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A point group approach to selection rules in crystals
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The problem of generation of the selection rules for a transition between Bloch states at any point of the Brillouin
zone in crystals is equivalent to the problem of the decomposition of Kronecker products of two representations
(reps) of a space group into irreducible components (the full group method). This problem can be solved also by
the subgroup method where small reps of little groups are used. In this article, we propose the third method of
the selection rules’ generation which is formulated in terms of projective reps of crystal point groups. It is based
on a well known relation between small irreducible reps (irreps) of little space groups and projective irreps of
corresponding little co-groups. The proposed procedure is illustrated by calculations of the Kronecker products for
different irreps at the W point of the Brillouin zone for the nonsymmorphic space group O7

h being one of the most
complicated space groups for the selection rules’ generation. As an example, the general procedure suggested is
applied to obtain the selection rules for direct and phonon–assisted electrical dipole transitions between some states
in crystals with the space group O7

h.
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1. Introduction

The knowledge of selection rules is well known to be
of a great importance in the study of optical properties of
crystals, electron–phonon interaction and phase transitions
in solids. It is evident that the generation of selection
rules for transitions between states related to the center
k = 0 of the Brillouin zone (BZ) can be expressed in terms
of representations (reps) of the crystal point group. For
direct transitions between the states with k 6= 0 and for
indirect transitions, the generation of selection rules is more
complex because of complicated structure of space group
reps (subgroup method [1–4], full group method [5]).
The optical properties at the 0 point in the BZ of materials

used for optoelectronic devices are of crucial importance
since the materials are direct gap semiconductors. Among
them, one can find stoichiometric crystals (such as GaAs,
InP or CaN) and alloys (for example, ternary compounds
like AlGaAs or quaternary ones such as GaInAsS and
GaInAsSb). In any of these materials, the fundamental
optical transition takes place at the 0 point insuring strong
absorption and recombination. By varying the ratios of
various elements in the alloys, it is possible to tailor the
band gap value at 0 point to fit the required operating
wavelength. Many nanostructures such as quantum wells
(QW’s), superlattices (SL’s), quantum wires (QWI’s) and
quantum dots (QD’s) are made of the materials mentioned
above. Nanostructures are usually studied in the envelope
function approximation based on the properties of the Bloch
functions at the 0 point in the BZ of the bulk materials they
are built from.
On the other hand, germanium Ge and silicon Si (the

most widely used semiconductors) have indirect gaps.

Silicon is used to built integrated circuits and other devices
based on charge transport phenomena (GaAs and related
compounds can also be used for such devices when their
high carrier mobility is needed). Some nanostructures, such
as type II GaAs/AlAs SL’s have also indirect gaps.

In any bulk semiconductor or semiconductor structure,
it is necessary to study direct transitions also at points in
the BZ other than 0 and indirect transitions when one or
both states correspond to k 6= 0 (participation of a particle
with a finite wave vector). The more frequent case is
that of phonon assisted transitions. Note that the high
symmetry points in the BZ are particularly important since
they generally correspond to high density of phonon states.
Selection rules’ deduction in general case is much more
complicated since the symmetry of the Bloch states and
hence the selection rules depend of the location of the BZ
points involved in the process.

In Chapter 4 of Ref. [3], the procedure of generation
of the selection rules in crystals is based on a sufficiently
refined mathematical groundwork (double and triple coset
decompositions of space groups, use of the Mackey theorem
for induced reps). This procedure was realized in the
computer program, the results being collected in the three-
volume Tables [4].
The more simple approach to the selection rules’ problem

may be developed basing on the well-known relation
between small irreducible reps (irreps) of little space groups
and projective irreps of corresponding little co-groups [6,7].
We demonstrate in this paper that the procedure of
generation of the selection rules for a transition between any
states in crystals can be formulated in terms of projective
irreps of point groups.
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In Section 2, all the necessary notations are introduced
and the connection between irreps of space groups and
projective irreps of point groups is considered in detail.
The general procedure of generation of the selection rules
is formulated in Section 3. Each step of its realization is
illustrated by calculations of the Kronecker products for
different irreps at the W point of the BZ for nonsymmorphic
space group O7

h which is one of the most complicated space
groups for the selection rules’ generation. In Section 4,
as an example, the general procedure is applied to obtain
the selection rules for direct and phonon–assisted electrical
dipole transitions between some states in crystals with space
group O7

h.

