Гигантский пьезоэлектрический эффект в слоистых композитах сегнетоэлектрик–полимер

© Г.С. Радченко, А.В. Турик

Ростовский государственный университет, 344007 Ростов-на-Дону, Россия E-mail: turik@phys.rsu.ru

(Поступила в Редакцию 10 января 2003 г.)

Впервые обнаружены гигантские пьезоэлектрический эффект и пьезоэлектрическая релаксация в структурах, состоящих из последовательно соединенных слоев сегнетоэлектрика и полимера. Одновременно возникают гигантские величины статических диэлектрических проницаемостей. Рассмотрены физические механизмы, ответственные за необычное поведение пьезоэлектрических и диэлектрических констант.

Для ряда технических приложений (актюаторы, сенсоры и т.п.) чрезвычайно важно иметь материалы с возможно большими величинами пьезомодулей (ПМ). В настоящее время наибольшие ПМ $d_{33} \ge 2500 \,\mathrm{pC} \cdot \mathrm{N}^{-1}$ удалось получить в монокристаллах сегнетоэлектрических твердых растворов $Pb(Zn_{1/3}Nb_{2/3})O_3$ -PbTiO₃ (PZN-PT) и Pb(Mg_{1/3}Nb_{2/3})O₃-PbTiO₃ (PMN-PT) [1-3]. В настоящей работе рассматривается новый механизм гигантского увеличения ПМ и гигантской пьезоэлектрической релаксации в композитах из последовательно соединенных слоев компонентов с существенно различающимися диэлектрическими проницаемостями є, ПМ d, упругими податливостями s и проводимостями у. Одновременно достигается гигантское увеличение статической диэлектрической проницаемости. Полученные результаты могут представлять интерес при проектировании и изучении работы пьезоэлектрических устройств для низкочастотных приложений (сенсоры, актюаторы).

1. Модель и основные формулы

В основу рассмотрения положена модель [4], позволившая получить точные решения для ПМ и диэлектрических проницаемостей многослойного (или двухслойного) композита со связностью типа 2-2 [5], состоящего из двух компонентов (n = 1; 2) с объемными концентрациями θ_1 и θ_2 . Предполагается, что слои композита имеют бесконечную протяженность в направлениях OX₁ и OX_2 прямоугольной системы координат ($X_1X_2X_3$), а векторы нормали к поверхности раздела слоев параллельны ОХ₃. Первый (сегнетоэлектрический) компонент (или оба компонента) поляризован вдоль оси ОХ₃, и оба компонента и композит в целом обладают поперечной изотропией (симметрия ∞mm) в плоскости X_1OX_2 , перпендикулярной полярной оси. Заряды на поверхностях раздела слоев, создаваемые остаточной поляризацией сегнетоэлектрика, считаются полностью экранированными [6].

Если внешнее однородное электрическое поле E_3^* с круговой частотой ω (усредненные по слоям композита величины обозначаются символами со звездочками) приложено параллельно полярной оси OX_3 в отсутствие других компонентов внешних электрических полей и механических напряжений σ_j (в частности, $\sigma_3^* = \sigma_3^{(1)} = \sigma_3^{(2)} = 0$), то в обоих слоях индуцируются внутренние электрические поля $E_3^{(n)}$ ($E_3^* = \theta_1 E_3^{(1)} + \theta_2 E_3^{(2)}$) и внутренние механические напряжения $\sigma_1^{(n)} = \sigma_2^{(n)}$ ($\sigma_1^* = \theta_1 \sigma_1^{(1)} + \theta_2 \sigma_1^{(2)} = 0$). Пьезоэлектрические уравнения, связывающие компоненты электрической индукции $D_3^{(n)}$ и механических деформаций $\xi_i^{(n)}(i = 1; 2; 3)$ внутри каждого из слоев с $E_3^{(n)}$

$$D_{3}^{(n)} = 2d_{31}^{(n)}\sigma_{1}^{(n)} + \varepsilon_{33}^{(n)}E_{3}^{(n)},$$

$$\xi_{1}^{(n)} = \xi_{2}^{(n)} = \left(s_{11}^{E(n)} + s_{12}^{E(n)}\right)\sigma_{1}^{(n)} + d_{31}^{(n)}E_{3}^{(n)},$$

$$\xi_{3}^{(n)} = 2s_{13}^{E(n)}\sigma_{1}^{(n)} + d_{33}^{(n)}E_{3}^{(n)}$$
(1)

