Решетки цилиндрических магнитных доменов вблизи точки компенсации

© Ю.А. Мамалуй, Ю.А. Сирюк, А.В. Безус

Донецкий национальный университет, 83055 Донецк, Украина E-mail: coyote@skif.net

(Поступила в Редакцию 10 декабря 2002 г.)

Экспериментально исследовано поведение гексагональной решетки цилиндрических магнитных доменов (ЦМД) в тонких одноосных пленках ферритов-гранатов в температурном интервале от точки компенсации до температуры Нееля. Изучены два вида фазовых переходов первого рода в решетке ЦМД при изменении температуры: с сохранением общего числа доменов и с изменением их числа. Показано, что характер фазового перехода определяется зависимостью изменения характеристической длины пленки от температуры. Объяснение двух фазовых переходов дано с точки зрения существования в решетке ЦМД магнитостатического давления.

В данной работе приведены результаты экспериментального исследования свойств гексагональных решеток цилиндрических магнитных доменов (ЦМД) в тонких одноосных магнитных пленках с осью легкого намагничивания вдоль нормали к поверхности вблизи температуры компенсации Т_с. Доменная структура (ДС) тонких магнитных пленок вблизи Т_с теоретически исследовалась в работах [1–3]. В [1] показано, что вблизи Т_с при нулевом подмагничивающем поле всегда должен существовать интервал монодоменности в тонкой магнитной пленке. Предложена следующая последовательность существования различных ДС вблизи Тс. В определенной окрестности вблизи Т_с существует неоднородное состояние; при удалении от этого интервала появляются ЦМД; дальнейшее увеличение интервала $T - T_c$ в обе стороны от Т_с приводит к превращению ЦМД в полосовые домены.

Изменение параметров полосовой ДС под влиянием внешнего магнитного поля в одноосных магнитных пленках в интервале температур, включающем T_c, изучено теоретически в [2] и обобщено в обзоре [3]. В [2] найдены температурные зависимости периода ДС и поля перехода в однородное состояние; получены аналитические выражения для устойчивости одиночных ЦМД и решеток ЦМД вблизи Т_с; найдено выражение для интервала монодоменности вблизи Т_с, дающее хорошее согласие с экспериментами, проведенными в работах [4,5]. В подавляющем большинстве опубликованных экспериментальных работ основное внимание уделялось изучению свойств полосовой и лабиринтной ДС, а также структуре доменных границ (ДГ) вблизи Т_с [6–10]. Недавно появилось сообщение о наличии вблизи Т_с фазовых переходов (ФП), индуцированных полем [10]. Было обнаружено, что в присутствии магнитного поля в непосредственной близости от Тс на ДС хорошо видно развитие метастабильных состояний: домены с ориентацией намагниченности вверх и/или вниз перпендикулярно пленке и спин-флоп-состояние с гораздо большей намагниченностью (более сильный эффект Фарадея). Переход от состояния с ориентацией намагниченности вверх (или вниз) к спин-флоп-состоянию происходит скачком и сопровождается гистерезисом как по температуре, так и по полю. Этим результаты [10] отличаются от полученных в [4].

Исследования $\Phi\Pi$ в ДС вблизи T_c в отсутствие магнитного поля описаны в [11], где изучались решетки ЦМД в тонких магнитных пленках ферритов-гранатов.

Анализ содержания цитированных работ показывает, что поведение решеток ЦМД вблизи T_c изучено недостаточно. В частности, не обсуждались вопросы существования различных типов ФП в решетках ЦМД при охлаждении и нагревании пленок, а также решающая роль методики создания равновесной решетки ЦМД в тонкой магнитной пленке при фиксированной температуре. Выполненные нами исследования посвящены этим вопросам.

1. Результаты эксперимента

Для исследования выбраны одноосные монокристаллические пленки феррита-граната разного состава и толщины с параметром качества $Q \gg 1$ и разными точками компенсации. Пленки выращены методом жидкофазной эпитакции на подложке из гадолиний-галлиевого граната с ориентацией (111). Ось легкого намагничивания перпендикулярна плоскости пленки. Характеристики пленок приведены в табл. 1.