2. Connection between small
representations of space groups
and projective representations
of point groups

Let the space group G of a crystal consist of the elements
g = (R|vR + an) ∈ G where the orthogonal operation R
is followed by the improper translation vR and lattice
translation an. The vectors an form the invariant subgroup T
of the space group G (T / G). The point group F of
the nF orthogonal operations R describes the symmetry of
directions in the crystal and is called crystalline class or
point symmetry group of the crystal. The set of left cosets
(Ri |vi )T in the decomposition of G with respect to the
translation subgroup T

G =
nF∑

i=1

(Ri |vi )T (1)

forms a factor group G/T isomorphic to the point group F
(F ↔ G/T) of order nF .
The translation group T is Abelian. All its irreps are one-

dimensional and are classified by wave vectors k in the BZ

d(k)(an) = exp(−ikan). (2)

The elements g ∈ G leaving the wave vector k invariant
up to reciprocal lattice vector Bm

g(k)k = R(k)k = k + Bm (3)

form the little group Gk of the wave vector k. The
group G−k consists of the same elements as the group Gk.
The little co-group Fk = F−k includes the elements R(k)

((R(k)|vR(k) ) ∈ Gk). The representatives gi = (Rj |v j ) of left
cosets g j Gk in the decomposition of G with respect to
Gk ⊂ G

G =
t∑

j=1

g j Gk g1 = (E|0) (4)

determine the so-called irreducible star ∗k of the wave
vector k consisting of t wave vectors

∗k : k j = g jk = Rjk, j = 1, 2, . . . , t. (5)

The little groups Gk j for different points of the star
∗k are

isomorphous to the little group Gk

Gk j = g j Gkg
−1
j . (6)

The irreps of G (full irreps) are labeled by the irreducible
star ∗k of the wave vector k and by the index γ numbering
the inequivalent irreps within the same star ∗k: [G](

∗k)
γ . The

full irrep [G](
∗k)
γ of G is in a one-to-one correspondence

with the small irrep [Gk]γ of Gk ⊂ G and is obtained from
the latter by induction procedure [7,8]

[G](
∗k)
γ = [Gk]γ ↑ G. (7)

The set of all small irreps of all little groups Gk with k
being in a representation domain of the BZ determines
unambiguously all the irreps of the space group G. That
is why the Tables of space group irreps, as a rule, contain
the small irreps of little groups Gk [3,9–12].
The matrices D([Gk]γ )(gi ,n) (gi ,n ∈ Gk) of the small irreps

[Gk]γ of Gk are in one-to-one correspondence with the
matrices d([Fk]γ )(Ri ) of so-called projective irreps [Fk]γ of Fk

as follows

D([Gk]γ )(gi ,n) = e−ikan d([Fk]γ )(Ri ),

gi ,n = (Ri |vi + an) ∈ Gk, Ri ∈ Fk. (8)

In particular, the matrices D([Gk]γ )(gi ,0) and d([Fk]γ )(Ri )
coincide

D([Gk]γ )(gi ,0) = d([Fk]γ )(Ri ),

gi ,0 = (Ri |vi ) ∈ Gk, Ri ∈ Fk. (9)

The multiplication law for the matrices d([Fk]γ )(Ri ) of
projective irreps [Fk]γ of a co-group Fk follows from the
multiplication law for space group elements

d([Fk]γ )(Ri )d([Fk]γ )(Ri ′) = d([Fk]γ )(Ri Ri ′)ω(k)(Ri ,Ri ′), (10)

where the set of

ω(k)(Ri ,Ri ′) = e−ik(vi +Ri vi ′−vi ,i ′ ),

|ω(Ri ,Ri ′)|2 = 1, Ri ,Ri ′ ∈ Fk (11)

is a factor system for the projective irreps [Fk]γ
(gii ′,0 = (Ri ,Ri ′ |vi i ′) ∈ Gk). The characters of these pro-
jective irreps can be taken directly from Tables [3,9,10,12].
If all the factors (11) are equal to unit, the projective irrep
becomes an ordinary one. In particular, this is the case of all
the little co-groups Fk of all the symmorphic space groups
(since all v j ′ = 0).
There exist projective irreps [Fk]γ with another choice of

the factor system (p-equivalent to [Fk]γ)