рассматриваются совместно с граничными условиями

$$D_3^{(1)} = D_3^{(2)}, \quad \xi_1^{(1)} = \xi_1^{(2)}, \quad \xi_2^{(1)} = \xi_2^{(2)}.$$
 (2)

Здесь $s_{ij}^{E(n)}$ — упругие податливости (при E = 0) и $\varepsilon_{33}^n = \varepsilon^{(n)} - i\gamma_n/\omega$ (γ_n — проводимости) — комплексные диэлектрические проницаемости механически свободного ($\sigma = 0$) образца *n*-го компонента композита.

Общие формулы для ПМ d_{31}^* , d_{33}^* и диэлектрической проницаемости ε_{33}^* , получаемые путем усреднения входящих в уравнения (1) компонентов $D^{(n)}$ и $\xi^{(n)}$ по формулам

$$D_{3}^{*} = \theta_{1} D_{3}^{(1)} + \theta_{2} D_{3}^{(2)} = \varepsilon_{33}^{*} E_{3}^{*},$$

$$\xi_{i}^{*} = \theta_{1} \xi_{i}^{(1)} + \theta_{2} \xi_{i}^{(2)} = d_{3}^{*} E_{3}^{*},$$
 (3)

могут быть выражены через диэлектрическую проницаемость композита $\varepsilon_{33d}^* = \varepsilon_{33}^{(1)}\varepsilon_{33}^{(2)}/(\theta_1\varepsilon_{33}^{(2)} + \theta_2\varepsilon_{33}^{(1)})$ в отсутствие поперечного пьезоэлектрического эффекта

$$\theta_{1}\left(s_{11}^{(2)} + s_{12}^{(2)}\right) + \theta_{2}\left(s_{11}^{(1)} + s_{12}^{(1)}\right) \right]$$

$$\varepsilon_{33}^{*} = \varepsilon_{33d}^{*} \left[1 - 2\theta_{1}\theta_{2} \frac{\left(g_{31}^{(2)} - g_{31}^{(1)}\right)\left(d_{13}^{(2)} - d_{13}^{(1)}\right)}{\theta_{1}\left(s_{11}^{(2)} + s_{12}^{(2)}\right) + \theta_{2}\left(s_{11}^{(1)} + s_{12}^{(1)}\right)}\right].$$
(4)

Далее нас будут интересовать главным образом статические (при $\omega \to 0$) значения d_{31}^* , d_{33}^* и ε_{33}^* [4]

