Излучательная электронно-дырочная рекомбинация в кремниевых квантовых точках с участием фононов

© В.А. Беляков, В.А. Бурдов, Д.М. Гапонова*, А.Н. Михайлов, Д.И. Тетельбаум, С.А. Трушин

Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия * Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

E-mail: burdov@phys.unn.ru

Экспериментально и теоретически изучается температурная зависимость спектра фотолюминесценции и рассчитывается время электронно-дырочной излучательной рекомбинации в кремниевых квантовых точках. Обсуждается зависимость времени рекомбинации от размера квантовой точки. Экспериментально показано, что интенсивность фотолюминесценции уменьшается примерно на 60% с ростом температуры от 77 до 293 К. Теоретические расчеты показывают слабую зависимость характерного времени рекомбинации от температуры, поэтому уменьшение интенсивности фотолюминесценции связывается в основном с безызлучательными переходами. Также показано, что излучение с участием фононов идет гораздо более эффективно, чем в их отсутствии. При этом зависимость времени рекомбинации от размера квантовой точки изменяется с R^8 (для бесфононного перехода) на R^3 .

Работа поддержана программой "Университеты России" (грант № УР.01.01.057).

В последнее десятилетие большое внимание уделяется исследованию наноструктур, содержащих кремниевые квантовые точки. Интерес к этим структурам вызван, в частности, способностью кремниевых нанокристаллов интенсивно излучать электромагнитную энергию при комнатной температуре. Экспериментально получаемые спектры фотолюминесценции (ФЛ) демонстрируют наличие максимума интенсивности в области энергий излучаемых фотонов примерно от 1.4 до 1.8 eV в зависимости от размеров квантовых точек. Сама фотолюминесценция связывается при этом либо с прямой электронно-дырочной межзонной рекомбинацией, либо с межзонными переходами, идущими через интерфейсные состояния. Наряду с излучательными переходами имеют место также и безызлучательные (например, Ожепроцессы), в связи с чем интенсивность ФЛ, пропорциональная квантовой эффективности процесса генерации фотона, обычно определяется следующим соотношением (см., например, [1]):

$$I \propto rac{ au_{
m nr}}{ au_{
m nr} + au_{
m r}},$$
 (1)

где $\tau_{\rm r}$ и $r_{\rm nr}$ — характерные времена излучательных и безызлучательных переходов соответственно. Отношение (1) определяет, в частности, температурную зависимость ФЛ, а также зависимость интенсивности от размеров нанокристалла, для чего необходимо знание $\tau_{\rm r}$ и $\tau_{\rm nr}$.

Экспериментальному исследованию температурных зависимостей ФЛ и зависимости ФЛ от размера квантовых точек посвящено большое количество работ (см., например, [1–7]). В большинстве из них сообщалось о незначительном (в 2–3 раза) уменьшении интенсивности излучения с увеличением температуры от $\sim 10\,\mathrm{K}$ до комнатной. Однако имеет место некоторый разброс в экспериментальных данных у разных авторов, что

связано, по-видимому, с различными условиями формирования нанокристаллов и проведения эксперимента.

В настоящей работе представлены результаты исследования спектра ФЛ и времени излучательной электронно-дырочной рекомбинации в системе nc-Si:SiO₂, созданной путем имплантации ионов кремния с последующим отжигом. Слои SiO₂, термически выращенные на подложке Si в режиме "сухой-влажныйсухой", были облучены ионами Si⁺ (150 keV, 10^{17} cm⁻²) и подвергнуты отжигу при 1000°C в течение двух часов в потоке осушенного азота. ФЛ возбуждалась аргоновым лазером ($\lambda = 488 \text{ nm}$). Спектры ФЛ были измерены при 293 и 77 К. Как видно из рис. 1, максимум интенсивности $\Phi \Pi$ при $\sim 1.6 \, \mathrm{eV}$ (обычно связываемый с nc-Si) для 77 К примерно в 1.6 раза выше, чем для 293 К.

