Линейная зависимость фононного теплосопротивления неметаллических кристаллов от изобарной термической деформации

© Ж.Х. Мурлиева, К.К. Казбеков, Д.К. Палчаев, М.М. Маангалов

Дагестанский государственный университет, 367025 Махачкала, Россия

(Поступила в Редакцию 11 февраля 2003 г. В окончательной редакции 23 мая 2003 г.)

Проведены исследования теплосопротивления (W) и коэффициента теплового расширения (β) на одних и тех же монокристаллических образцах Si, SiO₂, Al₂O₃ и NaCl. На основе анализа экспериментальных данных по W и β для веществ с различным типом межатомной связи и критерия возникновения конвекции Ландау показано, что приведенное фононное теплосопротивление равно изобарной термической деформации при любой температуре.

Несмотря на то что квантово-механическая теория ангармонических эффектов в кристаллах основательно разработана [1,2], при ее практических приложениях возникает ряд проблем. В частности, в теории подробно проведена общая классификация элементарных механизмов фонон-фононных взаимодействий [3,4]. Однако конкретные вклады этих механизмов в выражения, описывающие конечную теплопроводность реальных систем, достоверно не установлены. В связи с этим попрежнему актуальны экспериментальные исследования тепловых свойств кристаллов, обусловленных ангармонизмом колебаний атомов. Накопление данных по тепловым свойствам веществ и установление корреляций между этими свойствами позволяют проводить их феноменологическую интерпретацию. Наличие корреляций, как известно [5], приводит к закономерностям, углубляющим представления о природе межчастичных взаимодействий в кристаллах.

Настоящая работа является продолжением исследований, начатых ранее [6,7]. Она посвящена установлению параметров, определяющих величину и температурную зависимость теплосопротивления для неметаллических кристаллов.

1. Теория

Доступным методом расчета кинетических коэффициентов является вариационный метод, основанный на решении кинетического уравнения [3]. Решение линеаризованного кинетического уравнения ищут исходя из феноменологического уравнения переноса. В обычной неравновесной термодинамике плотность теплового потока *q* пропорциональна градиенту температуры

$$q = -\lambda \operatorname{grad} T, \tag{1}$$

где λ — коэффициент теплопроводности. В частности, для кристаллических структур тепловой поток можно рассматривать как тепловую диффузию квазичастиц (фононов). При любой конечной температуре совокупность

является почти идеальным газом возбуждений, в котором взаимодействия, связанные с рассеянием на примесях и процессами переброса, препятствуют их спонтанной конвекции [3,8]. Критерий возникновения конвекции фононов в континуальном пределе для достаточно плотного газа квазичастиц можно определить исходя из соображений, приведенных в работе [9]. Неравномерность распределения частиц у обычного газа в поле тяготения существует без внешнего теплового поля, а у фононного газа она возникает в момент включения внешнего поля из-за рассеяния, чем, собственно, и определяется конечность проводимости. Эти различия не изменяют сути условия конвекции Ландау для вторично-квантованного газа в твердых телах, однако следует раличать ситуации наличия и отсутствия внешнего поля. Следуя теории Ландау, для данной системы необходимо постулировать экстремальность энтропии фононного газа вдоль направления распространения теплового потока. Обоснованием данного постулата в терминах решаемой задачи в [9] могут служить следующие рассужления.

Пусть на элемент фононного газа с центром в точке x приходится удельный объем V(P, S). При его случайном адиабатическом смещении на расстояние ξ вдоль локального теплового поля он станет равным V(P', S), где P' — давление фононного газа в точке $x + \xi$. Для такого смещения он должен был "вытеснить" объем V(P', S'), где S' — равновесная энтропия в точке $x + \xi$. Условие устойчивости системы при отсутствии градиента температуры определяется равенством элементарных объемов фононов

$$V(P', S') = V(P', S).$$
 (2)