D([Fk]γ )(gi ,n) = e−ik(vi +an) d([Fk]γ )(Ri ),

gi ,n = (Ri |vi + an) ∈ Gk, Ri ∈ Fk,

ω̄(k)(Ri ,Ri ′) = ei (k−R−1
i k)vi ′ ,

|ω̄(Ri ,Ri ′)|2 = 1, Ri ,Ri ′ ∈ Fk. (12)
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They are used in Ref. [11]. The matrices D([Gk]γ )(gi ,0) and

d([Fk]γ )(Ri ) differ by the factor e−ikvi only

D([Fk]γ )(gi ,0) = e−ikvi d([Fk]γ )(Ri ),

gi ,0 = (Ri |vi ) ∈ Gk, Ri ∈ Fk. (13)

Let relation (8) between the reps [Gk]γ of Gk and [Fk]γ
of Fk be denoted by the symbols

[Gk]γ = [Fk]γ ⇑ Gk, [Fk]γ = [Gk]γ ⇓ Fk. (14)

Then the relation between the irreps [G](
∗k)
γ of space

group G and the projective irreps [Fk]γ or [Fk]γ of little
co-groups has the form

[G](
∗k)
γ = ([Fk]γ ⇑ Gk) ↑ G, or [G](

∗k)
γ = ([Fk]γ ⇑ Gk) ↑ G.

(15)

The basis functions of irreps [G](
∗k)
γ of a space group G

can be always chosen as being the basis functions of small
irreps [Gk]γ of little groups Gk and projective irreps [Fk]γ
(or [Fk]γ) of little co-groups Fk.
For the selection rules’ generation, it is necessary to

consider the direct product of small reps of two of the
little groups. The latter is possible only for the common
elements of little groups, i. e. for their intersection. Let
[Gk1 ]α and [Gk2 ]β be small reps of two little groups Gk1

and Gk2 . The direct product of their subductions on their
intersection ([Gk1 ]α ↓ (Gk1 ∩ Gk2) × [Gk2 ]β ↓ (Gk1 ∩ Gk2))
is a small rep of the group (Gk1 ∩ Gk2). Every ele-
ment gi ,0 ∈ (Gk1 ∩ Gk2) leaves invariant the wave vec-
tors k1 and k2 and, therefore, their sum k3 = k1 + k2:
(Gk1 ∩ Gk2) ⊆ Gk3 . The little group Gk3 has no other
common elements either with Gk1 or with Gk2 . Indeed,
let us assume the contrary that

g̃ ∈ Gk3, g̃ ∈ Gk1 , g̃ /∈ (Gk1 ∩ Gk2). (16)

Such an element g̃ would leave invariant k3 and k1
and, therefore, k2 = k3 − k1, i. e. it would be contained
in Gk1 ∩ Gk2 in contradiction with the initial assumption.
Let d([Fk1 ]α) and d([Fk2 ]β) be the matrices of sub-

ductions of the projective reps [Fk1 ]α ↓ (Fk1 ∩ Fk2) and
[Fk2 ]β ↓ (Fk1 ∩ Fk2) of two little co-groups Fk1 and Fk2

with factor systems ω(k1)(Ri ,Rj ) and ω(k2)(Ri ,Rj )
(Ri ,Rj ∈ Fk1 ∩ Fk2), respectively. The direct product
d([Fk1 ]α) × d([Fk2 ]β) is a projective rep d([Fk3 ]αβ) (k3 = k1 + k2)
of the group (Fk1 ∩ Fk2) ⊂ Fk3 with the factor system
ω(k3)(Ri ,Rj ) = ω(k1)(Ri ,Rj )ω(k2)(Ri ,Rj ). Indeed, let

d([Fk3 ]αβ)(R) ≡ d([Fk1 ]α)(R) × d([Fk2 ]β)(R),

R ∈ (Fk1 ∩ Fk2) (17)

be matrices of the direct product of two projective reps.
Then

d([Fk3 ]αβ)(R1) · d([Fk3 ]αβ)(R2)

