Предпереходное состояние и структурный переход в деформированном кристалле

© Е.Е. Слядников

Институт физики прочности и материаловедения Сибирского отделения Российской академии наук, 634021 Томск, Россия

E-mail: slyadnik@ngs.ru

(Поступила в Редакцию 30 июня 2003 г. В окончательной редакции 26 августа 2003 г.)

В рамках предложенной модели теоретически показано, что структурно-неустойчивый кристалл при деформации можно описывать как квантовую систему псевдоспинов. Эффект квантового поведения атомов решетки становится существенным, когда характерное расстояние между узлами исходной структуры и сопряженными узлами конечной фазы меньше амплитуды нулевых колебаний атома (0.1 Å), а площадь горба, разделяющего левый и правый минимумы двухъямного потенциала, менее $aV_2 = 5 \cdot 10^{-10} \text{ eV} \cdot \text{cm}$.

1. Введение

Классические микроскопические модели кристаллических сред описывают далеко не все явления, происходящие при деформировании твердых тел [1]. К этим явлениям в первую очередь относятся эффекты нелинейной упругости, предпереходные явления, структурные переходы, которые связаны с возбуждением дополнительных степеней свободы атомной решетки при деформации [2]. Поэтому для учета и описания подобных явлений необходимо формулировать новые микроскопические модели кристаллов. В настойщей работе построена микроскопическая модель деформированного кристалла, в которой атомная решетка рассматривается как квантовая система псевдоспинов. В рамках этой модели обосновывается, что одночастичный потенциальный рельеф атома имеет двухъямный характер, а сами атомы решетки деформированного кристалла подчиняются законам квантовой механики. Использование псевдоспинового представления системы оказывается весьма полезным в связи с тем, что при таком описании удается обойти сильный ангармонизм задачи, который всегда возникает в окрестности структурного перехода.

К выбору модельного одночастичного потенциального рельефа атома в виде двухъямного можно прийдти, анализируя результаты расчета коэффициентов разложения потенциала парного межатомного взаимодействия по степеням смещений. Расчеты показывают [3], что при структурных превращениях ангармонические вклады в парный межатомный потенциал резко возрастают и по величине становятся сравнимыми с гармоническими. Это приводит к изменению вида потенциального рельефа. Вместо бесконечно высокого потенциального барьера, наблюдающегося вдали от перехода, в предпереходном состоянии появляется потенциальный барьер конечной величины, который указывает на существование второго минимума на потенциальной кривой межатомного парного взаимодействия [3].

Экспериментальным фактом, подтверждающим правильность выбора двухъямного одночастичного потенциального рельефа атома, является структурный переход в предпереходное состояние в никелиде титана при изменении температуры [4], а также структурный $\gamma \rightarrow \alpha \rightarrow \gamma$ переход в аустенитных сталях, обнаруженный в зоне концентратора напряжений [5]. Еще одним ярким примером систем с двухъямным потенциалом атома является поверхность кристалла. При воздействии на материал внешних полей на его поверхности происходят структурные фазовые превращения. Поскольку поверхность кристалла структурно-неустойчива, в структуре поверхность конфигураций, например ОЦК и ГЦК [6].

Эти особенности в поведении деформированного кристалла позволяют предположить, что одночастичный потенциальный рельеф атома можно выбирать в виде суперпозиции одночастичных потенциальных рельефов исходной и конечной фазы (в виде асимметричного двухъямного потенциала). При внешней силе, равной нулю, более глубокая потенциальная яма соответствует исходной структуре, а мелкая яма — конечной фазе. Состояние атома в глубокой яме будет основным, а состояние атома в мелкой яме — возбужденным (виртуальным), поскольку переход атомов в виртуальное состояние возможен только в результате структурного перехода, т.е. когерентно (совместно). Настоящая работа посвящена нахождению возможной физической причины возникновения когерентности в деформированном кристалле и определению возможного физического механизма возникновения предпереходного состояния в деформированном кристалле, как "суперпозиции нескольких структур с появлением в пространстве междоузлий новых разрешенных состояний" [2].

2. Кристаллический потенциал атома в деформированном кристалле

Для определения понятия потенциального рельефа атомов рассмотрим плотность распределения атомов в кристалле

$$\rho(\mathbf{r},t) = \sum_{i} v_i \delta(\mathbf{r}, -\mathbf{r}_i(t)), \qquad (1)$$

где v_i — объем *i* атома. Энергию атомной системы, которой соответствует плотность распределения атомов

 $\rho(\mathbf{r}, t)$, можно представить в виде функционального ряда

$$E(t) = E_0 + \int V_1(\mathbf{r}, t)\rho(\mathbf{r}, t)d\mathbf{r} + (1/2)$$
$$\times \int V_2(\mathbf{r}, \mathbf{r}')\rho(\mathbf{r}, t)\rho(\mathbf{r}', t)d\mathbf{r}\,d\mathbf{r}' + \dots \quad (2)$$