При наложении внешнего поля $\Delta T \neq 0$ (в направлении оси *x*) из-за перепада температур на концах образца условие (2) будет нарушаться, что неизбежно приведет к зависимости (увеличению) энтропии системы от величины *x* ($\Delta S/\Delta x > 0$). В свою очередь градиент концентрации фононов порождает конвекционный поток, вызывающий обратную зависимость (уменьшение) энтропии по *x* ($\Delta S/\Delta x < 0$). Таким образом, согласно [9], устойчивое стационарное состояние системы при $\Delta T \neq 0$ выводит

энтропию системы на некоторую экстремальную зависимость, на которой выполняется равенство

$$dS(x)/dx = 0. (3)$$

Энтропия S фононного газа квазичастиц является функцией температуры T и давления P. Тогда условие (3) можно представить как

$$\frac{dS}{dx} = \left(\frac{\partial S}{\partial T}\right)_{P} \frac{dT}{dx} + \left(\frac{\partial S}{\partial P}\right)_{T} \frac{dP}{dx}$$
$$= \frac{C_{P}}{T} \frac{dT}{dx} - \left(\frac{\partial V}{\partial T}\right)_{P} \frac{dP}{dx} = 0.$$
(4)

Здесь $C_P = T(\partial S/\partial T)_P$, V — объем рассматриваемой системы. В линейном приближении градиент давления фононного газа пропорционален градиенту температуры $G = (dT/dx)_{sc}$, возникающему из-за рассеяния фононов, обусловленного ангармонизмом колебаний атомов. В соответствии с уравнением состояния идеального газа имеем

$$\frac{dP}{dx} = -nk_{\rm B}G,\tag{5}$$

где n — равновесная концентрация фононов при температуре T. Тогда для газа фононов с учетом (5) условие (4), согласно [9], можно записать в виде

$$-\frac{dT}{dx} = \frac{k_{\rm B}G}{c_P}\beta T,\tag{6}$$

где c_P — атомная теплоемкость данной системы. Поскольку рассматриваются кристаллы, изменение объема подсистемы может быть связано только с изменением атомного объема системы. Поэтому фигурирующий в (6) параметр $\beta = (1/V)(\partial V/\partial T)_P$ представляет собой коэффициент теплового расширения (КТР) кристалла. Условие наличия конвекции (3) с учетом уравнения переноса (1) позволяет найти феноменологическое выражение для коэффициента λ

$$\lambda^{-1} \equiv W = \left(\frac{k_{\rm B}G}{qc_P}\right)\beta T.$$
(7)

В частности, когда изобарная термическая деформация $\beta T \rightarrow 1$, согласно тому же условию (3), фононное теплосопротивление *W* является характеристическим *W*^{*}

$$W^* = \left(\frac{k_{\rm B}G}{qc_P}\right)^*.\tag{8}$$

Из формул (7) и (8) следует

$$\frac{W}{W^*} = \beta T,\tag{9}$$

т.е. приведенное фононное теплосопротивление в кристаллах является универсальной функцией, непосредственно связанной с изобарной термической деформацией.

2. Эксперимент

Измерения температурных зависимостей общего теплосопротивления и коэффициента теплового расширения в интервале температур от 100 до 500 К проводились на одних и тех же образцах монокристаллов NaCl, Al₂O₃, Si и SiO₂ (для кварца — в направлениях, параллельном и перпендикулярном главной оси). Образцы представляли собой прямоугольные стержни высотой $\sim 3 \cdot 10^{-2}$ m и площадью $\sim 15 \cdot 10^{-6}$ m³. Методика измерений теплосопротивления подробно описана в [6]. КТР образцов определялся методом кварцевого дилатометра с фотоэлектрической регистрацией перемещения (чувствительность $\sim 10^{-2}\,\mu m$). Предельная погрешность оценки КТР не превышала ~ 4% для материалов с КТР порядка $1 \cdot 10^{-6}$ К при длине образца $\sim 3 \cdot 10^{-2}$ m. Собственный ход установки в интервале температур 100-500 К определялся по тепловому расширению меди марки М0 длиной $\sim 3 \cdot 10^{-2} \, {
m m}$, и поправка на КТР ячейки не превышала $\pm 5 \cdot 10^{-7} \, \mathrm{K}^{-1}$.