Рис. 1. Спектр ФЛ слоев SiO₂, облученных ионами Si⁺. Доза облучения 10^{17} cm⁻². Температура отжига 1000° C (2 h).

В соответствии с (1), интенсивность ФЛ не должна зависеть от температуры в случае, если $\tau_r \ll \tau_{nr}$. Полученное различие между интенсивностями для разных температур показывает, что условие $\tau_r \ll \tau_{nr}$ не выполняется в интервале от 77 до 293 К. Следовательно, времена τ_r и τ_{nr} либо одного порядка, либо безызлучательные переходы происходят с гораздо большей вероятностью, чем излучательные.

Выяснению этого вопроса может помочь теоретический анализ. С этой целью был выполнен аналитический расчет вероятности излучательной межзонной рекомбинации в квантовой точке. Как было показано ранее [8,9], вероятность перехода электрона из зоны проводимости в валентную с излучением одного фотона в квантовой точке оказывается хотя и отличной от нуля, но все-таки достаточно малой ($\sim 10^3\,s^{-1}$ для размеров $\sim 4\,nm$) по сравнению с вероятностью безызлучательных переходов. Гораздо большей вероятностью, как будет показано далее, обладают переходы, идущие с участием фононов, т. е. такие, в которых излучение фотона сопровождается излучением или поглощением хотя бы одного фонона.

Рассмотрим нанокристалл кремния (квантовую точку) радиуса *R*, внедренный в аморфный слой SiO₂, и предположим, что его электронная подсистема может взаимодействовать с электромагнитным полем и колебаниями решетки. Полная вероятность электронно-дырочной рекомбинации с участием фононов в единицу времени, равная обратному времени излучательного перехода, определяется во втором порядке теории возмущений следующим выражением:

$$\tau_{cv}^{-1} = \frac{2\pi}{\hbar} \sum_{\mathbf{k},\sigma} \sum_{\mathbf{q},\gamma} \left| \sum_{a} \frac{W_{ia}U_{af} + U_{ia}W_{af}}{\varepsilon_{a} - \varepsilon_{i}} \right|^{2} \\ \times \left[\delta \left(E_{f} + \hbar\omega_{\sigma}(\mathbf{k}) + \hbar\nu_{\gamma}(\mathbf{q}) - E_{e} \right) \right. \\ \left. + \delta \left(E_{f} + \hbar\omega_{\sigma}(\mathbf{k}) - \hbar\nu_{\gamma}(\mathbf{q}) - E_{e} \right) \right].$$
(2)

Матричные элементы операторов электрон-фотонного \hat{W} и электрон-фононного \hat{U} взаимодействия вычислены между начальным i (конечным f) и промежуточным состоянием a; E_h и E_e — энергии верхнего уровня валентной зоны и нижнего уровня зоны проводимости соответственно, которые будут далее определены из решения уравнения Шредингера. Полные энергии промежуточного и начального состояний (ε_a и ε_i) включают в себя не только энергии электронов, но также энергии фотонов и фононов. Частоты фотонов и фононов обозначены как $\omega_{\sigma}(\mathbf{k})$ и $\nu_{\gamma}(\mathbf{q})$. Сами операторы \hat{W} и \hat{U} имеют вид

$$\hat{W} = \sum_{\mathbf{k},\sigma} \sqrt{\frac{2\pi\hbar e^2}{m_0^2 \omega_\sigma(\mathbf{k})V}} (\hat{c}_{\mathbf{k},\sigma} + \hat{c}_{\mathbf{k},\sigma}^+) (\mathbf{e}_{\mathbf{k},\sigma} \hat{\mathbf{p}}), \qquad (3)$$

$$\hat{U} = -\sum_{\mathbf{q}, \gamma} \sum_{n,m} \left(S_{nm}(\mathbf{q}, \gamma) \hat{a}_n^+ \hat{a}_m \hat{b}_{\mathbf{q}, \gamma} + S_{nm}(-\mathbf{q}, \gamma) \hat{a}_n^+ \hat{a}_m \hat{b}_{\mathbf{q}, \gamma}^+ \right).$$
(4)