Здесь V_k — потенциал k-частичного взаимодействия атомов. По определению одночастичный потенциальный рельеф атома в момент времени t имеет вид

$$u(\mathbf{r}, t) = \delta E(t) / \delta \rho(\mathbf{r}, t).$$
(3)

Подставляя в (3) выражение (2), получим

$$u(\mathbf{r},t) = V_1(\mathbf{r},t) + \int V_2(\mathbf{r},\mathbf{r}')\rho(\mathbf{r}',t)d\mathbf{r}' + \dots \qquad (4)$$

Согласно (4) вид рельефа $u(\mathbf{r}, t)$ определяется зависимостью $\rho(\mathbf{r}, t)$, и поэтому решать задачу требуется самосогласованно. Это достигается с помощью методов теории псевдопотенциала [7], функционала электронной плотности [8], машинного моделирования [9].

Имея в виду рассмотрение макроскопических свойств, следует провести процедуру усреднения по времени t, отвечающему микроскопическим флуктуациям в распределении атомов $\rho(\mathbf{r}, t)$. Следуя эргодической гипотезе [10], для проведения такого усреденения вместо одного рельефа $u(\mathbf{r}, t)$ введем ансамбль сглаженных по времени эффективных рельефов $\{U(\mathbf{r})\}$. Тогда по определению средний потенциальный рельеф будет иметь вид функционального интеграла

$$\langle U(\mathbf{r}) \rangle = \int U(\mathbf{r}) P\{U(\mathbf{r})\} D U(\mathbf{r}),$$
 (5)

где $P\{U(\mathbf{r})\}$ — вероятность возникновения конкретного потенциального рельефа $U(\mathbf{r})$ из ансамбля $\{U(\mathbf{r})\}$. Предположим, что в деформированном кристалле происходит структурный переход и наиболее вероятными являются потенциальные рельефы исходной фазы $U_M(\mathbf{r})$ и конечной фазы $U_A(\mathbf{r})$. Для простоты выберем вероятность $P\{U(\mathbf{r})\}$ в окрестности структурного перехода в виде суммы δ -функций

$$P\{U(\mathbf{r})\} = (1/2)\delta[U(\mathbf{r}) - U_A(\mathbf{r})] + (1/2)\delta[U(\mathbf{r}) - U_M(\mathbf{r})].$$
(6)

Тогда подставляя (6) в (5), получим

$$\langle U(\mathbf{r}) \rangle = (1/2)U_A(\mathbf{r}) + (1/2)U_M(\mathbf{r}).$$
 (7)

Поскольку средний одночастичный потенциальный рельеф является периодической функцией координат, достаточно рассмотреть его в одной элементарной ячейке с центром в начале координат. Потенциальные ямы узла исходной структуры и узла конечной фазы в элементарной ячейке находятся на расстоянии $a \approx 10^{-9}$ cm [5].

В случае когда ширина локальной ямы исходной структуры $U_M(\mathbf{r} - \mathbf{a}/2)$ с центром в точке $\mathbf{r} = -\mathbf{a}/2$ и ширина локальной ямы конечной фазы $U_A = (\mathbf{r} + \mathbf{a}/2)$ с центром в точке $\mathbf{r} = \mathbf{a}/2$ много меньше расстояния между ними, для потенциала $\langle U(\mathbf{r}) \rangle$, в котором находится атом, можно использовать следующее представление:

$$\langle U(\mathbf{r}) \rangle = -V[\delta(\mathbf{r} + \mathbf{a}/2) + \delta(\mathbf{r} - \mathbf{a}/2)].$$
 (8)

Из (8) следует, что одночастичный потенциальный рельеф атома в деформированном кристалле имеет двухъямный характер.

3. Атом в двухъямном асимметричном потенциале

Рассмотрим кристалл, в котором происходит структурный переход исходная фаза-конечная фаза, стимулированный внешним воздействием (изменением температуры, внешней силой). Пусть внешнее воздействие равно нулю, т.е. кристалл находится в исходной фазе. Тогда атом решетки будет находиться в асимметричном потенциале, который имеет два различных по глубине локальных минимума. Левая глубокая яма соответствует исходной структуре, а правая мелкая яма — конечной фазе. Будем считать, что минимумы исходной и конечной структур лежат на оси x, которая совпадает с кристаллографической осью кристалла, вдоль которой идет структурный переход. Тогда для потенциала $U_a(x)$, в котором находится атом, можно использовать следующее представление:

$$U_a(x) = -V_1 b\delta(x + a/2) - V_2 b\delta(x - a/2).$$
(9)