3. Результаты и их обсуждение

В результате аппроксимации наших экспериментальных данных зависимостями типа $W = f(\beta T)$ получены следующие выражения:

$$\begin{split} W &= 9.46 \cdot 10^{-4} + 4.7\beta T \quad - \quad \text{Al}_2\text{O}_3; \\ W &= 2.27 \cdot 10^{-2} + 3.36\beta T \quad - \quad \text{NaCl}; \\ W &= 5 \cdot 10^{-2} + 11.86\beta T \quad - \quad \text{SiO}_{2\parallel}; \\ W &= 1.8 \cdot 10^{-2} + 10.63\beta T \quad - \quad \text{SiO}_{2\perp}; \\ W &= 1.9 \cdot 10^{-3} + 2.31\beta T \quad - \quad \text{Si} \quad \text{при} \quad T > 120 \text{ K}. \end{split}$$

На рис. 1 приведена зависимость W/W^* от βT в широкой области температур, построенная по нашим данным и справочным данным для веществ с различным типом межатомной связи, подтверждающая утверждение (9). В скобках указаны соответствующие коэффициенты корреляций и интервалы температур, для которых имелись надежные данные по W и β .

Кремний исследовался нами и ранее [6,7] в интервале температур 80–160 К, включающем температуру инверсии знака КТР ($T_i = 121$ К). Было показано [7], что теплосопротивление является линейной функцией βT как при положительном, так и при отрицательном ангармонизме. На рис. 2 приведены результаты корреляционного анализа $W^{\rm ph}/W^*$ и βT для Si и InSb в широкой области температур, включающей T_i . Причем характеристические фононные теплосопротивления выше и ниже T_i для одних и тех же веществ различны, как правило, при отрицательной термической деформации эти значения выше.

Качественное обоснование этому факту можно дать исходя из следующих представлений. В области температуры инверсии знака термической деформации поведение фононной подсистемы кристалла можно описать с

Рис. 1. Корреляция теплосопротивления с изобарной термической деформацией (см. выражение (9)) для: KCl — 0.997, 60–300 K; NaCl — 0.999, 80–400 K; SiO₂ — 0.996, 100–500 K; SiC — 0.998, 200–1200 K; MgO — 0.995, 120–1600 K; BeO — 0.998, 573–1673 K; Si — 0.999, 150–1100 K; алмаз — 0.998, 150–1000 K; Al₂O₃ — 0.998, 110–600.

помощью полуфеноменологического гидродинамического уравнения переноса фононов [10]

$$a\gamma_2 T \cdot \frac{\partial}{\partial t} \nabla T + \gamma_1 \cdot \nabla T = -\nu_u a\gamma_2 T \cdot \nabla T, \qquad (10)$$

где *а* — температуропроводность; v_u — кинематическая вязкость фононного газа; γ_1, γ_2 — соответствующие интегралы столкновения фононов [10]. Совместное решение уравнений (10) и (6), выраженное через усредненную длину свободного пробега фононов ℓ , приводит к формуле

$$\ell = \ell^* \cdot \ln\left(\frac{1}{\beta T}\right),\tag{11}$$

где ℓ^* — характеристическая длина свободного пробега фононов. Если при положительном β данное выражение является чисто вещественной величиной, то при отрицательном β длина пробега ℓ оказывается комплексной величиной

$$\ell_{\mathrm{Re}} = \ell^* \cdot \ln\left(\frac{1}{|\beta|T}\right), \quad \ell_{\mathrm{Im}} = \pi \ell^*.$$
 (12)