$$\begin{split} d_{310}^{*} &= \frac{\theta_{1}\theta_{2} \left(s_{11}^{E(1)} + s_{12}^{E(1)} - s_{11}^{E(2)} - s_{12}^{E(2)}\right) \left(\gamma_{1} d_{31}^{(2)} - \gamma_{2} d_{31}^{(1)}\right)}{\left(\theta_{2} \left(s_{11}^{E(1)} + s_{12}^{E(1)}\right) + \theta_{1} \left(s_{11}^{E(2)} + s_{12}^{E(2)}\right)\right) \left(\theta_{1}\gamma_{2} + \theta_{2}\gamma_{1}\right)} \\ &+ \frac{\theta_{1} d_{31}^{(1)}\gamma_{2} + \theta_{2} d_{31}^{2}\gamma_{1}}{\theta_{1}\gamma_{2} + \theta_{2}\gamma_{1}}, \\ d_{330}^{*} &= \frac{2\theta_{1}\theta_{2} \left(s_{13}^{E(1)} - s_{13}^{E(2)}\right) \left(\gamma_{1} d_{31}^{(2)} - \gamma_{2} d_{31}^{(1)}\right)}{\left(\theta_{2} \left(s_{11}^{E(1)} + s_{12}^{E(1)}\right) + \theta_{1} \left(s_{11}^{E(2)} + s_{12}^{E(2)}\right)\right) \left(\theta_{1}\gamma_{2} + \theta_{2}\gamma_{1}\right)} \\ &+ \frac{\theta_{1} d_{33}^{(1)}\gamma_{2} + \theta_{2} d_{33}^{(2)}\gamma_{1}}{\theta_{1}\gamma_{2} + \theta_{2}\gamma_{1}}, \\ \varepsilon_{330}^{*} &= \frac{2\theta_{1}\theta_{2} \left(d_{31}^{(1)} - d_{31}^{(2)}\right) \left(\gamma_{1} d_{31}^{(2)} - \gamma_{2} d_{31}^{(1)}\right)}{\left(\theta_{2} \left(s_{11}^{E(1)} + s_{12}^{E(1)}\right) + \theta_{1} \left(s_{11}^{E(2)} + s_{12}^{E(2)}\right)\right) \left(\theta_{1}\gamma_{2} + \theta_{2}\gamma_{1}\right)} \\ &+ A, \end{split}$$

где $A = \frac{\theta_1 \varepsilon^{(1)} y_2^2 + \theta_2 \varepsilon^{(2)} y_1^2}{(\theta_1 y_2 + \theta_2 y_1)^2}$ — чисто диэлектрический член, фигурирующий в классической теории максвелл-вагнеровской релаксации для непьезоактивных сред [7].¹

2. Результаты и обсуждение

В качестве примера рассмотрим композит, состоящий из сегнетопьезокерамики ПКР-73 [8] (слой с n = 1) или поляризованного в направлении [001], совпадающем с осью OX_3 нашей системы координат, монокристалла Величины упругих податливостей $s_{ij}^F(10^{-12} \text{ Pa}^{-1})$, пьезомодулей d_{ki} (рС · N⁻¹) и диэлектрических проницаемостей $\varepsilon_{33}^{\sigma}/\varepsilon_0$ сегнетокерамики ПКР-73 [8], монокристалла РММ-РТ [3] и полиэтилена [9] при 25°С

Константы	s_{11}^{E}	s_{12}^{E}	s_{13}^{E}	s ^E ₃₃	d_{31}	<i>d</i> ₃₃	$\varepsilon^{\sigma}_{33}/\varepsilon_0$
ПКР-73 PMN-PT	17.9 69.0	-6.8 -11.1	-9.6 -55.7	23.5 119.6	$-380 \\ -1330$	860 2820	6000 8200
Полиэтилен	1370	-630	-630	1370	0	0	0.5