=
{

d([Fk1 ]α)(R1)×d([Fk2 ]β)(R1)
}{

d([Fk1 ]α)(R2)×d([Fk2 ]β )(R2)
}

=
{

d([Fk1 ]α)(R1) · d([Fk1 ]α)(R2)
}×{

d([Fk2 ]β)(R1) · d([Fk2 ]β)(R2)
}

=
{

d([Fk1 ]α)(R1R2) · ω(k1)(R1,R2)
}

× {
d([Fk2 ]β)(R1,R2) · ω(k2)(R1,R2)

}

=d([Fk3 ]αβ)(R1R2) · ω(k1)(R1,R2) · ω(k2)(R1,R2)

=d([Fk3 ]αβ)(R1R2) · ωk3(R1,R2) (18)

for both (11) and (12) factor systems.
Let the coset representatives g( j )

s ∈ Gk j in the decompo-
sition of Gk j with respect to the translation group T

Gk j =
∑

s

g( j )
s T, g(1)

s ∈ Gk (19)

be chosen in the form g( j )
s ≡ (R( j )

s |v( j )
s ), i. e. they are

among the representatives (Ri |vi ) in the decomposition (1).
The element g j g

(1)
s g−1

j ∈ Gk j with g j being taken from

decomposition (4) (see also (6)) may differ from g( j )
s by

some lattice translation. That is why the notations of
the small irreps of the little groups Gk and Gk j (and the
projective irreps of the corresponding little co-groups) may
be different.
In particular, let g j 0k = −k. The groups Gk and G−k

are composed of the same elements. The whole set of
small irreps of the little group G−k is complex conjugated
with respect to the whole set of small irreps of the little
group Gk, but the notations of the irreps of Gk and of G−k

may differ (see example in Section 3).
Let Q be a group and H be its subgroup (H ⊂ Q). Let

d(α) and D(β) be irreps of H and Q, respectively. Then
the frequency of the irrep D(β) of Q in the rep (d(α) ↑ Q)
induced by the irrep d(α) of H is equal to the frequency of
the irrep d(α) of H in the rep (D(β) ↓ H) subduced by D(β)

on H (Frobenius reciprocity theorem). This theorem can
be applied also to the projective irreps of a group and its
subgroup with the same factor system [6].

3. Procedure of the selection rules’
generation using projective
representations of point groups

The stationary states of a system with the symmetry
of a space group G are classified according to the irreps
of G and their full group–theoretical notation is as follows:
|k, γ,m, µ〉 where k = k1, k2, . . . , kt (star ∗k), m numbers
the basis vectors of the small irrep γ of the little group Gk,
and µ numbers the independent bases of equivalent reps
of Gk.
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Let us consider the selection rules for the transi-
tions between the stationary states |k( f ), γ ( f ),m( f ), µ( f )〉
and |k(i ), γ (i ),m(i ), µ(i )〉 caused by an operator P
(k(p), γ (p),m(p)) transforming according to the irrep
(k(p), γ (p)) of G. If the operator P transforms according
to a reducible rep of G, one can obtain the selection rules
for every of its irreducible components separately.
The transition probability is governed by the value of the

matrix element

〈k( f ), γ ( f ),m( f ), µ( f )|P(k(p), γ (p),m(p))|k(i ), γ (i ),m(i ), µ(i )〉.
(20)

The transition is said to be allowed by symmetry if the triple
direct (Kronecker) product

(k( f ), γ ( f ))∗ × (k(p), γ (p)) × (k(i ), γ (i )) (21)

contains the identity irrep of G. This condition can be
rewritten in one of three following forms:

[
(k(p), γ (p)) × (k(i ), γ (i ))