Здесь $\hat{c}^+_{\mathbf{k},\sigma}, \hat{c}_{\mathbf{k},\sigma}; \hat{a}^+_{\mathbf{k},\sigma}, \hat{a}_{\mathbf{k},\sigma}; \hat{b}^+_{\mathbf{k},\sigma}, \hat{b}_{\mathbf{k},\sigma}$ — операторы рождения и уничтожения фотонов, электронов и фононов

соответственно; -e и m_0 — заряд и масса свободного электрона; \hat{p} — оператор электронного импульса; V объем фотонного резонатора. $S_{nm}(\mathbf{q}, \gamma)$ определяется согласно выражению

$$S_{nm}(\mathbf{q},\gamma) = \mathbf{e}_{\mathbf{q},\gamma} \sqrt{\frac{\hbar}{2MN\nu_{\gamma}(\mathbf{q})}} \int d\mathbf{r} \Psi_{n}^{*} \Psi_{m} \exp(i(\mathbf{qr})) \nabla U_{0},$$
(5)

где M — масса атома кремния, N — число элементарных ячеек в нанокристалле, Ψ_m — электронная волновая функция в состоянии m, U_0 — потенциал решетки. Векторы $\mathbf{e}_{\mathbf{k},\sigma}$ и $\mathbf{e}_{\mathbf{q},\gamma}$ определяют направление колебаний электрического поля и атомов решетки.

Начальное состояние соответствует одной электронно-дырочной паре в ее основном состоянии в совокупности с газом фотонов и фононов, распределение которых по \mathbf{k} , σ и \mathbf{q} , γ подчиняется статистике Бозе–Энштейна. В конечном состоянии валентная зона полностью заполнена, а зона проводимости — свободна. Число фотонов в конечном состоянии всегда увеличивается на единицу, в то время как число фононов может быть как на единицу больше, так и на единицу меньше, чем в начальном состоянии.

Для нахождения электронных волновых функций в приближении огибающей решается уравнение

$$\hat{H}_{ij}F_j(\mathbf{r}) = EF_i(\mathbf{r}),\tag{6}$$

где \hat{H}_{ij} — матричный дифференциальный оператор, $F_j(\mathbf{r})$ — огибающая функция, а E — энергия. Если не учитывать спин-орбитальное взаимодействие (в кремнии оно слабое), оператор \hat{H}_{ij} в валентной зоне имеет размерность 3 × 3 и определяется следующим выражением [10]:

$$\hat{H}_{ij}^{(h)} = \delta_{ij} \left(\hat{H}_{0h} + \frac{\hbar^2}{2m_0} \frac{L - M}{3} (\hat{\mathbf{k}}^2 - 3\hat{k}_j^2) \right) \\ + (\delta_{ij} - 1) \frac{\hbar^2}{2m_0} N\hat{k}_i \hat{k}_j,$$
(7)

где числа L, M, N равны соответственно 6.8, 4.43 и 8.61 [11], а \hat{H}_{0h} — изотропный оператор, полученный усреднением гамильтониана (7) по углам

$$\hat{H}_{0h} = -\frac{\hbar^2}{2m_h}\hat{\mathbf{k}}^2.$$
(8)

Здесь введена изотропная дырочная эффективная масса $m_h = 3m_0/(L+2M)$, численно равная 0.19 m_0 . Значения волнового вектора и энергии отсчитываются от Г-точки.