ДС наблюдалась с помощью эффекта Фарадея. Исследования проводились на магнитооптической установке, в которой предусмотрена возможность изменения температуры пленки в интервале от 90 К до T_N и действия монополярного импульсного магнитного поля H_p , вектор напряженности которого перпендикулярен плоскости пленки. Решетка ЦМД формировалась импульсным магнитным полем определенной частоты и амплитуды, затем поле выключалось.

Номер пленки	Состав	h, μm	$T_N,$ K	<i>p</i> , μm	d, μm	$a, \mu m$	H_K , Oe	l, μm	$4\pi M_S,$ G	σ , erg/cm ²
1	$\begin{array}{l} (TmBi)_3(FeGa)_5O_{12}\\ (YGdTm)_3(FeGa)_5O_{12}\\ (GdTm)_3(FeGa)_5O_{12}\\ (YBi)_3(FeGa)_5O_{12} \end{array}$	8.4	437	13.5	12.5	16.9	100	0.67	175	0.16
2		3.3	443	3.7	3.3	4.4	270	0.14	400	0.16
3		2.3	528	7.5	6.6	8.9	100	0.42	270	0.22
4		2.8	483	17.5	15.5	21	30	1.12	146	0.19

Таблица 1. Характеристики исследуемых пленок при комнатной температуре

Примечание. *h* — толщина пленки, *T_N* — температура Нееля, *p* — период полосовой структуры, *d* — диаметр ЦМД, *a* — период решетки ЦМД, *H_K* — поле коллапса ЦМД, *l* — характеристическая длина пленки, *M_S* — намагниченность насыщения, *σ* — плотность энергии доменной стенки.

Существуют два способа изучения характеристик решетки ЦМД. В первом случае решетку формируют при различных температурах. При этом получают графики функций a(T) и d(T), которые являются непрерывными функциями температуры [11]. Такие решетки являются равновесными при температуре формирования, т.е. их параметры отвечают минимуму энергии для соответствующих l(T) и $M_S(T)$ [12]. Параметр $y = \frac{d}{a} = 0.74$ и остается постоянным на всем температурном интервале, где может существовать равновесная решетка [13]. Иной характер зависимостей a(T) и d(T) наблюдается, если решетку ЦМД формировать при некоторой фиксированной температуре, например комнатной, а затем изменять температуру пленки. При этом решетка сохраняется в некотором температурном интервале, затем происходит спонтанный ФП к новой решетке ЦМД с новыми параметрами, соответствующими параметрам равновесной решетки при этой температуре [14]. Такой способ использовался в настоящей работе.

Рассмотрим $\Phi\Pi$ в решетке ЦМД, вызванные изменением температуры, при охлаждении пленки. Из рис. 1 видно, что решетка, сформированная в пленке № 1 при комнатной температуре, сохраняется при охлаждении пленки до 215 К, так как величина параметра *а* остается

Рис. 1. Температурные зависимости намагниченности насыщения $4\pi M_S(l)$, характеристической длины l(2) и параметра решетки ЦМД a(3) для пленки № 1.

постоянной до этой температуры (фотография этой решетки приведена на рис. 2, a). Затем происходит $\Phi\Pi$ к новой решетке с бо́льшими параметрами а и d. Из рис. 2, b видно, что одни ЦМД сжимаются и исчезают, а другие увеличиваются в диаметре и занимают места соседних. После действия на эту ДС импульсным магнитным полем образуется равновесная гексагональная решетка ЦМД с большими параметрами и меньшим числом ЦМД, занимающая всю плоскость пленки (рис. 2, c). Такая решетка устойчива до температуры 175 К (рис. 1), при которой снова происходит ФП с увеличением а и d и уменьшением числа ЦМД (рис. 2, d). Полученная после действия H_p новая решетка ЦМД (рис. 2, e) сохраняется до 170 К. При дальнейшем понижении температуры пленки наступает низкотемпературный коллапс решетки: наблюдается исчезновение отдельных ЦМД. Причем, как правило, исчезает каждый центральный домен в решетке, и решетка ЦМД перестает существовать (рис. 2, f). Картина аналогична коллапсу решетки ЦМД, который происходит при действии на пленку поля смещения, близкого по величине к полю коллапса ЦМД, при постоянной температуре. При $T \le 160 \,\mathrm{K}$ в пленке наблюдаются изолированные ЦМД очень большого размера (рис. 2, g), которые выглядят неустойчивыми, хаотически перемещаются, изменяя свою форму случайным образом (рис. 2, h). При $T = 150 \,\mathrm{K}$ наступает монодоменность.