0.67Рb(Mg_{1/3}Nb_{2/3})O₃-0.33РbTiO₃ (РМN-РТ [3]) и полиэтилена [9] (слой с n = 2), физические константы которых приведены в таблице. Результаты выполненных компьютерных расчетов представлены на рис. 1 и 2. При условии $\gamma_1/\gamma_2 \ll 1, \, \varepsilon^{(1)}/\varepsilon^{(2)} \gg 1$ и $heta_1/ heta_2 o 0$ можно получить гигантское увеличение статической диэлектрической проницаемости $\varepsilon_{330}^* \to \varepsilon^1/\theta_1 \to \infty$ [4] (рис. 1). Одновременно возникает [4,10,11] гигантская диэлектрическая релаксация. Причиной является огромная напряженность электрического поля $E_3^{(1)} \approx E_3^*/\hat{\theta_1} \to \infty$ внутри очень тонкого слоя с большой диэлектрической проницаемостью $\varepsilon^{(1)}$ и малой проводимостью γ_1 . Наибольшее увеличение статической диэлектрической проницаемости достигается при условии $\gamma_1 \rightarrow 0$. При этом диэлектрическая проницаемость изменяется по закону $\varepsilon_{330}^* \cong \operatorname{const}/(\theta_1 - \theta_{1c})$, аналогичному закону Кюри– Вейса, где θ_{1c} — критическая концентрация чисто диэлектрического (n = 1) компонента. При $\gamma_1 \rightarrow 0$ $heta_{1c}
ightarrow 0$, а $arepsilon_{330}^*
ightarrow \infty$ вследствие бесконечного увеличения абсолютных величин комплексных диэлектрических проницаемостей слоев $\varepsilon_{33}^{(n)}$ при $\omega \to 0$. Основной вклад в увеличение диэлектрической проницаемости ε_{330}^* вносит классический диэлектрический член А в выражении (5). Фактически поведение $\varepsilon^*_{330} \to \infty$ точно такое же, как при приближении к порогу перколяции при фазовом переходе диэлектрик-металл [12,13].

Физический механизм возникновения гигантских величин ПМ (рис. 1) отличается от описанного выше и ранее в литературе не рассматривался. Из выражений (4) и (5) видно, что основной вклад в гигантские величины ПМ вносят члены, пропорциональные $\theta_1 \theta_2$, т.е. огромный поперечный пьезоэлектрический отклик. Поэтому в работе [6], основанной на упрощенной модели, в которой не учитывался поперечный пьезоэлектрический отклик, гигантские величины ПМ не обнаружены. Для их получения в качестве компонента с малой у следует использовать сегнетоэлектрик с большими величинами ПМ, а в качестве компонента с бо́льшим значением у полимерный материал с большими упругими податливостями $|s_{ii}^{E}|$. Огромная величина поперечного пьезоэлектрического отклика обусловлена возникновением наряду с $E_3^{(1)}
ightarrow \infty$ больших внутренних механических напряжений $\sigma_1^{(1)} = \sigma_2^{(1)}$ [14]. Последние индуцируются внешним полем Е₃^{*} и особенно велики при большом

¹ Общие формулы очень громоздки, поэтому они приводятся в сокращенном виде: в (4) опущены члены, вносящие очень малый (менее 0.1%) вклад в величины ПМ. Формулы (5) — точные.

различии проводимостей ($\gamma_1/\gamma_2 \ll 1$) компонентов, входящих в состав композита, и малой толщине $\theta_1 \rightarrow 0$ пьезоактивного слоя. Закон Кюри–Вейса для статических ПМ не выполняется, а величины d_{330}^* и $|d_{310}^*|$ при $\gamma_1 = 0$ и $\theta_1 = 0$ достигают очень больших, но не бесконечных значений. Из рис. 1 видно также, что эффективные ПМ рассматриваемых композитов на порядок превосходят наибольшие известные ПМ как сегнетопьезокерамик [8], так и монокристаллов PZN-PT и PMN-PT [1–3].

Гигантская диэлектрическая релаксация на основе максвелл-вагнеровского механизма подробно описана в [4,10,11] и здесь не обсуждается. Гигантская пьезоэлектрическая релаксация иллюстрируется на рис. 2. Пьезоэлектрические спектры d_{33}^* и d_{31}^* имеют дебаевский характер. Огромные величины ($d_{330}^* - d_{33\infty}^*$) и ($d_{310}^* - d_{31\infty}^*$) пьезоэлектрической релаксации характерны для соче-

Рис. 1. Концентрационная зависимость статических пьезомодулей d_{330}^* , d_{310}^* (pC · N⁻¹) и статической диэлектрической проницаемости $\varepsilon_{330}^*/\varepsilon_0$ композита со слоями из пьезокерамики ПКР-73 [8] и полиэтилена [9] (*a*), а также монокристалла PMN-PT [3] и полиэтилена [9] (*b*). $\gamma_1 = 10^{-13} \Omega^{-1} \cdot m^{-1}$, $\gamma_2 = 10^{-10} \Omega \cdot m^{-1}$. $I - d_{330}^*$, $2 - -d_{310}^*$, $3 - \varepsilon_{330}^*/\varepsilon_0$.

