вторичного упорядочения как результат интерференции взаимно перпендикулярных концентрационных волн $\{1\frac{1}{2}0\}$, т.е. зарождение N₃M-структуры. Несмотря на то что параметры ближнего порядка $\alpha(lmn)$, рис. 7, b (I), продолжают соответствовать N₂M₂-структуре, их поведение отличается от значений $\alpha(lmn)$ для исходного состояния. Следует обратить внимание на малость параметра на четвертой координационной сфере и соотношения параметров на других сферах, которые аналогичны поведению параметров Уоррена-Каули для упорядоченной структуры D022. Естественно ожидать, что разрушение упорядоченной структуры N₂M₂ должно сопровождаться ростом остаточного электросопротивления, что действительно имеет место на данном этапе кинетики упорядочения (рис. 3, 4) закаленного образца.

Дальнейший изотермический отжиг в течение 6 min сопровождается перестройкой упорядочения, что приводит к изменению характера распределения интенсивности $I_{\text{SRO}}(h_1, h_2, h_3)$, рис. 7, *a* (II). Особенностью этого распределения является заметное уменьшение интенсивности в точках $\{1\frac{1}{2}0\}$ и некоторое возрастание в положении $\frac{1}{5}\{420\}$ (рис. 6). Интенсивность в точках $\frac{1}{3}\{420\}$ и $\frac{1}{5}\{420\}$ превышает ее величину в положении $\{1\frac{1}{2}0\}$, хотя их отличие не так заметно, как для исходного закаленного состояния.

Интенсивность тяжей в направлениях от $\{1\frac{1}{2}0\}$ к $\frac{1}{3}\{420\}$ и $\frac{1}{5}\{420\}$ превышает интенсивность в самой точке $\{1\frac{1}{2}0\}$. Самое большое возрастание наблюдается вблизи двух последних положений. Изменение параметров ближнего порядка, рис. 7, *b* (II), указывает на преимущественное формирование N_3M -структуры.

Таким образом, в закаленном образце с течением времени при 373 К за счет вторичного упорядочения происходит формирование структуры N₃M. Она рассматривается как смесь кластеров [2,3], соответствующих N_4M и *N*₂*M*-структурам. Ее генерация сопровождается уменьшением остаточного электросопротивления, что приводит к изменению наклона кинетической кривой (рис. 4). При изохронном отжиге (рис. 3) уменьшение электросопротивления наблюдается в температурных интервалах $\sim 323-573$ К для отожженного и $\sim 373-623$ К для закаленного образцов. Можно предположить, что такое падение остаточного электросопротивления также обусловлено интерференцией концентрационных волн $\{1\frac{1}{2}0\},\$ т.е. зарождением структуры N₃M. Поскольку упорядочение с формированием кластеров Ni₄Mo-структуры приводит к росту электросопротивления, следует допустить, что наблюдаемое из изохронных кривых увеличение значений ho при температурах ~ 573–773 К для отожженных и ~ 623-773 К для закаленных образцов является результатом нестабильности твердого раствора

Рис. 8. Кинетика остаточного электросопротивления при $T_a = 373$ K для изохронно отожженных закаленных образцов при $T_q = 573$ (1) и 673 K (2).

по отношению к концентрационным волнам $\frac{1}{5}$ {420}. При более высоких температурах электросопротивление уменьшается (рис. 3), что указывает на разупорядочение, т. е. формирование обычной ГЦК разупорядоченной структуры, стабильной к генерации различных концентрационных волн.

Подтверждением указанной схемы спинодального упорядочения является поведение изотермического остаточного электросопротивления в случае закалки изохронно отожженных образцов (для обоих исходных состояний) от температур 573 и 673 К. Изотермический отжиг, как и прежде, проводился при температуре $T_a = 373$ К (рис. 8). Видно, что поведение кинетичесих кривых, полученных при указанных температурах закалки, существенно отличается, что свидетельствует о различном строении ближнего порядка при данных температурах.

Действительно, как отмечалось выше, температура изохронного отжига 573 К (кривые 1 и 2 на рис. 3) соответствует существованию N₃M-, а 673 К — N₄Mструктуры. Если в первом случае наблюдается медленный рост электросопротивления (кривая 1 на рис. 8), то во втором (кривая 2 на рис. 8) зависимость $\varphi(t)$ имеет сложный характер. Очевидно, что отжиг образца при температуре $T_a = 373 \, \text{K}$, закаленного от температуры $T_q = 573 \, \text{K}$, приводит к разрушению структуры $N_3 M$ и преимущественно преобладает структура N₂M₂ хотя ее содержание, по-видимому, меньше, чем в исходном закаленном состоянии. При закалке от $T_q = 673 \,\mathrm{K}$ с последующим отжигом при $T_a = 373$ К вначале разрушается ближний порядок со структурой N_4M , что приводит к уменьшению электросопротивления, затем идет разрушение N_3M -структуры, обусловливающее рост $\rho(t)$. Такое разрушение N₃M-структуры можно рассматривать как результат исчезновения при низкой температуре взаимодействия между концентрационными волнами $\{1\frac{1}{2}0\}$, т.е. образования обособленных волн. Зарождение при этом структуры N₂M₂ сопровождается уменьшением остаточного электросопротивления. Количество образовавшейся N_2M_2 -структуры при данной температуре не является оптимальным, поэтому наблюдается ее частичное разрушение, $\rho(t)$ при этом растет. С ростом времени отжига остаточное электросопротивление стремится к равновесному значению, которое, по-видимому, соответствует смешанному состоянию ближнего порядка, основанному на N_2M_2 - и N_3M -структурах.