Здесь $\delta(x)$ — дельта-функция Дирака, a — расстояние между левым и правым минимумом потенциала, V_1 и V_2 — глубина левой и правой ямы соответственно, b — ширина левой и правой локальной ямы. Мы считаем, что левая локальная яма больше правой ($V_1 > V_2$), а расстояние между локальными ямами значительно больше ширины локальной ямы ($a \gg b$). Удобно разделить асимметричный потенциал $U_a(x)$ на симметричную часть $U_s(x)$ с локальными ямами одинаковой глубины и поправку $\Delta U_a(x)$, связанную с разной глубиной (асимметрией) локальных ям,

$$U_{a}(x) = U_{s}(x) + \Delta U_{a}(x),$$

$$U_{s}(x) = -V_{2}b\delta(x + a/2) - V_{2}b\delta(x - a/2),$$
 (10)

$$\Delta U_a(x) = (V_2 - V_1)b\delta(x + a/2).$$
 (11)

Предполагая асимметричную поправку малой $(V_1 - V_2)/V_1 \ll 1$, сначала исследуем движение атома решетки в симметричном потенциале, а асимметрию потенциала затем учтем по теории возмущений. Известно, что движение атома в потенциальной яме $U_s(x)$ подчиняется уравнению Шредингера [11]

$$[-(\hbar/2m)\partial^2/\partial x^2 + U_s(x)]\Psi(x) = -\varepsilon\Psi(x), \qquad (12)$$

где $\Psi(x)$ — волновая функция атома, $-\varepsilon$ — значение энергии атома ($\varepsilon > 0$). Симметричный потенциал $U_s(x)$

задает два равновесных положения атома, причем при классическом движении атома его основное состояние в каждой локальной яме дважды вырождено, т.е. $\varepsilon_+ = \varepsilon_-$ для четной $\Psi_+(x)$ и нечетной $\Psi_-(x)$ волновой функции. Учет квантового туннелирования атома через потенциальный барьер между левой и правой локальной ямой снимает это вырождение ($\varepsilon_+ > \varepsilon_-$). Чтобы найти собственные энергии $\varepsilon_+, \varepsilon_-$ и собственные функции Ψ_+, Ψ_- из уравнения (12), запишем волновые функции Ψ_+, Ψ_- , например для x < -a/2, в виде

$$\Psi_{\pm} = A_{\pm} \{ \exp[\kappa_{\pm}(x - a/2)] \pm \exp[\kappa_{\pm}(x + a/2)] \},$$

$$K_q = (\hbar^2/m)/(V_2 ba).$$
(13)

Здесь κ_{\pm}^{-1} — характерный радиус локализации четной (+) и нечетной (-) волновой функции, A_{\pm} — нормировочная константа. Волновые функции (13) должны удовлетворять граничным условиям и условиям нормировки, которые позволяют определить величины κ_{\pm} и A_{\pm} .

Решая уравнение Шредингера (12) совместно с (13), получим

$$(\hbar^2/m)\kappa_{\pm} = V_2 b[1 \pm \exp(-\kappa_{\pm}a)],$$

$$(2A_{\pm}^2/\kappa_{\pm})[1 \pm (1 + \kappa_{\pm}a)\exp(-\kappa_{\pm}a)] = 1,$$

$$\varepsilon_{\pm} = (\hbar^2/2m)\kappa_{\pm}.$$
 (14)

Поправку к собственной энергии атома $\hbar\Delta$, связанную с влиянием асимметрии потенциала $\Delta U_a(x)$, вычислим в первом порядке теории возмущений по волновым функциям четного и нечетного состояний (13)

$$\hbar\Delta = \langle \Psi_{-} | \Delta U_{a} | \Psi_{+} \rangle = (V_{2} - V_{1}) b A_{+} A_{-} [1 + \exp(-\kappa_{+}a) - \exp(-\kappa_{-}a) - \exp(-\kappa_{+}a - \kappa_{-}a)].$$
(15)

В пределе "слабого" туннелирования $\kappa_{\pm}a \gg 1$ из выражений (14)-(15) следует, что расщепление энергий четного и нечетного состояний $\hbar\omega = \varepsilon_+ - \varepsilon_$ стремится к нулю, туннельный эффект практически отсутствует. Проведем оценку величин (14)-(15)для типичного переходного металла. Для значений $V_2 = 4 \text{ eV}, \ b = 10^{-10} \text{ cm}, \ a = 10^{-8} \text{ cm}, \ m = 10^{-22} \text{ g},$ $V_1 - V_2 = 10^{-4} \text{ eV}$ получим $K_q^{-1} = 6.4 \cdot 10^2, \ \kappa_+ \cong \kappa_- =$ $= 6.4 \cdot 10^{10} \text{ cm}^{-1}, \ \hbar\omega \to 0, \ \hbar\Delta = 1.6 \cdot (V_2 - V_1) =$ $= -1.6 \cdot 10^{-4} \text{ eV}$. Это означает, что на расстоянии $a = 10^{-8} \text{ cm}$ площадь горба, разделяющего левый и правый минимумы двухъямного потенциала, равна $V_2a = 4 \cdot 10^{-8} \text{ eV} \cdot \text{ cm}$ и квантовое туннелирование атома практически отсутствует, а асимметрия потенциала велика.