Наличие мнимой составляющей в длине свободного пробега связано с ослаблением рассеяния теплового потока фононов ниже температуры инверсии T_i . Величина этого ослабления согласуется со снижением величины фононного теплосопротивления, наблюдаемого на практике. Выразим W^* через характеристические микроскопические параметры вещества при положительной термической деформации. Значение характеристического теплового потока q^* можно оценить исходя из следующих соображений. Максимальное ускорение, приобретаемое атомом от соседнего атома, в среднем определяется как произведение максимальной амплитуды колебаний на квадрат дебаевской частоты $v_D^2(\Delta a)$. Атом с массой M, обладающий таким ускорением, за время $1/v_D$ передаст следующему атому, находящемуся на расстоянии a_0 , энергию, не превышающую

$$Q^* = M\nu_D^3(\Delta a)a_0. \tag{13}$$

Тогда плотность потока этой энергии, очевидно, будет равна

$$q^* = \frac{M \nu_D^3(\Delta a)}{a_0}.$$
 (14)

Предельная амплитуда колебаний атомов, согласно известному критерию Пиктэ, определяется через коэффициент теплового расширения и температуру в точке плавления (Δa)* = $\alpha_m T_m a_0$.

Поскольку разность температур соседних атомов не может превышать температру Дебая, а смещение атома в конденсированной среде приводит к направленному упругому возмущению, предельный градиент температуры можно выразить как

$$G^* = T_D q_D, \tag{15}$$

где $q_D = (6\pi^2 \rho N/\bar{\mu})^{1/3}$ — дебаевский волновой вектор. Здесь ρ и $\bar{\mu}$ — плотность и средняя атомная масса

Рис. 2. Корреляция W с βT (9) для Si и InSb как при положительном (1, 2), так и при отрицательном (3, 4) значении изобарной термической деформации.

Значения	характеристического	фононного	теплосопрот	гивле-
ния, рассч	итанные по эксперимо	ентальным д	анным и по (17)

Вещество	μ̄, kg/kmol	γ, kg/m ³	T_D, \mathbf{K}	$W^*(17)$, m · K/W	$W_{\exp}^*,$ m · K/W			
Ковалентные кристаллы								
Алмаз	12.01	35.15	1860	0.412	0.41 ± 0.07			
SiC	20.04	3210	1310	0.401	0.59 ± 0.10			
B ₄ C	11.04	2520	1500	0.616	0.61 ± 0.08			
BeO	12.50	3010	1280	0.740	0.83 ± 0.10			
MgO	20.15	3580	900	0.900	1.26 ± 0.17			
Ионные кристаллы								
LiF	12.97	2630	700	2.660	2.37 ± 0.13			
NaF	20.98	2804	473	2.828	3.26 ± 0.50			
NaCl	29.23	2161	308	4.017	4.00 ± 0.20			
KCl	37.28	1988	234	4.600	4.3 ± 0.40			
KBr	59.50	2780	166	5.690	5.4 ± 0.70			
Рыхлоупакованные кристаллы								
Si	28.08	2332	674	2.51	2.16 ± 0.20			
Ge	72.61	5323	377	2.80	2.9 ± 0.40			
GaP	50.35	4100	445	2.82	2.8 ± 0.40			
GaSb	90.75	5619	265	6.10	5.8 ± 0.80			
InSb	118.3	5789	203	13.00	14.5 ± 1.50			
InAs	94.85	5672	249	5.94	6.7 ± 1.10			
Ионно-ковалентные кристаллы								
AlN	20.5	3200	1000	3.360	3.53 ± 0.60			
Al_2O_3	20.4	3980	1020	3.62	3.86 ± 0.13			
SiO ₂	20.0	2650	550	10.68	10.00 ± 0.80			
TiO ₂	26.6	4260	712	7.90	8.60 ± 0.50			

вещества. Характеристическая теплоемкость будет равна $c^* = k_{\rm B}$, т.е. теплоемкости, приходящейся на один атом. Тогда выражение (8) для характеристического теплосопротивления через микроскопические параметры представляется как

$$W^* = \frac{h^3 q_D a_0}{k_B^3 T_D^2 \bar{M} (\Delta a)^*}$$
(16)

или в удобном для расчетов виде

$$W^* = K \frac{\rho^{1/3}}{T_D^2 \bar{\mu}^{3/4}}.$$
 (17)

Здесь $K = 6.6 \cdot 10^5 / \alpha_m T_m$. Для термодинамически подобных веществ, к которым относятся почти все кристаллы, кроме рыхлоупакованных, $\alpha_m T_m \approx 0.029$.