] ∩ (k( f ), γ ( f )) 6= 0, (22)

[
(k( f ), γ ( f )) × (k(i ), γ (i ))∗

] ∩ (k(p), γ (p)) 6= 0, (23)
[
(k( f ), γ ( f )) × (k(p), γ (p))∗

] ∩ (k(i ), γ (i )) 6= 0. (24)

Whatever the form of the selection rules, it is necessary
to find the direct product of two (or three (21)) irreps of
the space group G (complex conjugate irreps are also irreps
of G).
We discuss now the procedure of selection rules’ gener-

ation using projective irreps of point groups. To illustrate
each step of this procedure we have chosen the small irreps
of the little group GW in the space group O7

h given in
Tables [9]. Note that translations an are mapped in Ref. [9]
by the factor exp(ikan). According to general definition

t̂anψ(r) ≡ ψ(r− an) = exp(−ikan)ψ(r), (25)

we choose the translations an to be mapped by the factor
exp(−ikan). This choice does not affect the notations of
Ref. [9] for small irreps in the case when k is equivalent
to −k or refers the small irreps [Gk]γ of Ref. [9] to the wave
vector −k in other cases (when k and −k are different
vectors of the same star or belong to different stars).
The star ∗W consists of six vectors: W(1) = (1, 0, 2),

W(2) = (1, 2, 0), W(3) = (2, 1, 0), W(4) = (0, 1, 2),
W(5) = (0, 2, 1), and W(6) = (2, 0, 1) (in units of π/a
along Cartesian axes with a being the lattice constant). The
little group GW( j ) has two single-valued ([GW( j ) ]γ , γ = 1, 2)
and five double-valued ([GW( j ) ]γ , γ = 3, 4, 5, 6, 7) small
irreps [9,12], which are unambiguously related (see
Section 2) to the corresponding projective irreps [FW( j ) ] j

of little co-groups FW( j ) = D( j )
2d (see Talbe 1). As the

characters (and matrices) of the elements (R|vR) ∈ GW( j )

and R ∈ FW( j ) are the same, we use the notations
Wγ ≡ [GW( j ) ]γ (γ = 1−7) of small irreps of the little
groups GW( j ) also for the corresponding projective irreps

Table 1. Characters of single- and double-valued projective
irreps of the little co-groups FW(i ) ≡ D(i )

2d (i = 1−6) and single-
and double-valued small irreps of the little groups GW(i ) (i = 1−6)
(for six vectors in the star ∗W: (102), (120), (210), (012), (021)
and (201) in the units of π/a along Cartesian axes, a being the
lattice constant) in the BZ in crystal with the space group O7

h,
ε = exp(iπ/4)

D(1)
2d D(2)

2d E S4x S−1
4x C2x Uyz Uyz̄ σy σz

D(3)
2d D(4)

2d E S4y S−1
4y C2y Uxz Ūxz̄ σz σx

D(5)
2d D(6)

2d E S4z S−1
4z C2z Uxy Ūxȳ σx σy

W1 W∗
1 2

√
2ε∗

√
2ε 0 0 0 0 0

W2 W∗
2 2 −√

2ε∗ −√
2ε 0 0 0 0 0

W3 W∗
5 1 ε∗ −ε i 1 −i −ε∗ −ε

W4 W∗
6 1 −ε∗ ε i −1 i −ε∗ −ε

W5 W∗
3 1 ε∗ −ε i −1 i ε∗ ε

W6 W∗
4 1 −ε∗ ε i 1 −i ε∗ ε

W7 W∗
7 2 0 0 −2i 0 0 0 0

of little co-groups GW( j ) = D( j )
2d . Since kW( j ) 6= −kW( j ) and

kW(2) ∼ −kW(1) we take the irreps of the little group GW(2)

from Ref. [9] as the irreps of the little group GW(1) (see (25)
and the remark thereunder). Besides as kW(2) ∼ −kW(1) ,
the total sets of single- and double-valued irreps of little
groups GW(1) and GW(2) are complex conjugate, but the
elements of GW(2) = IGW(1) I−1 which are isomorphic to
the elements of GW(1) according to (6) may differ from
the coset representatives in decomposition (4) by some
lattice translations. This may change the numbering of the
irreps of the little group GW(2) (and projective irreps of the
corresponding little co-group FW(2) ) with respect to those

