Гигантское нелинейное поглощение в антиферромагнетике NiO

© С.И. Шаблаев, Р.В. Писарев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 30 января 2003 г.)

Исследование спектра нелинейного двухфотонного и двухступенчатого поглощения в монокристалле NiO в области энергий $\hbar\omega_1 + \hbar\omega_2 = 2.45 - 4.575 \,\text{eV}$ показало, что он имеет сложную форму и состоит из пиков очень высокой интенсивности (от 0.05 до 2.7 cm/MW). В области энергий 2.45–3.3 eV спектр определяется переходами в d-d-состояниях иона Ni²⁺. Определена ширина запрещенной зоны $E_g = 3.466 \,\text{eV}$. Выше этой энергии особенности спектра обусловлены межзонными переходами из трех валентных подзон на дно зоны проводимости.

Работа выполнена при поддержке Российского фонда фундаментальных исследований.

Характер локальных электронных состояний и состояний валентной зоны и зоны проводимости в соединениях с 3*d*-переходными металлами интенсивно исследуется в течение достаточно длительного времени [1]. Особенно эти вопросы стали актуальными в связи с открытием высокотемпературной сверхпроводимости в $[Cu^{2+}(3d^9)]$ -соединениях и гигантского магнитосопротивления в $[Mn^{3+}(3d^4)]$ -материалах. Экспериментальные исследования проводились различными линейными оптическими методами (поглощение, отражение, электропоглощение). Было установлено, что спектр поглощения в этих соединениях образован локальными оптическими переходами в 3*d*-переходных ионах, которые в области энергий выше 3 eV налагаются на межзонное поглощение. Однако однозначное разделение этих видов поглощения оказывается затруднительным в силу того, что спектры поглощения не удается измерить в области межзонных переходов, а спектры отражения неэффективны в области прозрачности и самого края фундаментального поглощения. До сих пор во многих случаях неизвестно ни точное значение величины межзонного зазора E_g , ни характер краевых оптических переходов. Решению этого вопроса может помочь использование метода нелинейной двухфотонной спектроскопии, являющейся эффективным инструментом изучения электронной структуры [2]. В этом случае изучается спектральная зависимость дополнительного поглощения зондирующего света $\hbar\omega_1$ с интенсивностью I_1 , возникающего в момент прохождения через кристалл мощного лазерного импульса $\hbar\omega_2$ с интенсивностью I_2 . Оба импульса незначительно поглощаются в кристалле, так как энергия зондирующего света $\hbar \omega_1 < E_g$, а энергия "накачки" $\hbar \omega_2 < (1/2)E_g$. Эти условия позволяют исследовать нелинейное поглощение в области самого края фундаментального поглощения от $2\hbar\omega_2$ до $E_g + \hbar\omega_2$, где однофотонная спектроскопия уже не может применяться из-за сильного поглощения, а отражение еще малоэффективно. Более сложные правила отбора для двухфотонного поглощения (ДФП) [3] часто позволяют получать новую информацию об электронных состояниях кристаллов по сравнению со спектрами линейного поглощения. Специфика нелинейного поглощения в соединениях с 3*d*-переходными металлами состоит в том, что, во-первых, двухфотонные переходы между *d*-состояниями иона металла являются разрешенными и, следовательно, более интенсивными (в отличие от однофотонного поглощения), а во-вторых, в процессе нелинейного поглощения возможно резонансное поглощение на промежуточных уровнях, когда энергия одного или обоих используемых источников света равна разности энергий локальных *d*-переходов ионов металла. Такие резонансные эффекты могут усиливать общее нелинейное поглощение и позволяют подробно исследовать конкретные локальные переходы. В настоящее время это особенно актуально в связи с интенсивными поисками нелинейных оптических материалов с большой величиной нелинейной восприимчивости третьего порядка $\chi^{(3)}$, которые могут использоваться при создании приборов для управления световыми потоками [4].