В пределе "среднего" туннелирования $\kappa_{\pm}a \approx 1$ из выражений (14)–(15) следует, что расщепление энергий $\hbar\omega$ отлично от нуля, но туннельный эффект невелик. Проводя оценку величин (14)–(15) для значений $V_2 = 4 \cdot 10^{-1}$ eV, $b = 10^{-10}$ cm, $a = 10^{-9}$ cm, $m = 10^{-22}$ g, $V_1 - V_2 = 10^{-4}$ eV, получим $K_q^{-1} = 6.4$, $\kappa_{+} = 6.40 \cdot 10^{9} \,\mathrm{cm^{-1}}, \quad \kappa_{-} = 6.41 \cdot 10^{9} \,\mathrm{cm^{-1}}, \quad \hbar\omega =$ = $8.8 \cdot 10^{-4} \,\mathrm{eV}, \quad \hbar\Delta = 0.16 \cdot (V_2 - V_1) = -1.6 \cdot 10^{-5} \,\mathrm{eV}.$ Это означает, что на расстоянии $a = 10^{-9} \,\mathrm{cm}$ площадь горба равна $V_2 a = 4 \cdot 10^{-10} \,\mathrm{eV} \cdot \mathrm{cm}$ и квантовое туннелирование атома уже существенно, чтобы учитывать квантовые свойства атомов решетки, а асимметрия потенциала уменьшилась.

В пределе "сильного" туннелирования $\kappa_{\pm}a \ll 1$ из выражений (14)–(15) следует, что расщепление энергий $\hbar\omega$ велико и туннельный эффект велик. Проводя оценку величин (14)–(15) для значений $V_2 = 1.6 \cdot 10^{-1}$ eV, $b = 10^{-10}$ cm, $a = 4 \cdot 10^{-10}$ cm, $m = 10^{-22}$ g, $V_1 - V_2 = 10^{-4}$ eV, получим $K_q^{-1} = 1.03$, $\kappa_+ = 3.6 \cdot 10^9$ cm⁻¹, $\kappa_- = 1.5 \cdot 10^8$ cm⁻¹, $\hbar\omega = 4 \cdot 10^{-2}$ eV, $\hbar\Delta = 0.05 \cdot (V_2 - V_1) = -5 \cdot 10^{-6}$ eV. Это означает, что на расстоянии $a = 4 \cdot 10^{-10}$ cm площадь горба равна $V_2a = 6.4 \cdot 10^{-11}$ eV · cm и квантовое туннелирование атома играет главную роль в его движении, атом существенно делокализован в двхъямном потенциале, а асимметрия потенциала очень мала.

4. Псевдоспиновый формализм и гамильтониан системы псевдоспинов

Из полученных выше оценок видно, что в структурнонеустойчивом кристалле необходимо учитывать квантовое туннелирование атома между сопряженными узлами исходной и конечной фаз. Иными словами, наряду с малыми тепловыми колебаниями атома внутри левой потенциальной ямы в двухъямном потенциале появляются дополнительные квантовые (нулевые) колебания атомов (туннелирование) в определенном направлении и на определенное расстояние — дискретные степени свободы. Следовательно, волновая функция атома должна зависеть как от непрерывной пространственной координаты x, так и от дискретной переменной, указывающей значение проекции псевдоспина на ось z. Для двухуровневой системы волновая функция атома будет иметь вид спинора $\Psi(x, S^z)$, который состоит из четной $\Psi(x, +1/2) = \Psi_+(x)$ и нечетной $\Psi(x, -1/2) = \Psi_-(x)$ функций координат, отвечающих различным значениям *z*-компоненты псевдоспина.

В рамках рассмотренной модели энергия системы псевдоспинов в поле механической силы может быть описана гамильтонианом

$$H = \sum_{l} H_l^1 + \sum_{l} H_l^{\text{int}}.$$
 (16)

В представлении четной и нечетной волновых функций $\Psi_{\pm}(x)$ гамильтониан H^1_l имеет вид

$$H_{l}^{1} = \hbar \omega S_{l}^{z} + \hbar \Delta S_{l}^{x},$$

$$\Delta = -(1/2) \sum_{k} J_{lk} S_{k}^{x} - (1/3) \sum_{k,m} I_{lkm} S_{k}^{x} S_{m}^{x}, \quad (17)$$

где асимметрия двухъямного потенциала связана с двухчастичным и трехчастичным взаимодействием

псевдоспинов между собой, $\hbar J_{lk}(\hbar I_{lkm})$ — константа двухчастичного (трехчастичного) взаимодействия псевдоспинов.