of GW(1) (of FW(1) , see Table 1; W3(D
(2)
2d ) = W∗

5 (D(1)
2d ), for

example).
Taking the form (22) of selection rules, we consider the

Kronecker product of the irreps of the space group G

[G]γ (p)γ (i ) ≡ [G](
∗k(p))
γ (p) × [G](

∗k(i ))
γ (i ) (26)

whose basis vectors are the products

|k(p)
n , γ (p),m(p)〉 · |k(i )

l , γ (i ),m(i )〉,
(n = 1, . . . s(p); l = 1, . . . s(i );

m(p) = 1, . . . t(p); m(i ) = 1, . . . t(i )), (27)

where s(p), s(i ) are the numbers of rays in the stars ∗k(p),
∗k(i ); t(p), t(i ) are the dimensions of small irreps [G

k(p)
n

]γ (p)

and [G
k(i )

l
]γ (i ) of little groups G

k(p)
n

and G
k(i )

l
, respectively.

In the case of the W point in the BZ for the
space group O7

h, the basis (27) of the Kronecker
product (26) for γ (p) = γ (i ) = 1 (∗k(p) = ∗k(i ) = ∗W;

s(p) = s(i ) = 6, [G]11 ≡ [G](
∗W(p))
1 × [G](

∗W(i ))
1 ) consists of

(2× 6) × (2× 6) = 144 vectors.
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Table 2. Types of wave vectors in Kronecker products

of [G](
∗W)

i × [G](
∗W)
j

W(1i ) W(2i ) W(3i ) W(4i ) W(5i ) W(6i )

W(1p) X(x f ) 0( f ) 6(2 f ) 6(1 f ) 6(6 f ) 6(7 f )

W(2p) 0( f ) X(x f ) 6(3 f ) 6(4 f ) 6(5 f ) 6(8 f )

W(3p) 6(2 f ) 6(3 f ) X(y f ) 0( f ) 6(10 f ) 6(9 f )

W(4p) 6(1 f ) 6(4 f ) 0( f ) X(y f ) 6(11 f ) 6(12 f )

W(5p) 6(6 f ) 6(5 f ) 6(10 f ) 6(11 f ) X(z f ) 0( f )

W(6p) 6(7 f ) 6(8 f ) 6(9 f ) 6(12 f ) 0( f ) X(z f )

Rema r k. The wave vector stars X∗X and ∗6 consist of vectors: X( j f )

(i = x, y, z; (2,0,0), (0,2,0), (0,0,2)) and 6( j f ) ( j = 1−12; (110), (11̄0),
(1̄1̄0), (1̄10), (101), (1̄10), (1̄01̄), (101̄), (011), (011̄), (01̄1̄), (01̄1)),
respectively (in the units of π/a along Cartesian axes, a being the lattice
constant).

Table 3. Types of wave vectors in Kronecker products
of (∗k1) × (∗k2) (k1, k2 = 0, X, L,W)

0 X(xi) X(yi) X(z i) L(1i ) L(2i ) L(3i ) L(4i )

X(x p) 0( f ) X(z f ) X(y f ) L(3 f ) L(4 f ) L(1 f ) L(2 f )

L(1p) L(3 f ) L(4 f ) L(2 f ) 0( f ) X(z f ) X(x f ) X(y f )

W(1p) W(2 f ) 1(2 f ) 1(1 f ) 6(12 f ) 6(11 f ) 6(10 f ) 6(9 f )

0 W(1i ) W(2i ) W(3i ) W(4i ) W(5i ) W(6i )

X(x p) W(2 f ) W(1 f ) 1(3 f ) 1(4 f ) 1(6 f ) 1(5 f )

L(1p) 6(12 f ) 6(10 f ) 6(8 f ) 6(6 f ) 6(4 f ) 6(2 f )

W(1p) X(x f ) 0( f ) 6(2 f ) 6(1 f ) 6(6 f ) 6(7 f )

Rema r k. The wave vector stars ∗L and 1∗ consist of vectors: L( j f )

( j = 1−4; (1,1,1), (1̄, 1̄, 1), (1, 1̄, 1̄), (1̄, 1, 1̄)) and 1( j f ) ( j = 1−6;
(1,0,0), (1̄, 0, 0), (0,1,0), (0, 1̄, 0), (0,0,1), (0, 0, 1̄)) (in the units of π/a
along Cartesian axes, a being the lattice constant).