В зоне проводимости, в соответствии с [12], гамильтониан \hat{H}_{ij} должен быть записан в виде матрицы 2 × 2 в окрестности одной из трех физически неэквивалентных *X*-точек зоны Бриллюэна. Так, для направления [001] его элементы будут иметь вид (здесь уже волновой вектор отсчитывается от Х-точки)

$$\hat{H}_{11}^{(e)} = \hat{H}_{22}^{(e)} = \hat{H}_{0e} + \frac{\hbar^2}{6} \left(\frac{1}{m_l} - \frac{1}{m_l}\right) \hat{k}_x \hat{k}_y + \frac{i\hbar^2 k_0}{m_l} \hat{k}_z,$$
$$\hat{H}_{12}^{(e)} = (\hat{H}_{21}^{(e)})^+ = \hbar^2 \left(\frac{1}{m_l} - \frac{1}{m_0}\right) \hat{k}_x \hat{k}_y + \frac{i\hbar^2 k_0}{m_l} \hat{k}_z, \qquad (9)$$

где m_t и m_l — "поперечная" и "продольная" эффективные массы, $k_0 \approx 0.144 \times 2\pi/a_0$ — расстояние в **k**-пространстве от X-точки до точки ближайшего минимума энергии, a_0 — постоянная решетки. Изотропный усредненный гамильтониан \hat{H}_{0e} есть

$$\hat{H}_{0e} = \Delta_{X\Gamma} + \frac{\hbar^2}{2m_e}\hat{\mathbf{k}}^2.$$
 (10)

Здесь $m_e = 3m_l m_t / (2m_l + m_t)$ — изотропная эффективная масса для электронов, а $\Delta_{X\Gamma} = 1.215 \text{ eV}$ [12] — разность энергий в *X*-точке зоны проводимости и в Γ -точке валентной зоны.

Решение уравнения (6) с использованием операторов (7)–(10) в приближении бесконечно глубокой потенциальной ямы было выполнено в [13], что позволило получить волновые функции и энергии для основных дырочных и электронных состояний (далее они приведены без вывода). В валентной зоне энергия основного состояния есть

$$E_h = -\frac{\hbar^2 \pi^2}{2m_h R^2}.$$
 (11)

Этот уровень остается трижды вырожденным (без учета спина), и ему соответствуют волновые функции

$$\Psi_{h1} = v_x(\mathbf{r})|0\rangle, \quad \Psi_{h2} = v_y(\mathbf{r})|0\rangle, \quad \Psi_{h3} = v_z(\mathbf{r})|0\rangle, \quad (12)$$

где $v_x(\mathbf{r})$, $v_y(\mathbf{r})$, $v_z(\mathbf{r})$ — блоховские функции объемного кристалла в Г-точке, а $|0\rangle$ — огибающая функция *s*-типа, одинаковая для всех трех состояний. Она получается в виде решения уравнения Шредингера с изотропным гамильтонианом (8) и отвечает его основному состоянию.

В зоне проводимости нижний уровень является шестикратно вырожденным (без учета спина) и имеет энергию

$$E_e = \Delta_{X\Gamma} + \frac{E_0 + E_1 - Q}{2} - \sqrt{\frac{(E_1 - E_0 - Q)^2}{4} + J^2}, \quad (13)$$

где E_0 и E_1 — соответствуют энергиям *s*- и *p*-состояний изотропного гамильтониана (10) и равны $\hbar^2 \pi^2 / 2m_e R^2$ и $\hbar^2 \mu^2 / 2m_e$, μ — первый корень уравнения $x \cos x = \sin x$, а *J* и *Q* есть

$$J = \frac{\hbar^2 k_0}{\sqrt{3}m_l R} \frac{2\pi\mu}{\mu^2 - \pi^2}, \quad Q = \frac{\hbar^2}{R^2} \frac{2\mu^2}{15} \left(\frac{1}{m_l} - \frac{1}{m_l}\right).$$

Волновые функции могут быть выбраны в виде (приведем только две из шести, соответствующих *X*-точке в направлении [001], остальные четыре строятся аналогично)

$$\Psi_{e1} = \cos(\lambda)u_{1z}(\mathbf{r})|0\rangle + \sin(\lambda)u_{2z}(\mathbf{r})|z\rangle,$$

$$\Psi_{e2} = \cos(\lambda)u_{2z}(\mathbf{r})|0\rangle - \sin(\lambda)u_{1z}(\mathbf{r})|z\rangle, \qquad (14)$$