Предполагая, что внешняя механическая сила способствует увеличению квантового туннелирования и уменьшению асимметрии потенциала, гамильтониан взаимодействия псевдоспинов с полем механической силы $\Omega_l(t) = (\Omega_l^a(t), 0, \Omega_l^t(t))$ запишем в виде

$$H_l^{\text{int}} = \hbar \Omega_l^a(t) S_l^x + \hbar \Omega_l^t(t) S_l^z.$$
(18)

Здесь $\Omega_l^t(t) = G^t \mu_l^{yx}$, $\Omega_l^a(t) = G^a \mu_l^{yx} - z$ и *х* компоненты поля механической силы; G^t, G^a — положительные константы; μ_l^{yx} — стимулирующая переход сдвиговая компонента тензора напряжений.

В представлении волновых функций φ_L , φ_R , локализованных в левой и правой ямах потенциала соответственно, гамильтониан системы псевдоспинов в поле механической силы будет иметь вид

$$H = \sum_{l} \hbar \omega S_{l}^{x} - (1/2) \sum_{l,k} \hbar J_{lk} S_{l}^{z} S_{k}^{z}$$
$$- (1/3) \sum_{l,k,m} \hbar I_{lkm} S_{l}^{z} S_{k}^{z} S_{m}^{z} + \sum_{l} \left(\hbar \Omega_{l}^{a}(t) S_{l}^{z} + \hbar \Omega_{l}^{t}(t) S_{l}^{x} \right).$$
(19)

В приближении молекулярного поля [11] гамильтониан системы псевдоспинов (19) заменяется эффективным

$$H^{M} = -\sum_{i} \mathbf{h}_{i} \mathbf{S}_{i} = \sum_{i} [\partial \langle H \rangle / \partial \langle \mathbf{S}_{i} \rangle] \mathbf{S}_{i}, \qquad (20)$$

$$h_{i} = \left(-\hbar\omega_{0} - \hbar\Omega_{t}, 0, -\hbar\Omega_{a}\right)$$
$$+ \sum_{j} \hbar J_{ij} \langle S_{j}^{z} \rangle + \sum_{j,m} \hbar I_{ijm} \langle S_{j}^{z} \rangle \langle S_{m}^{z} \rangle \left(S_{m}^{z} \rangle \right).$$
(21)

Теперь среднее значение псевдопотенциала в *i*-й элементарной ячейке определяется как

$$\langle \mathbf{S}_i \rangle = \operatorname{Sp} \left[\mathbf{S}_i \exp(-\beta H_i^M) \right] / \operatorname{Sp} \left[\exp(-\beta H_i^M) \right]$$

= $\partial (\ln Z_i) / \partial (\beta \mathbf{h}_i) = (1/2) (\mathbf{h}_i / h_i) \operatorname{th} (\beta h_i / 2), \quad (22)$

$$h_{i} = |\mathbf{h}_{i}| = \left[(\hbar\omega_{0} + \hbar\Omega_{t})^{2} + \left(-\hbar\Omega_{a} + \sum_{j} \hbar J_{ij} \langle S_{j}^{z} \rangle \right. \right. \\ \left. + \sum_{j,m} \hbar I_{ijm} \langle S_{j}^{z} \rangle \langle S_{m}^{z} \rangle \right]^{1/2}.$$
(23)

5. Стационарные состояния системы псевдоспинов

Пусть внешняя механическая сила отсутствует: $\Omega_t = \Omega_a = 0$. Будем считать, что структурный переход исходная фаза-конечная фаза, связанный с "продольным" взаимодействием псевдоспинов вдоль оси *z*, описываетеся параметром порядка $S^z = \langle S_i^z \rangle$. Тогда можно разложить уравнение самосогласования (22) по степеням параметра порядка S^z в окрестности температуры структурного перехода T_{MA}

$$\alpha S^{z} + \delta (S^{z})^{2} + \gamma (S^{z})^{3} = 0, \qquad (24)$$

$$\alpha = \hbar J_0 [1 - (J_0/2\omega_0) \operatorname{th} (\beta \hbar \omega_0/2)] = \alpha_0 [T - T_c],$$

$$\delta = \delta_0 |T_{MA} - T|^{1/2} \operatorname{sign} (T_{MA} - T),$$
(25)

$$\begin{split} \gamma &= \hbar J_0 (J_0^3 / 4\omega_0^3) [\text{th} \, (\beta \hbar \omega_0 / 2) - (\beta \hbar \omega_0 / 2) \text{ch}^{-2} (\beta \hbar \omega_0 / 2)], \\ k_{\text{B}} T_c &= (\hbar \omega_0 / 2) [\text{arcth} \, (2\omega_0 / J_0)]^{-1}, \end{split}$$