Для данного исследования нелинейного поглощения мы выбрали оксид никеля NiO. Схема электронных уровней иона Ni²⁺ в октаэдрическом кристаллическом поле показана на рис. 1. Это хорошо исследованный линейными оптическими методами антиферромагнетик, который в случае нелинейного поглощения особенно интересен тем, что его первый оптический переход ${}^{3}\Gamma_{2}^{+} \rightarrow {}^{3}\Gamma_{5}^{+}$, расположенный в области энергий 0.97–1.3 eV, попадает в резонанс с энергией накачки нашего лазера $E_{2} = 1.17$ eV.

Оксид никеля NiO кристаллизуется в центросимметричной кубической структуре (точечная группа m3m) типа NaCl. Ниже температуры Нееля $T_N = 523$ K NiO является антиферромагнетиком, в котором спины ионов Ni²⁺ ферромагнитно упорядочены в плоскостях {111} и направлены навстречу друг другу в соседних плоскостях [5,6]. Спиновое упорядочение вызывает небольшое искажение кубической элементарной ячейки вдоль осей $\langle 111 \rangle$ [7] (перпендикулярно ферромагнитным плоскостям), которое понижает кристаллографическую симметрию до 3 m. Электронная структура NiO исследовалась как теоретически [8,9], так и экспериментально [1,10,11]. Фундаментальное поглощение является

Рис. 1. Схема электронных состояний $(3d)^8$ и краевых зон NiO.

экспоненциальным [12] в области примерно от 3.1 eV до первого пика $\sim 4.3 \text{ eV}$ [13]. Поэтому точное положение E_g и характер краевых переходов до сих пор не установлены.

1. Техника эксперимента

Спектры нелинейного поглощения кристалла NiO были получены на двух образцах, один из которых представлял собой плоскопараллельную пластину толщиной 70 μ m, а другой — пленку толщиной ~ 7 μ m на подложке из MgO. Плоскости образцов соответствовали ориентации {100}.

Импульс I_2 неодимового лазера (Nd-YAG) длительностью 10 ns с энергией $\hbar\omega_2 = 1.17 \text{ eV}$ и зондирующий световой импульс I_1 ксеноновой лампы — вспышки длительностью $1.5 \,\mu \text{s}$ с энергией $1.29 < \hbar\omega_1 < 3.4 \text{ eV}$ одновременно проходили навстречу друг другу через образец [14]. При этом на зондирующем импульсе появлялся модуляционный сигнал в виде "провала" в момент прохождения через кристалл лазерного импульса. Зондирующий импульс света I_1 проходил через монохроматор и попадал на катод фотоумножителя. Амплитуда импульса лазера I_2 контролировалась коаксиальным фотоэлементом. Сигналы с умножителя и фотоэлемента через линии задержки поступали на входы трехканального стробоскопического детектора, который измерял амплитуду импульсов лазера I_2 и лампы I_1 за время строба 4.5 ns в течение каждого цикла (частота циклов 12.5 Hz). При этом амплитуда зондирующего импульса I_1 измерялась дважды. Непосредственно перед "провалом" определялась величина I_1 , а в момент "провала" — величина $I_1 - \Delta I$. Далее полученные сигналы стробоскопически расширялись до 7 ms и направлялись в вычислительный блок, в котором выделялся сигнал ΔI и вычислялся коэффициент ДФП β по формуле $\beta = \Delta I/(I_1I_2d)$, где d — длина области взаимодействия лучей в кристалле. Полученные значения β усреднялись по 10^4 импульсам.

2. Экспериментальные результаты

На рис. 2 представлен спектр нелинейного поглощения NiO. В области энергий от 2.46 до 3.7 eV спектр измерялся на пластине NiO толщиной 70 μ m, а от 3.6 до 4.575 eV — на пленке толщиной ~ 7 μ m.