Для наблюдения ДС при удалении от Т_с пленка нагревалась, начиная с низких температур. При достижении 160 К появляется полосовая структура (рис. 1; 3, a), затем возникают изолированные ЦМД (рис. 3, b), которые мгновенно превращаются в страйпы. После кратковременного действия Н_р получаем гексагональную решетку ЦМД при 170 К (рис. 3, c), которая сохраняется до 180 К. Затем в решетке происходит ФП, при котором она спонтанно распадается на блоки новой решетки, разделенные страйпами. Внутри блоков образуется решетка с меньшими величинами а и d, соответствующими параметрам равновесной решетки при данной температуре (рис. 1; 3, d). Общее число доменов n при этом сохраняется. Если на пленку подействовать H_p, создается массив решетки с параметрами, соответствующими параметрам решетки в блоках. При нагревании пленки решетка сохраняется до 205 К, затем снова происходит

Рис. 2. Доменная структура в пленке № 1, наблюдаемая при охлаждении. *a* — решетка ЦМД при 300 К; *b* — фазовый переход в решетке ЦМД при 215 К; *c* — решетка ЦМД при 215 К; *d* — фазовый переход в решетке ЦМД при 175 К; *e* — решетка ЦМД при 175 К; *f* — низкотемпературный коллапс решетки ЦМД при 170 К; *g* — изолированные домены при 160 К; *h* — неустойчивые домены при 158 К.

ФП решетки в двухфазную структуру: страйпы и блоки решетки с меньшими параметрами. Как видно из рис. 1, при нагревании пленки в решетке наблюдается несколько таких ФП (рис. 3). Кроме того, из рис. 1 видно, что число ФП и интервалы устойчивости решетки ЦМД при нагревании пленки отличаются от числа переходов и интервалов устойчивости при охлаждении пленки, т.е. наблюдается гистерезис. Также следует обратить

Рис. 3. Доменная структура в пленке № 1, наблюдаемая при нагревании. *а* — страйпы при 160 К; *b* — одиночные домены при 170 К; *c* — решетка ЦМД при 170 К; *d* — фазовый переход в решетке ЦМД при 180 К; *e* — фазовый переход в решетке ЦМД при 232 К; *f* — решетка ЦМД при 232 К.

внимание на то, что как при охлаждении, так и при нагревании пленки ФП начинаются на дефектах решетки ЦМД (рис. 2, 3) и происходят спонтанно (скачком).

Похожая картина ФП в решетке ЦМД наблюдается при изменении температуры и в пленке № 2 (рис. 4). Пленка № 3 интересна тем, что на ней в отличие от пленок № 1 и 2 можно изучать поведение ДС при изменении температуры с двух сторон от T_c (рис. 5). По мере приближения к T_c как со стороны низких, так и со стороны высоких температур параметры ДС увеличиваются, достигают некоторого критического значения, после чего домены исчезают. В непосредственной близости от T_c имеется монодоменная область, где

результирующая намагниченность образца становится малой, и разбиение его на "вейсовские" домены под действием размагничивающих полей оказывается энергетически невыгодным. Пленка переходит в однородно намагниченное состояние. Как видно из рис. 5, область монодоменности в окрестности *T_c* охватывает температурный интервал 150–230 К.