где
$$J_0 = \sum_i J_{ij}, \quad I_0 = \sum_{i,m} I_{ijm}, \quad \alpha_0 = (\hbar^2 J_0^2 / 4k_B T_c^2) \times$$

 $\times ch^{-2}(\hbar\omega_0/2k_BT_c), \ \delta_0 = 2\hbar I_0 T_{MA}^{-1/2}$. Коэффициенты α, δ могут менять знаки, а коэффициент γ положительный. Соответственно разложение свободной энергии Ландау в окрестности температуры T_{MA} будет иметь вид

$$\Delta F = \alpha (S^z)^2 / 2 + \delta (S^z) / 3 + \gamma (S^z)^4 / 4.$$
 (26)

Решение уравнения самосогласования (24) имеет вид

$$S^{z} = [-\delta \pm \sqrt{\delta^{2} - 4\alpha\gamma}]/2\gamma$$
 при $\delta^{2} \ge |4\alpha\gamma|,$ (27)

$$S^z = 0$$
 при $\delta^2 \le |4\alpha\gamma|$. (28)

Из выражения (27) видно, что существует интервал температур (T^+, T^-) , на котором кристаллическая решетка может находиться в предпереходном состоянии $S^z = 0$. Температура перехода из исходной фазы в предпереходное состояние кристалла равна $T^+ = T_{MA} + 4\alpha_0\gamma [\delta_0^2 - 4\alpha_0\gamma]^{-1}\Delta T$, а температура перехода из предпереходного состояния в конечную фазу T^- равна $T^- = T_{MA} - 4\alpha_0\gamma [\delta_0^2 + 4\alpha_0\gamma]^{-1}\Delta T$, где $\Delta T = T_{MA} - T_c > 0$.

Рассмотрим случай сильного взаимодействия псевдоспинов $\hbar J_0 = 0.4 \,\mathrm{eV}$ и слабого туннелирования $\hbar \omega_0 \approx 0.0001 \,\mathrm{eV}$. Оценив температуру перехода в предпереходное состояние кристалла из условия $\alpha = 0$, получим $k_B T_c \approx 0.1 \,\mathrm{eV}$ и $T_c \approx 1000 \,\mathrm{K}$. Отсюда следует, что выполняется предел $2\omega_0/J_0 \ll 1$, а $T_c \gg T_{MA}$. Уравнение (24) в области $T > T_{MA}$ имеет ненулевое (положительное) термодинамически устойчивое решение, которое соответствует исходной фазе. Ниже температуры T_{MA} уравнение (24) имеет другое ненулевое (отрицательное) термодинамически устойчивое решение. Таким образом, в пределе сильного взаимодействия псевдоспинов и слабого туннелирования переход исходная фазаконечная фаза происходит прямо, минуя предпереходное состояние кристалла.

Теперь рассмотрим случай среднего взаимодействия псевдоспинов $\hbar J_0 = 0.04 \,\mathrm{eV}$ и среднего туннелирования $\hbar \omega_0 \approx 0.001 \,\mathrm{eV}$. Оценив температуру перехода в предпереходное состояние кристалла из условия $\alpha = 0$, получим $k_{\rm B}T_c \approx 0.01 \,\mathrm{eV}$ и $T_c \approx 100 \,\mathrm{K}$. Отсюда следует, что выполняется предел $2\omega_0/J_0 < 1$, а $T_c < T_{MA}$. Выше температуры перехода в области $T \gg T_{MA}$ уравнение (24)

1069

имеет единственное ненулевое (положительное) термодинамически устойчивое решение, которое соответствует структурному состоянию исходной фазы. При приближении температуры к T_{MA} (в области $T \ge T_{MA} > T_c$) существует единственное термодинамически устойчивое решение уравнения (24) $S^z = 0$, которое соответствует предпереходному состоянию кристалла. Ниже температуры T_c в области $T < T_c$ уравнение (24) имеет ненулевое (отрицательное) термодинамически устойчивое решение. Таким образом, в пределе среднего взаимодействия псевдоспинов и среднего туннелирования переход исходная фаза-конечная фаза происходит через предпереходное состояние кристалла.