Decomposing the reducible rep [G]11 of G, one finds all
the irreducible stars ∗k( f ) contained in the reducible star
of [G]11 and the small irreps [Gk( f ) ] j of little groups Gk( f )

contained in the rep [G]11. A star of s(p)s(i ) wave vectors

k( f )
n,l = k(p)

n + k(i )
l + Bn,l

(n = 1, . . . s(p), l = 1, . . . s(i )) (28)

of basis functions (27) splits into irreducible stars and gives
wave vector selection rules (the vector Bn,l is a reciprocal
lattice vector which may be zero).

For Kronecker products [G](
∗W(p))
1 × [G](

∗W(i ))
1 of two

irreps of O7
h at the W point of BZ, the wave vector

selection rules (28) give three irreducible stars (0, X and 6,
see Table 2). It is easy to see, rewriting the vectors of
W-star in components of the reciprocal lattice primitive
translations. For example, as W(1) = (1/2, 3/4, 1/4) and
W(2) = (1/2, 1/4, 3/4), one obtains W(1) + W(2) = (1, 1, 1)
(∼ 0), W(1) + W(1) = (1, 3/2, 1/2) (∼ X(x)). Thus, 144
products (27) are partitioned in such a way that
4× 6 = 24 of them corresponds to 0, 4× 6 = 24 to X and
4× 4× 6 = 96 to 6 points of the BZ.

The set of wave vectors k( f )
n,l (28) contains all the rays

of all the irreducible stars appearing in the Kronecker
product (26) and may be arranged in a table similar to
Table 2. Rows and columns of this table are numbered
by the rays of the irreducible stars ∗k(p) and ∗k(i ) (by n
and l), respectively. The representatives of all the irreducible
stars in (26) appear in any row of this table. Indeed,
all the rows of the table (n = 2, . . . s(p) in (28)) may
be obtained from the first one (n = 1) by applying the
operations R(p)

n transforming the wave vector k(p)
1 into k(p)

n

(n = 2, . . . s(p)). Under symmetry operations R(p)
n , the set

of wave vectors k(i )
l of the star ∗k(i ) remains unchanged

and the irreducible stars formed by wave vectors k( f )
1,l may

change their representatives but can neither disappear nor
give raise to new irreducible stars or change the number
of each star representatives. The same consideration is
valid for the columns. Finally, all the rows (columns) of
the whole table contain as many representatives of each
irreducible star as the first row (column). Therefore, all
the necessary information about wave vector selection rules
for the Kronecker product (26) is contained in any row
(column) of the corresponding table. The wave vector
selection rules for all the symmetry points of BZ of the
space group O7

h are represented in Table 3. The latter
is composed of the first rows of Tables being similar to
Table 2 and corresponding to Kronecker products ∗0× ∗0,
∗X × ∗X, ∗L × ∗L, ∗W × ∗W, ∗0× ∗X, ∗0× ∗L, ∗0× ∗W,
∗X × ∗L, ∗X × ∗W, ∗L × ∗W.