где $u_{1z}(\mathbf{r})$ и $u_{2z}(\mathbf{r})$ — блоховские функции объемного кристалла в *X*-точке, а параметр λ определяется соотношениями

$$\cos 2\lambda = \frac{E_1 - E_0 - Q}{\sqrt{(E_1 - E_0 - Q)^2 + 4J^2}},$$
$$\sin 2\lambda = \frac{2J}{\sqrt{(E_1 - E_0 - Q)^2 + 4J^2}}.$$

Заметим, что попытка расчета вероятности межзонного перехода с участием фононов предпринималась ранее в [14]. Однако огибающие функции и электронные энергии были там определены неверно, что привело к более чем на порядок завышенным значениям времени рекомбинации по сравнению с найденными нами.

Вычисление обратного времени электронно-дырочной рекомбинации (2) с участием фононов и волновыми функциями (12), (14) дает

$$\pi_{cv}^{-1} = \frac{\Lambda e^2 \varepsilon^{3/2} \hbar k_0^2 \cos^2 \lambda}{24\pi^2 m_l^2 M c^3 (E_e - E_h)} \left(\frac{a_0}{R}\right)^3 \frac{\operatorname{cth}(\hbar \nu/2k_{\rm B}T)}{\nu}, \quad (15)$$

где $a_0 = 0.543$ nm — постоянная решетки кремния, $k_{\rm B}$ — постоянная Больцмана, T — температура, $\varepsilon \approx 12$ — диэлектрическая проницаемость, ν — частота поперечных оптических (TO) фононов на границе зоны Бриллюэна в X-точке (энергия $\hbar \nu \approx 57.5$ meV [15]), а параметр Λ — определяет интенсивность электронфононного взаимодействия и равен

$$\Lambda = \frac{53}{6} \sum_{i=1}^{2} \sum_{j=1}^{3} \sum_{s=x,y} \left| \frac{2\pi}{m_0 a_0} (P_z P_s)_{ij} + \left(\frac{\hbar^2}{2m_0} \left(\frac{2\pi}{a_0} \right)^2 - \Delta_{X\Gamma} \right) \frac{(P_s)_{ij}}{\hbar} \right|.$$
 (16)

Числовой коэффициент 53 получается в результате интегрирования в (2) по волновым векторам фононов, а шестая часть двойной суммы (по *i* и *j*) представляет собой среднее по всем возможным вырожденным начальным и конечным состояниям. Матричные элементы определяются согласно соотношению

$$B_{ij} = \frac{1}{V_0} \int_{V_0} d\mathbf{r} u_i^*(\mathbf{r}) \hat{B} v_j(\mathbf{r}),$$

где интегрирование ведется по объему V_0 элементарной ячейки ($V_0 = a_0^3/4$), функции $v_j(\mathbf{r})$ были введены ранее в (12), а функции $u_i(\mathbf{r})$ отличаются от введенных в (14) функций $u_{iz}(\mathbf{r})$ отсутствием в них экспоненциального множителя, т.е. представляют собой периодическую часть блоховской функции в X-точке. Далее при численных оценках будем полагать, что оба слагаемых под знаком модуля в (16) одинаковы, а $(P_s)_{ij}^2/2m_0 = 4/3 \text{ eV}$ для любых *i* и *j* [14].

Рис. 2. Вероятность электронно-дырочной рекомбинации в зависимости от радиуса квантовой точки. Верхние кривые соответствуют переходу с участием фононов. Нижняя кривая бесфононный переход.

Заметим, что в объемном кремнии наряду с ТО-фононами возбуждаются также продольные оптические (LO) и поперечные акустические (TA) колебания. Однако интенсивность их взаимодействия с электронами по данным, приведенным в [14,15], меньше на один и два порядка соответственно, чем с ТО-фононами. Полагая, что конечность размеров квантовых точек не изменит ситуацию радикально, мы учли в (15) только ТО-фононы.