Рассмотрим случай среднего взаимодействия псевдоспинов $\hbar J_0 = 0.04 \, \text{eV}$ и сильного туннелирования $\hbar\omega_0 \approx 0.04 \,\mathrm{eV}$. Из уравнения самосогласования (24) видно, что структурный переход из предпереходного состояния в исходную (конечную) фазу возможен, если величина поля "поперечного" туннелирования 2 ω_0 меньше, чем величина поля "продольного" взаимодействия псевдоспинов J_0 . Действительно, уравнение (24), линеаризованное для определения температуры T_c , имеет вещественное решение для Тс лишь при условии $2\omega_0/J_0 \le 1$. Поэтому в пределе $2\omega_0/J_0 \ge 1$ решение для Т_с отсутствует. Для такого случая при любых температурах уравнение (24) имеет единственное термодинамически устойчивое решение $S^z = 0$. Следовательно, в пределе среднего взаимодействия псевдоспинов и сильного туннелирования кристалл находится только в предпереходном состоянии.

Пусть к кристаллу приложена механическая сила с отличной от нуля компонентой поля Ω_a , стимулирующей уменьшение асимметрии двухъямного потенциала. Тогда разложение термодинамического потенциала Ландау вблизи точки стрктурного перехода имеет вид [12]

$$\Delta \Phi = \alpha (S^{z})^{2}/2 + \delta (S^{z})^{3}/3 + \gamma (S^{z})^{4}/4 + \hbar \Omega_{a} S^{z} - (1/2)\lambda \Omega_{a}^{2}.$$
(29)

Параметр порядка S^z определяется из условия термодинамического равновесия

$$\partial \Delta \Phi / \partial S^z = \alpha S^z + \delta (S^z)^2 + \gamma (S^z)^3 + \hbar \Omega_a = 0.$$
 (30)

Из (30) видно, что решение $S^{z} = 0$ существует при условии $\hbar\Omega_{a} = 0$. Это условие тривиально выполняется при отсутствии внешней силы $\sigma = 0$, когда поле напряжений в кристалле равно нулю. Другим условием существования решения $S^{z} = 0$ является связь $\hbar\Omega_{a} \approx S^{z}$, когда поведение компоненты поля механической силы Ω_{a} в окрестности критического значения внешней силы $\sigma = \sigma_{c}$ имеет релаксационный характер, вызванный смягчением одной из упругих констант $\lambda = \lambda_{0}(\sigma - \sigma_{c})$. Для последнего случая уравнение термодинамического равновесия (30) необходимо дополнить уравнением равновесия

$$\partial \Delta \Phi / \partial \Omega_a = \hbar S^z - \lambda_0 (\sigma_c - \sigma) \Omega_a = 0.$$
 (31)

Вытекающая их этого уравнения связь компоненты поля механической силы Ω_a с параметром порядка приводит к следующему уравнению самосогласования:

$$\tilde{\alpha}S^{z} + \tilde{\delta}(S^{z})^{2} + \tilde{\gamma}(S^{z})^{3} = 0, \qquad (32)$$

$$\begin{split} \tilde{\alpha} &= \alpha \lambda_0 (\sigma_c - \sigma) \hbar^{-2} + 1, \quad \tilde{\delta} = \delta \lambda_0 (\sigma_c - \sigma) \hbar^{-2}, \\ \tilde{\gamma} &= \gamma \lambda_0 (\sigma_c - \sigma) \hbar^{-2}. \end{split}$$
(33)

Решение уравнения самосогласования (32) имеет вид

$$S^{z} = \left[-\tilde{\delta} \pm \sqrt{\tilde{\delta}^{2} - 4\tilde{lpha}\tilde{\gamma}} \right] / 2\tilde{\gamma}$$
 при $\tilde{\delta}^{2} \ge |4\tilde{lpha}\tilde{\gamma}|,$ (34)

$$S^z = 0$$
 при $\delta^2 \le |4\alpha\gamma|$. (35)

Из выражения (34) видно, что существует интервал внешней силы (σ^-, σ^+), на котором кристаллическая решетка находится в предпереходном состоянии. Значение внешней силы, вызывающее переход из исходной фазы в предпереходное состояние кристалла, равно $\sigma^- = \sigma_c - 4\gamma [\delta^2 \lambda_0]^{-1}$, а значение внешней силы, вызывающее переход из предпереходного состояния в конечную фазу, равно $\sigma^+ = \sigma_c + (4\mu\hbar^6\lambda_0^{-5}\delta^{-2})^{1/5}$. Поскольку в исходной фазе мы выбираем для опредлереленности коэффициент δ отрицательным, при $\sigma < \sigma_c$ параметр порядка $S^z > 0$ и кристалл находится в исходной фазе.

Таким образом, на интервале силы (σ^- , σ^+) термодинамически устойчивым решением уравнения самосогласования (32) является $S^z = 0$, т.е. кристалл находится в предпереходном состоянии.

6. Обсуждение результатов

Предложенная модель позволяет заключить, что деформированный кристалл можно описывать как квантовую систему псевдоспинов. Эффект квантового поведения атомов решетки становится существенным, когда характерное расстояние между узлами исходной структуры и сопряженными узлами конечной фазы меньше амплитуды нулевых колебаний атома (0.1 Å), а площадь горба, разделяющего левый и правый минимумы двухъямного потенциала, менее $aV_2 = 5 \cdot 10^{-10}$ eV · cm.