Спектр ДФП можно условно разбить на две части. В первой части спектра в области энергий 2.46-2.9 eV наблюдаются два пика сложной формы, которые связаны с переходами из основного состояния ${}^{3}\Gamma_{2}^{+}$ через промежуточное ${}^{3}\Gamma_{5}^{+}$ в конечные состояния ${}^{1}\Gamma_{5}^{-}$ и ${}^{3}\Gamma_{4}$. Далее (от 2.9 до 3.465 eV) находится область с незначительным нелинейным поглощением (порядка $\sim 0.02 \, \text{cm/MW}$), где наблюдается небольшой пик С, связанный с возбуждением двух переходов ${}^{3}\Gamma_{2}^{+} - {}^{3}\Gamma_{5}^{+}$ (имеющих энергию возбуждения около 1 eV) зондирующим световым импульсом с энергией $\sim 2 \,\text{eV}$. Вторая часть спектра начинается после энергии 3.465 eV и доходит до энергии 4.575 eV. В этой области наблюдаются три очень сильных пика X_1 , X₂, X₃ с энергиями максимумов 3.768, 4.075, 4.33 eV соответственно. На рис. 1 представлена схема электронных состояний (3d)⁸-иона Ni²⁺ и краевых зон (валентной зоны и зоны проводимости): показаны обнаруженные переходы и приведены энергии лазера накачки Е2 и зондирующего светового импульса E_1 .

Рис. 2. Спектр нелинейного поглощения монокристаллов NiO.

Рис. 3. Временна́я форма лазерного I_2 и модуляционного ΔI импульсов света.

Исследования модуляционного сигнала ΔI показали, что по форме он сильно отличается от лазерного импульса накачки I₂ (рис. 3). Длительность лазерного импульса света I_2 на полувысоте импульса равна 10 ns. Длительности переднего и заднего фронтов составляет примерно 5 ns. Передний фронт модуляционного сигнала ΔI соответствует фронту лазерного импульса, а задний отличается огромной длительностью, которую оказалось невозможно измерить в нашем эксперименте, так как она превосходила не только длительность самого зондирующего импульса света I_1 (1.5 μ s), но и величину скважности лазерных импульсов (80 ms). Предположительно длительность заднего фронта импульса ΔI составляет более 160 ms, т.е. практически в 10⁶ раз больше длительности импульса лазера. Такой необычно длинный задний фронт модуляционного сигнала — следствие того, что процесс нелинейного поглощения в NiO является не чисто двухфотонным, а в значительной степени двухступенчатым поглощением. Как видно из рис. 1, в NiO первый оптический переход происходит между состояниями ${}^{3}\Gamma_{2}^{+} \rightarrow {}^{3}\Gamma_{5}^{+}$ в ионе Ni²⁺. Он расположен в области энергий 0.97-1.3 eV. Лазерный импульс накачки I2 с энергией 1.17 eV попадает на задний фронт этого перехода. Электроны, поглощая энергию квантов лазера, реально переходят с основного уровня ${}^{3}\Gamma_{2}^{+}$ на возбужденный ${}^{3}\Gamma_{5}^{+}$. Время жизни электронов на этом уровне обратно пропорционально ширине уровня и может быть порядка нескольких фемтосекунд. Следовательно, для того чтобы объяснить наблюдаемый нами длинный задний фронт модуляционного сигнала, необходимо предположить, что электроны переходят с уровня ${}^{3}\Gamma_{5}^{+}$ на какой-то уровень примеси или дефекта кристалла типа "ловушки", который имеет огромное время жизни. Это время жизни возбужденных электронов определяется длительностью заднего фронта модуляционного импульса ΔI и, как отмечалось выше, примерно равно 160 ms. В дальнейшем эти возбужденные электроны при поглощении энергии квантов зондирующего света I_1 могут переходить на более высокие уровни.

Понятно, что большое время жизни электронов на промежуточном уровне-ловушке приводит к увеличению вероятности двухступенчатых переходов, но, кроме этого, возрастает вероятность и резонансных двухфотонных переходов за счет уменьшения энергетического знаменателя $E_m - E_i - \hbar \omega_2$ в формуле для коэффициента ДФП

$$\beta = A \sum_{f,i} \left| \sum_{m} \left[\frac{\langle f | \mathbf{e}_{2} p | m \rangle \langle m | \mathbf{e}_{1} p | i \rangle}{E_{m} - E_{i} - \hbar \omega_{1}} + \frac{\langle f | \mathbf{e}_{1} p | m \rangle \langle m | \mathbf{e}_{2} p | i \rangle}{E_{m} - E_{i} - \hbar \omega_{2}} \right] \right|^{2},$$

где $\sum_{j,i}$ — сумма по всем начальным (i) и конечным (f) состояниям, \sum_{m} — сумма по всем промежуточным состояниям, включая как начальные, так и конечные.