Приведенные выше рассуждения подтверждаются экспериментальными данными для чистых неметаллических монокристаллов. Корреляционный анализ наших данных совместно с данными других авторов [11–14] по общему теплосопротивлению и КТР показал, что рассчитанные по (17) и полученные из эксперимента $(W = f(\beta T))$ значения характеристического теплосопротивления согласуются в пределах суммарной погрешности определения W и β . Иллюстрацией этому служит таблица. Для материалов с преимущественно ионным или ковалентным типом связи критерий Пиктэ выполняется, поэтому константа $K_{i,c} = 7.59 \cdot 10^6$. Этот критерий выполняется и для материалов с примерно равными долями ионной и ковалентной связи, но константа оказалась примерно в 5 раз выше — $K_{i-c} = 37.95 \cdot 10^6$, что вызвано рассеянием фононов на колебаниях электронной плотности при переключении типа связи [15]. В случае термодинамически неподобных (рыхлоупакованных) веществ $K_{f-p} = 6.6 \cdot 10^5 / \alpha_m T_m$.

Из результатов проведенных исследований следует:

1) общее теплосопротивление неметаллических кристаллов — линейная функция изобарной термической деформации;

 обобщенная модель конвективного переноса Ландау применима для фононного газа в твердых телах;

 приведенное фононное теплосопротивление неметаллических кристаллов при любой температуре непосредственно равно изобарной термической деформации независимо от структуры и типа химической связи вещества, а также при положительных и отрицательных КТР;

4) скачок характеристического фононного теплосопротивления в точке инверсии знака изобарной термической деформации связан с тем, что при отрицательном КТР длина свободного пробега оказывается комплексной величиной.

Список литературы

- Г. Лейбфрид, В. Людвиг. Теория ангармонических эффектов в кристаллах. ИЛ, М. (1963).
- [2] М.И. Кацнельсон, А.В. Трефилов. Динамика и термодинамика кристаллической решетки. ИздАТ, М. (2002).
- [3] В.М. Могилевский, А.Ф. Чудновский. Теплопроводность полупроводников. Наука, М. (1972).
- [4] Дж. Рейсленд. Физика фононов. Мир, М. (1975).
- [5] В.М. Зверев, В.П. Силин. Письма в ЖЭТФ **64**, *1*, 33 (1996).
- [6] Д.К. Палчаев, Ж.Х. Мурлиева, А.Б. Батдалов, М.Э. Мурадханов, И.А. Магомедов. ФТТ 36, 3, 685 (1996).
- [7] Д.К. Палчаев, А.Б. Батдалов, Ж.Х. Мурлиева, А.К. Омаров, Ф.Д. Палчаев, М.Э. Мурадханов. ФТТ 43, 3, 442 (2001).
- [8] Дж. Займан. Современная квантовая теория. Мир, М. (1971).
- [9] Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика. Гидродинамика. Т. 6. Наука, М. (1986).
- [10] Е.М. Лифшиц, Л.П. Питаевский. Физическая кинетика. Т. 10. Наука, М. (1979).
- [11] И.Г. Кожевников, Л.А. Новицкий. Теплофизические свойства материалов при низких температурах. Машиностроение, М. (1982).
- [12] Акустические кристаллы / Под ред. М.П. Шаскольской. Наука, М. (1982).
- [13] Теплопроводность твердых тел / Под ред. А.С. Охотина. Энергоатомиздат, М. (1984).
- [14] С.И. Новикова. Тепловое расширение твердых тел. Наука, М. (1974).
- [15] Г.Б. Бокий. Кристаллохимия. Наука, М. (1971).