В окрестности структурного перехода исходная-конечная фаза, стимулированного внешним воздействием (изменением температуры, внешней силой), внешнее воздействие уменьшает площадь горба, разделяющего минимумы двухъямного потенциала атома. Это приводит к возникновению эффекта квантового туннелирования атома и уменьшению асимметрии двухъямного потенциала, что вызывает неустойчивость состояния исходной решетки с асимметричным двхъямным потенциалом относительно возникновения предпереходного состояния решетки с симметричным двхъямным потенциалом. Под предпереходным состоянием кристалла здесь понимается такое конденсированное состояние кристалла, в котором атом решетки вследствие эффекта квантового туннелирования полностью делокализован в симметричном двухъямном потенциале, т.е. когда вероятность обнаружить атом в узле исходной и конечной фазы одинакова.

Таким образом, с одной стороны, структурно-неустойчивый кристалл испытывает переход в предпереходное состояние при изменении температуры в окрестности температуры структурного перехода T_{MA} , а, с другой стороны, деформированный кристалл испытывает переход в предпереходное состояние при изменении внешней силы в окрестности критического значения σ_c .

Допустим, что переход в предпереходное состояние происходит при температуре $T_n \approx 300 \,\mathrm{K}$, и сравним частоту квантового туннелирования атома и частоту теплового перескока атома в двухъямном потенциале. В этом случае средняя тепловая энергия атома равна $k_{\rm B}T_n \approx 0.02 \, {\rm eV}$; следовательно, частота теплового перескока равна $\omega_n = k_{\rm B} T_n / \hbar \approx 10^{13} \, {\rm s}^{-1}$. Для высоты горба двухъямного потенциала $V_2 = k_{\rm B}T_n = 0.02\,{\rm eV}$ и расстояния между узлами исходной и конечной решетки $a = 10^{-9}$ cm частота квантового туннелирования атома равна $\omega_0 \approx 10^{14} \, {
m s}^{-1}$. Следовательно, для структурнонеустойчивого кристалла с температурой перехода, значительно меньшей комнатной, механизм квантового туннелирования атома более существен, чем механизм теплового перескока. Более того, если при комнатной температуре высота горба двухъямного потенциала $V_2 \gg 0.02 \,\mathrm{eV}$, механизм тепловых перескоков также оказывает слабое влияние на переход. Возможность перехода в предпереходное состояние возникает вследствие существенного ослабления трехчастичного взаимодействия атомов, формирующего структуру исходной и конечной фазы, в окрестности температуры перехода исходная фаза-конечная фаза Т_{МА}, после чего вступает в силу двухчастичное вазимодействие атомов, формирующее структуру предпереходного состояния.

Разумно предположить, что эффект квантового туннелирования атомов является физической причиной когерентного поведения кристалла, в котором в ходе нагружения протекают структурные превращения [4,5]. Вызванная квантовым туннелированием существенная делокализация волновой функции атома позволяет рассматривать предпереходное состояние в кристалле как "суперпозицию" исходной и конечной структур [2].

Список литературы

- [1] В.Е. Панин. Физ. мезомеханика 1, 1, 5 (1998).
- [2] В.Е. Егорушкин, Е.В. Савушкин, В.Е. Панин, Ю.А. Хон. Изв. вузов. Физика 1, 9 (1987).
- [3] Э.В. Козлов, Л.Л. Мейснер, А.А. Клопотов, А.С. Тайлашев. Изв. вузов. Физика 5, 118 (1985).
- [4] В.Г. Пушин, В.В. Кондратьев, В.Н. Хачин. Изв. вузов. Физика 5, 5 (1985).
- [5] А.Н. Тюменцев, И.Ю. Литовченко, Ю.П. Пинжин, А.Д. Коротаев, Н.С. Сурикова. ФММ 95, 2, 86 (2003).
- [6] В.Е. Панин. Физ. мезомеханика 2, 6, 5 (1999).

- [7] В. Хейне, М. Коэн, Д. Уэйр. Теория псевдопотенциала. Мир, М. (1973). 557 с.
- [8] E.H. Lieb. Int. J. Quant. Chem. 34, 243 (1983).
- [9] Методы Монте-Карло в статистической физике / Под ред. К. Биндера. Мир, М. (1982). 400 с.
- [10] П. Резибуа, М. Де Ленер. Классическая кинетическая теория жидкостей и газов. Мир, М. (1980). 423 с.
- [11] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Наука, М. (1989). 521 с.
- [12] Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. Ч. 1. Наука, М. (1976). 584 с.