В области "высокотемпературной" ветви в случае приближения к T_c при изменении температуры ДС ведет себя так же, как в пленках № 1 и 2. С понижением температуры по мере приближения к T_c наблюдается несколько ФП в решетке ЦМД (рис. 5), при которых каждый раз увеличиваются параметры

Рис. 4. Температурные зависимости намагниченности насыщения $4\pi M_S(l)$, характеристической длины l(2) и параметра решетки ЦМД a(3) для пленки № 2.

Рис. 5. Температурные зависимости намагниченности насыщения $4\pi M_S(I)$, характеристической длины l(2) и параметра решетки ЦМД a(3) для пленки № 3.

решетки и уменьшается число ЦМД. Затем происходит низкотемпературный коллапс решетки, но появляются одиночные ЦМД, и наконец, наступает монодоменность. Далее при удалении от T_c появляется полосовой домен, а затем одиночные ЦМД. Под действием H_p из них формируется гексагональная решетка ЦМД, в которой при дальнейшем увеличении температуры происходит ФП в двухфазную структуру с сохранением общего числа доменов.

На "низкотемпературной" ветви (рис. 5) при понижении температуры после монодоменности появляется полосовой домен, а затем одиночные ЦМД. Под действием H_p формируется решетка ЦМД. При удалении от T_c решетка распадается на блоки новой решетки с меньшими параметрами, разделенные страйпами, т.е. происходит ФП в двухфазную структуру. Из изложенного выше следует, что характер $\Phi\Pi$ в решетке при удалении от T_c одинаков как для "высокотемпературной", так и для "низкотемпературной" ветви. При приближении к T_c в решетке наблюдается ряд $\Phi\Pi$, при которых увеличиваются параметры решетки и уменьшается число ЦМД. Затем происходит коллапс решетки, появляются одиночные ЦМД, и наконец наступает монодоменность.

Таким образом, измерения в пленке № 3, позволившие изучить изменение ДС как при $T < T_c$, так и при $T > T_c$, приводят к следующему выводу: поведение решетки ЦМД при приближении к T_c как со стороны низких, так и со стороны высоких температур одинаково. То же самое можно сказать и в случае, когда рассматривается поведение решетки ЦМД при удалении от T_c .

Пленка № 4 отличается от остальных пленок тем, что ее точка компенсации расположена вблизи T_N (рис. 6). С увеличением температуры от комнатной до Т_с наблюдается ряд ФП в решетке ЦМД, при которых параметр а решетки увеличивается и число ЦМД уменьшается (рис. 6). Но в отличие от ФП, происходящих при приближении к Т_с в других пленках, в этой пленке размер ЦМД *d* увеличивается очень сильно, т.е. они почти соприкасаются и ДС превращается в блоки тесно расположенных ЦМД. Это похоже на ФП в сотовой структуре, индуцируемые увеличением поля смещения при постоянной температуре [13]. Температурные интервалы устойчивости решеток очень маленькие (рис. 6), монодоменность наступает при 320 К. Затем при охлаждении пленки и удалении от Т_с появляются страйпы. После действия H_p формируется решетка ЦМД, которая при охлаждении пленки сохраняется в некотором интервале температур. Затем в решетке происходит ФП, при котором она переходит в двухфазную структуру: блоки решетки с меньшими параметрами, разделенные страйпами. При воздействии Н_р решетка с меньшими параметрами занимает всю площадь пленки. Как вид-

Рис. 6. Температурные зависимости намагниченности насыщения $4\pi M_S(I)$, характеристической длины l(2) и параметра решетки ЦМД a(3) для пленки № 4.

но из рис. 6, при понижении температуры параметры решетки после каждого ФП уменьшаются, а интервал устойчивости увеличивается.

2. Обсуждение результатов

На основании вышеописанных экспериментов можно сделать следующие выводы.

Для сформированной при определенной температуре равновесной решетки ЦМД существует температурный интервал, в котором она остается стабильной. В [12] показано, что интервал термостабильности решетки ЦМД зависит от крутизны изменения характеристической длины с температурой l(T).