В случае бесфононной излучательной электроннодырочной рекомбинации для обратного времени рекомбинации можно получить следующее выражение:

$$\tau_0^{-1} = \frac{e^2 \varepsilon^{3/2} P^2 (E_e - E_h)}{12 \pi^4 m_0^2 \hbar^2 c^3} \left(\frac{a_0}{R}\right)^8 \left(\cos^2(\lambda) \cos^2(2\pi R/a) + 3\mu^2/\pi^2 \sin^2(\lambda) \sin^2(2\pi R/a)\right),$$
(17)

где параметр P определяется Фурье-амплитудами блоховских функций и его значение близко к $(P_s)_{ij}$. Сравнение выражений (15) и (17) обнаруживает два важных различия в характере фотонной эмиссии, происходящей с участием и без участия фононов.

Во-первых, зависимость времени рекомбинации от размера квантовой точки для переходов идущих с участием фононов, оказывается гораздо более медленной, чем в случае бесфононных переходов: R^3 вместо R^8 . Как следствие, $\tau_{cv}^{-1} \gg \tau_0^{-1}$, и это неравенство резко усиливается по мере увеличения R, как это видно из рис. 2. Во-вторых, время рекомбинации с участием фононов, хотя и не очень сильно, но все-таки зависит от температуры (рис. 2). При изменении T от 77 до 293 К величина τ_{cv} уменьшается примерно на 20–25%.

Поскольку $\tau_{cv} \ll \tau_0$ в широком диапазоне размеров квантовых точек ($R \ge 1$ nm), очевидно, что ФЛ в них происходит в основном с участием фононов. В связи с этим в выражение (1), определяющее квантовый выход и интенсивность ФЛ, вместо τ_r следует, скорее всего, подставить τ_{cv} , а не τ_0 . При этом, в соответствии с (1), спад интенсивности в 1.6 раза, имеющий место в эксперименте может быть достигнут лишь в том случае, если время безызлучательных переходов τ_{nr} уменьшится еще более существенно. Это означает, что безызлучательные переходы играют, по-видимому, доминирующую роль в процессе электронно-дырочной рекомбинации.

Список литературы

- S. Takeoka, M. Fujii, S. Hayashi. Phys. Rev. B 62, 24, 16820 (2000).
- [2] Y. Kanemitsu, S. Okamoto. Phys. Rev. B 56, 24, 15561 (1997).
- [3] Y. Kanemitsu. Phys. Rev. B 53, 20, 13 515 (1996).
- [4] Y. Kanemitsu, N. Shimizu, T. Komoda et al. Phys. Rev. B 54, 20, 14329 (1996).
- [5] T. Shimizu-Iwayama, S. Nakao, K. Saitoh. Appl. Phys. Lett. 65, 14, 1814 (1994).
- [6] G.A. Kachurin, I.E. Tischenko, K.S. Zhuravlev et al. Nucl. Instr. Meth. B 122, 571 (1997).
- [7] D.I. Tetelbaum, S.A. Trushin, V.A. Burdov et al. Nucl. Instr. Meth. B 174, 123 (2001).
- [8] T. Takagahara, K. Takeda. Phys. Rev. B 46, 23, 15578 (1992).
- [9] D.I. Tetelbaum, V.A. Burdov, S.A. Trushin, A.N. Mikhaylov. Proc. of 10th International Symposium "Nanostructures: Physics and technology". St.Petersburg (2002). P. 206.
- [10] А.И. Ансельм. Введение в теорию полупроводников. Наука, М. (1978).
- [11] M. Voos, Ph. Uzan, C. Delalande et al. Appl. Phys. Lett. 61, 10, 1213 (1992).
- [12] А.А. Копылов. ФТП 16, 12, 2141 (1982).
- [13] В.А. Бурдов. ЖЭТФ 121, 2, 480 (2002).
- [14] M.S. Hybertsen. Phys. Rev. Lett. 72, 10, 1514 (1994).
- [15] O.J. Glembocki, F.H. Pollak. Phys. Rev. B 25, 6, 1193 (1982).