По-видимому, этим можно объяснить необычно большие коэффициенты нелинейного поглощения, которые наблюдаются в эксперименте. Величины β в эквивалентных точках спектра примерно в 3 раза больше, чем в кристалле окиси хрома Cr_2O_3 [15] (в котором также наблюдается резонансное ДФП, но в резонанс попадает только зондирующий световой импульс I_1), и на два порядка больше, чем в таких модельных полупроводниках, как ZnSe, CdS, спектры которых были специально измерены в тех же условиях.

Из рис. 2 видно, что спектр состоит из нескольких пиков (${}^{1}\Gamma_{5}^{3}$, ${}^{3}\Gamma_{4}$, *C*, *X*₁, *X*₂, *X*₃) сложной формы и различной интенсивности. Первые два из них, очевидно, связаны с поглощением в *d*-оболочке иона Ni⁺² при переходах между состояниями ${}^{3}\Gamma_{2}^{+} \rightarrow {}^{3}\Gamma_{5}^{+} \rightarrow {}^{1}\Gamma_{5}^{+} \rightarrow {}^{3}\Gamma_{4}^{+}$. Переходы X1, X2, X3, по нашему мнению, являются межзонными переходами между тремя подзонами валентной зоны и дном зоны проводимости. Известно, что край межзонного собственного поглощения NiO является экспоненциальным выше 3.1 eV [12]. Около $\sim 4 \text{ eV}$ коэффициент однофотонного поглощения а достигает значений $\sim 0.5 \cdot 10^5 \,\mathrm{cm}^{-1}$, и далее наблюдается пик при энергии 4.3 eV [13]. Этот пик, по-видимому, соответствует двухфотонному пику X_3 (4.325 eV). Пики X_1 и X_2 с энергиями 3.768 и 4.075 eV не проявляются в спектре отражения, так как попадают в область экспоненциального края.

Краем фундаментального поглощения в NiO следует считать энерию начала высокотемпературной области спектра ДФП, равную $E_g = 3.465$ eV при 290 K.

Список литературы

- [1] B. Fromme. In: *d*–*d* Excitations in Transition-Metal Oxides. Springer, Berlin (2001). P. 145.
- [2] H. Mahr. In: Quantum Electronics / Ed. H. Rabin and C.L. Tang. Academic Press, N. Y. (1975). V. 1. P. 285.

- [3] T.R. Bader, A. Gold. Phys. Rev. 171, 997 (1968).
- [4] H. Kishida, H. Matsuzaki, H. Okamoto, T. Manabe, M. Yamashita, Y. Taguchi, Y. Tokura. Nature 405, 929 (2000).
- [5] M.T. Hutching, E.D. Samuelsen. Phys. Rev. B 6, 3447 (1972).
- [6] F.U. Hillebrecht, H. Ohldag, N.B. Weber, C. Bethke, U. Mick, M. Weiss, J. Bahrdt. Phys. Rev. Lett. 86, 3419 (2001).
- [7] K. Nakahigashi, N. Fukuoka, Y. Shimomura. J. Phys. Soc. Jpn. 38, 1634 (1975).
- [8] M. Takahashi, J. Igarashi. Phys. Rev. B 54, 13 566 (1996).
- [9] T. Bredov, A.R. Gerson. Phys. Rev. B 61, 5194 (2000).
- [10] Landolt-Börnstein. Numerical Data and Functional Relationships. New Series, III/17g. Comprehensive Index. Springer, Berlin (1984).
- [11] S. Hüfner. In: Photoelectron Spectroscopy / Ed. M. Cordona. Springer, Berlin (1996). 662 p.
- [12] J. Pattanayak, K.D. Becker. Phys. Stat. Sol. (b) 188, 833 (1995).
- [13] R.T. Powell, W.E. Spiser. Phys. Rev. B 2, 2185 (1970).
- [14] С.И. Шаблаев, А.М. Данишевский, В.К. Субашиев, А.А. Бабашкин. ФТТ **21**, 1140 (1979).
- [15] С.И. Шаблаев, И.П. Арешев, Р.В. Писарев. ФТТ **42**, 1821 (2000).