При достижении одной границы интервала стабильности происходит спонтанный переход от решетки ЦМД к двухфазной структуре, состоящей из блоков новой решетки ЦМД и области страйп-доменов, при сохранении общего числа доменов. Такой характер спонтанных переходов в решетке ЦМД, вызванный изменением температуры пленки, наблюдается при удалении от T_c . На другой границе интервала термостабильности решетки ЦМД происходит переход к равновесной решетке ЦМД с бо́льшими параметрами, сопровождающийся коллапсом части доменов. При этом оставшиеся домены скачком увеличивают свой диаметр и образуют решетку с равновесным для данной температуры периодом. Такой характер спонтанных переходов в решетке наблюдается при приближении к точке магнитной компенсации.

При качественном различии оба перехода в решетке имеют общие черты: происходят спонтанно (скачком) при изменении температуры на 2–3 градуса. При этом наблюдается гистерезис. Это позволяет считать их ФП первого рода.

Экспериментально обнаружено, что вблизи T_c существует гексагональная решетка ЦМД с параметрами, значительно превышающими толщину пленки. При приближении к T_c происходит низкотемпературный коллапс решетке ЦМД, после чего остаются только одиночные ЦМД.

Характер поведения ДС одинаков при $T < T_c$ и $T > T_c$ при приближении к T_c . То же можно сказать о поведении ДС при удалении от T_c , но следует подчеркнуть, что вид ФП при этом совершенно другой.

Обнаружено, что в окрестности T_c , как и следует из теории [1], существует интервал монодоменности, связанный с уменьшением намагниченности образца.

Исследования, проведенные на разных пленках, показали, что поведение ДС не зависит от того, в какой области температур находится T_c .

Ранее для нахождения интервала термостабильности решетки ЦМД при повышении [12] и понижении [15] температуры пленки использовался химический потенциал решетки ЦМД и страйп-доменов.

В данной работе для объяснения поведения решетки ЦМД используется понятие магнитостатического давле-

Рис. 7. Температурные зависимости P/P_0 решеток ЦМД пленки № 1. I — для равновесных решеток ЦМД, 2, 3 — для решеток ЦМД, стабильных в некотором температурном интервале при приближении к точке магнитной компенсации и удалении от T_c соответственно.

ния *P*, которое было введено авторами [16] как давление, приходящееся на единицу длины контура, ограничивающего площадь решетки ЦМД. Как следует из [17,18], давление решетки ЦМД

$$P = BM_{S}^{2}h\frac{d^{4}}{a^{5}} = BM_{S}^{2}h\frac{y^{4}}{a},$$
 (1)

где B — компонента. Поскольку для равновесной решетки ЦМД y = 0.74 = const, формулу (1) для равновесной решетки можно переписать в виде

$$P = C \, \frac{M_s^2}{a},\tag{2}$$

где $C = Bhy^4 = \text{const.}$ Используя экспериментальные данные, по формулам (1) и (2) можно рассчитать давление равновесной и неравновесной решеток ЦМД для исследуемых пленок при разных температурах.

На рис. 7 представлены кривые $\frac{P}{P_0}(T)$ как для равновесных решеток ЦМД, так и для решеток, стабильных в некотором температурном интервале (пленка № 1). Расчетные кривые зависимости давления от температуры для других пленок имеют тот же характер, и по ним можно проследить, что происходит с давлением ДС при ФП.