Таким образом, в низкоконцентрационных сплавах Ni-Mo (8-18 at.%) имеет место спинодальное упорядочение N₂M₂-, N₃M-, N₄M-структур, которое также наблюдается на начальных стадиях упорядочения в закаленных образцах сплавов Ni-Mo стехиометрических составов. В то же время схема процессов упорядочения при этом более проста и исключает зарождение кластеров *N*₂*M*-, *D*0₂₂-структур [2,3]. Изучение кинетики упорядочения при низких температурах указывает на сосуществование кластеров различных структур, которые сложным образом трансформируются в зависимости от фиксируемого в различных температурных областях строения ближнего порядка. Исходя из результатов изучения изохронных и изотермических зависимостей остаточного электросопротивления и распределения диффузного рассеяния рентгеновских лучей в низкоконцентрационных сплавах Ni-Mo, представляется возможным указать интервалы температур существования кластеров различных упорядоченных структур.

Список литературы

- [1] S. Banerjee, K. Urban, M. Wilknes. Acta Metall. **32**, *3*, 299 (1984).
- [2] U.D. Kulkarni, S. Banerjee. Acta Metall. 36, 2, 413 (1988).
- [3] S. Banerjee, U.D. Kulkarni, K. Urban. Acta Metall. 37, 1, 35 (1989).
- [4] A. Arya, S. Banerjee, G.P. Das, I. Dasgupta, T. Saha-Dasgupta, A. Mookerjee. Acta Mater. 49, 3575 (2001).
- [5] S. Hata, S. Matsumura, N. Kuwano, K. Oki. Acta Mater. 46, 3, 881 (1998).
- [6] S. Hata, T. Mitute, N. Kuwano, S. Matsumura, D. Shindo, K. Oki. Mater. Sci. Eng. A 312, 160 (2001).
- [7] A.G. Khachaturyan. Theory of structural Transformations in Solids. John Wiley & Sons, N.Y. (1983). 384 p.
- [8] D. de Fontaine. Acta Metall. 23, 4, 553 (1975).
- [9] D. de Fontaine. Sol. State Phys. 34, 73 (1979).
- [10] P.L. Rossiter, P. Wolls. J. Phys. C: Solid State Phys. 4, 354 (1971).
- [11] Н.П. Кулиш, Н.А. Мельникова, П.В. Петренко, В.Г. Порошин, Н.Л. Зюганов. Изв. вузов. Физика **32**, *2*, 82 (1989).
- [12] В.Г. Порошин, Н.П. Кулиш. Металлофизика и новейшие технологии, **21**, 75 (1999).
- [13] M.A. Krivoglaz. Theory of X-Ray and Thermal Neutron Scattering by Real Crystals. Plenum, N.Y. (1969). 379 p.
- [14] M.A. Krivoglaz. Diffuse Scattering of X-Ray and Neutrons Fluctuations in Solids. Springer, Berlin (1996). 408 p.
- [15] C.J. Sparks, B. Borie. Local atomic arrangements studied by X-ray diffraction/Ed. by J.B. Cohen and J.E. Hilliard. N.Y.-London-Paris (1966). 364 p.

- [16] P. Georgopoulos, J.B. Cohen. J. Phys. (Paris) 38, 12, 7191 (1977).
- [17] P. Georgopoulos, J.B. Cohen. Acta Metall. 29, 1535 (1981).
- [18] J.B. Cohen. Solid State Phys. 39, 131 (1986).
- [19] В.Г. Порошин, Н.П. Кулиш, П.В. Петренко, Н.А. Мельникова, С.П. Репецкий. ФММ 87, 2, 145 (1999).
- [20] В.Г. Порошин, Н.П. Кулиш, П.В. Петренко, Н.А. Мельникова. ФТТ **41**, *12*, 2121 (1999).
- [21] N.P. Kulish, N.A. Melnikova, P.V. Petrenko, V.G. Poroshin. Metal Phys. Adv. Technol. 19, 1147 (2001).