Рис. 2. Гигантская пьезоэлектрическая релаксация в двухслойном композите со слоями из пьезокерамики ПКР-73 [8] и полиэтилена [9] (*a*), а также монокристалла PMN-PT [3] и полиэтилена [9] (*b*). $\gamma_1 = 10^{-13} \Omega^{-1} \cdot m^{-1}$, $\gamma_2 = 10^{-10} \Omega^{-1} \cdot m^{-1}$. $1 - d_{33}^{'*}, 2 - -d_{31}^{'*}, 3 - d_{33}^{''*}, 4 - -d_{31}^{''*}$.

тания компонентов, один из которых имеет большие величины пьезомодулей, а другой — большие величины упругих податливостей. При $\gamma_1/\gamma_2 \ll 1$ релаксационная частота $\omega_r \approx (R_2 C_1)^{-1} \approx \theta_1 \gamma_2 / \varepsilon_1$ определяется главным образом емкостью С1 мало проводящего (диэлектрического) компонента и сопротивлением R_2 сильно проводящего (полупроводникового) компонента. Учет упругих и пьезоэлектрических свойств компонентов приводит к некоторому увеличению ω_r [4]. При значительном увеличении уг релаксационная частота увеличивается на много порядков [11]. Однако в любом случае статические пьезомодули d^*_{330} и $|d^*_{310}|$ при $\omega \ll \omega_r$ будут намного больше их динамических значений при $\omega \gg \omega_r$. Это обстоятельство необходимо учитывать при проектировании пьезоэлектрических элементов и устройств для низкочастотных (статических) приложений.

Список литературы

- S.-F. Liu, S.-E. Park, T.R. Shrout, L.E. Cross. J. Appl. Phys. 85, 2810 (1990).
- [2] M.K. Durbin, E.W. Jacobs, J.C. Hicks, S.-E. Park. Appl. Phys. Lett. 74, 2848 (1999).
- [3] R. Zhang, B. Jiang, W. Cao. J. Appl. Phys. 90, 3471 (2001).
- [4] A.V. Turik, G.S. Radchenko. J. Phys. D: Appl. Phys. 35, 1188 (2002).
- [5] R.E. Newnham, D.P. Skinner, L.E. Cross. Mat. Res. Bull. 13, 525 (1978).
- [6] D. Damjanovic, M. Demartin Maeder, P. Duran Martin, C. Voisard, N. Setter. J. Appl. Phys. 90, 5708 (2001).
- [7] А.Р. Хиппель. Диэлектрики и волны. ИЛ, М. (1960). 440 с.
- [8] А.Я. Данцигер, О.Н. Разумовская, Л.А. Резниченко, С.И. Дудкина. Высокоэффективные пьезокерамические материалы. Оптимизация поиска. Пайк, Ростов-на-Дону (1995). 96 с.
- [9] F. Levassort, M. Lethiecq, C. Millar, L. Pourcelot. Trans. Ultrason., Ferrorel., and Freq. Control. 45, 1497 (1998).
- [10] M. Shen, S. Ge, W. Cao. J. Phys. D: Appl. Phys. 34, 2935 (2001).
- [11] V.V. Lemanov, A.V. Sotnikov, Ε.P. Smirnova, M. Weihnacht. ΦΤΤ 44, 11, 1948 (2002).
- [12] S. Kirkpatrick. Rev. Mod. Phys. 45, 574 (1973).
- [13] A.L. Efros, B.I. Shklovskii. Phys. Stat. Sol. (b) 76, 475 (1976).
- [14] A.V. Turik. Ferroelectrics 222, 33 (1999).