Рассмотрим ФП в решетке при приближении к T_c (рис. 1,7). Решетка, сформированная при 300 К, является равновесной, и для нее $\frac{P}{P_0} = 1$ (точка *A* на рис. 7). При понижении температуры она сохраняется в интервале 300–215 К, при этом ее давление уменьшается (отрезок *AB* на рис. 7). Тем не менее в точке *B* давление этой решетки значительно больше давления равновесной решетки, соответствующей T = 215 К. Решетка с прежними параметрами оказывается энергетически невыгодной. Поскольку характеристическая длина

пленки *l* при приближении к T_c растет, а для равновесной решетки y = const, должны расти также *a* и *d*, что возможно лишь при уменьшении числа доменов *n*. Поэтому большое магнитостатическое давление способствует коллапсу части доменов (отрезок *BC* на рис. 7), в результате чего происходит ФП к рановесной решетке ЦМД с большими параметрами. Так же можно описать состояние решетки, устойчивой в интервале температур 215–175 К, и ФП при 175 К в равновесную решетку ЦМД. Однако при 170 К, как видно из рис. 7, давление равновесной решетки стремится к нулю. Решетка не может существовать, и происходит низкотемпературный коллапс решетки. Появляются одиночные ЦМД.

При удалении от Т_с ФП в решетке ЦМД, как было экспериментально установлено, имеют иной характер. Здесь возможны два случая. Первый из них реализуется тогда, когда при удалении от T_c растет M_S и уменьшается *l*. Равновесная решетка, сформированная, например, при 232 К, сохраняется в температурном интервале 232-265 К. При этом давление ее увеличивается (отрезок KL на рис. 7), но при 265 K оно значительно меньше давления равновесной решетки, соответствующей этой температуре. Для равновесной решетки при росте $M_S(T)$ увеличивается и P(T). Поскольку y = const при равновесии, с уменьшением *l* уменьшаются как период решетки *а*, так и диаметр ЦМД, т.е. число доменов *n* должно расти. Но для возникновения новых доменов необходима затрата добавочной энергии, например энергии внешнего импульсного магнитного поля. Поэтому число доменов сохраняется, и возникают блоки решетки ЦМД с меньшими величинами a и d при y = const, а все пространство между ними занимают страйпы, образовавшиеся из оставшихся вне блоков ЦМД: такое давление решеток способствует росту страйпов. Давление такой ДС меньше давления равновесной решетки ЦМД при этой температуре (точка L на рис. 7). Когда импульсное поле из страйпов создает дополнительное число ЦМД, решетка переходит в равновесное состояние (точка М на рис. 7).

Второй случай реализуется, когда и намагниченность насыщения, и характеристическая длина уменьшаются с ростом температуры. Его можно проиллюстрировать, если рассматривать повышение температуры от 300 К. Равновесная решетка, сформированная при 300 К, при нагревании пленки сохраняется в интервале температур 300-342 К. Из рис. 7 видно, что при этом происходит уменьшение P (отрезок AN на рис. 7). Но при равновесии y = const, и с уменьшением l уменьшаются параметры a и d, т. е. число ЦМД должно увеличиваться. При 342 К решетка с прежними параметрами является неравновесной. Происходит, как и в вышеописанном случае, ФП решетки в двухфазную структуру, состоящую из блоков решетки с меньшими параметрами и областей страйп-доменов с сохранением общего числа доменов. После воздействия Н_p из страйпов образуется дополнительное число ЦМД, давление ДС увеличивается (отрезок NO на рис. 7), и равновесная решетка

Таблица 2. ФП в решетке ЦМД

Изменение характеристик	Фаза, наблюдаемая
пленки с температурой	после ФП
$M_{S} \downarrow, P \downarrow, l \uparrow \Rightarrow a \uparrow, d \uparrow, n \downarrow$ $M_{S} \uparrow, P \uparrow, l \downarrow \Rightarrow a \downarrow, d \downarrow, n = \text{const}$ $M_{S} \downarrow, P \downarrow, l \downarrow \Rightarrow a \downarrow, d \downarrow, n = \text{const}$	Равновесная решетка ЦМД Двухфазная система, сос- тоящая из блоков решет- ки ЦМД и страйпов

с новыми параметрами занимает всю видимую область пленки. Таким же образом можно объяснить поведение ДС и характер ФП, происходящих в решетке ЦМД при изменении температуры, и в других исследуемых пленках.

Изменения, происходящие в решетке ЦМД при $\Phi\Pi$, можно представить в виде итоговой схемы (табл. 2) при условии y = const.

Видно, что характер $\Phi\Pi$ не зависит от изменения M_S с температурой, а определяется лишь знаком изменения характеристической длины с температурой: при $\Delta l > 0$ происходит ФП к равновесной решетке ЦМД с новыми параметрами при уменьшении (коллапсе) числа доменов *n*, а при $\Delta l < 0 - \Phi \Pi$ к двухфазной структуре из блоков новой решетки ЦМД с меньшими параметрами и областей страйп-доменов при сохранении общего числа доменов п. Роль магнитостатического давления Р в первом случае сводится к тому, что, будучи больше равновесного, оно приводит к сжатию и исчезновению части доменов до тех пор, пока давление не уменьшится до равновесной величины. Во втором случае магнитостатическое давление меньше равновесного, что позволяет части ЦМД увеличить свои размеры и превратиться в страйпы, при этом давление оставшейся решетки ЦМД увеличивается до равновесной величины. Как показано в [17,18], сосуществующие фазы решетки ЦМД и страйпдоменов находятся в равновесии, если в точке перехода равны их магнитостатические давления. Отсюда следует, что характер ФП в решетках ЦМД определяется как магнитостатическим давлением решетки ЦМД, так и знаком изменения характеристической длины пленки. Температура фазового перехода, как показано в [12,15], зависит от крутизны наклона l(T).

Список литературы

- [1] В.Г. Барьяхтар, Ю.И. Горобец. ФТТ 18, 8, 2376 (1976).
- [2] А.Н. Богданов, Д.А. Яблонский. ФТТ 22, 3, 680 (1980).
- [3] В.Г. Барьяхтар, А.Н. Богданов, Д.А. Яблонский. УФН 156, *1*, 47 (1988).
- [4] Ф.В. Лисовский, Е.Г. Мансветова, В.И. Шаповалов. ЖЭТФ 71, 4, 1443 (1976).
- [5] Г.С. Кандаурова, Л.А. Памятных, Н.П. Кочнева, А.Г. Титова. ФТТ 21, 2, 612 (1979).
- [6] А.И. Беляева, В.П. Юрьев, В.А. Потакова. ЖЭТФ 83, 9, 1104 (1982).
- [7] Г.С. Кандаурова, Л.А. Памятных. ФТТ 31, 8, 132 (1989).

- [8] В.В. Рандошкин, А.Ф. Мартынов, А.Я. Червоненкис. ФТТ 38, 5, 1592 (1996).
- [9] G. Vertesy, I. Tomas, L. Pust. J. Magn. Magn. Mater. 149, 3, 260 (1995).
- [10] P. Molho, M.P. de Albuquerque. J. Magn. Magn. Mater. 226–230, 1388 (2001).
- [11] Е.Ф. Ходосов, А.О. Хребтов, Ю.А. Сирюк. Письма в ЖЭТФ 8, 6, 363 (1982).
- [12] E.A. Zavadskii, V.A. Zablotskii. Phys. Stat. Sol. (a) 112, 145 (1989).
- [13] В.А. Заблоцкий, Ю.А. Мамалуй, Ю.А. Сирюк. УФЖ 33, 3, 403 (1988).
- [14] В.Г. Барьяхтар, Э.А. Завадский, Ю.А. Мамалуй, Ю.А. Сирюк. ФТТ 26, 8, 2381 (1984).
- [15] V.A. Zablotskii, Ju.A. Mamalui, Ju.A. Siryuk. J. Phys.: Cond. Matter 3, 4, 2623 (1992).
- [16] В.Г. Барьяхтар, Ю.И. Горобец. Цилиндрические магнитные домены и их решетки. Наук. думка, Киев (1988).
- [17] V.A. Zablotskii, Ju.A. Mamalui. Mod. Phys. Lett. 9, 2, 1353 (1995).
- [18] В.А. Заблоцкий, К.В. Ламонова, Ю.А. Мамалуй, Ю.А. Сирюк. ФТВД 6, 2, 34 (1996).