At the next step of the selection rules’ generation one
needs to find the irreducible components of the reducible
reps for each star satisfying wave vector selection rules.
Let k( f )

m ≡ k( f )
n,l be a wave vector of some irreducible

star (m is fixed). The set of t(p)t(i ) basis functions (27)
with this wave vector forms the space �1 of some
projective rep [F̃

k( f )
m

]Kr ≡ [F
k(p)

n
∩ F

k(i )
l
]Kr of the little co-group

F̃
k( f )

m
≡ F

k(p)
n
∩ F

k(i )
l

or small rep [G̃
k( f )

m
]Kr ≡ [G

k(p)
n
∩ G

k(i )
l
]Kr

of the little group G̃
k( f )

m
≡ G

k(p)
n
∩ G

k(i )
l
and

[F̃
k( f )

m
]Kr = [G̃

k( f )
m

]Kr ⇓ F̃
k( f )

m
. (29)

The characters of the projective rep [F̃
k( f )

m
]Kr of the co-

group F̃
k( f )

m
in the space �1 are the products of the characters

of the co-group F
k(p)

n
and F

k(i )
l

irreps subduced on the co-

group F̃
k( f )

m

χ
([F̃

k
( f )
m

]Kr)
(R) = χ

([F̃
k
(p)
n

]
γ(p) )

(R) χ
([F̃

k
(i )
l

]
γ(i )

)
(R),

R ∈ F̃km( f ). (30)

The multiplication of two projective irreps of the group

F̃
k( f )

m
with factor systems ω(k(p)

n ) and ω(k(i )
l ) gives a projective

rep of the same group with the factor system ω(k( f )
m ) (as

k( f )
m ≡ k( f )

nl = k(p)
n + k(i )

l + Bnl , see also Section 2).
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The group F̃
k( f )

m
(G̃

k( f )
m

) either coincides with the little co-

group F
k( f )

m
(little group G

k( f )
m

) or is a subgroup of it

F̃
k( f )

m
⊆ F

k( f )
m

(G̃
k( f )

m
⊆ G

k( f )
m

). (31)

When F̃k( f )
m

= Fk( f )
m

then the projective rep (30) can be
decomposed into the irreps in the usual way, the characters
of irreps being taken from Tables of small irreps of little
groups (for example [9]). This possibility appears, for

instance, when k(p)
n1 = 0 or k(i )

l2 = 0.
If F̃

k( f )
m

⊂ F
k( f )

m
, the co-group F

k( f )
m

is decomposed into left

cosets of F̃
k( f )

m

F
k( f )

m
=

w∑
i=1

Ri F̃k( f )
m
, R1 = E,

Ri ∈ F
k( f )

m
, Ri /∈ F̃

k( f )
m

for i = 2, . . . , w. (32)

The operators Ri change both wave vectors k(p)
n and k(i )

l
but leave their sum unchanged modulo the reciprocal lattice
vector. This means that the space �1 transforms under the
operaitons Ri into linearly independent spaces �i = R̂i�1,
and

� =
w∑

i=1

�i (33)

being the space of the rep of the group F
k( f )

m
induced by the

rep [F̃
k( f )

m
]Kr of its subgroup F̃

k( f )
m

⊂ F
k( f )

m

[F
k( f )

m
]Kr = [F̃

k( f )
m

]Kr ↑ F
k( f )

m
. (34)

Further, the small rep [G
k( f )

m
]Kr = [F

k( f )
m

]Kr ⇑ G
k( f )

m
is con-

tained in the Kronecker product (26) which is the subject

of our consideration. The characters χ
([F

k
( f )
m

]Kr)
(g) (g ∈ Fk( f )

m
)

of this projective induced rep of F
k( f )

m
(or induced small rep

of Gk( f )
m

) can be calculated in the usual way

χ
([F

k
( f )
m

]Kr)
(g) =

∑
i

χ
(Kr)
i (g) (35)

where

χ
(Kr)
i (g) =



0, if g−1

i ggi /∈ F̃
k( f )

m
;

χ
([F̃

k
( f )
m

]Kr)
(g−1

i ggi ), if g−1
i ggi ∈ F̃

k( f )
m
.

(36)

As the characters of projective irreps of F
k( f )

m
(of small irreps

of G
k( f )

m
) are known (taken from Ref. [9], for example),

the projective rep of [F
k( f )

m
]Kr can be decomposed on the

irreducible components in the same way as it is made for
ordinary reps of point groups.
If the projective irreps [F̃

k( f )
m

] j with the same factor system
as the projective irreps of the co-group F

k( f )
m

are known,
there is a more simple procedure of the rep decomposition

Table 4. Characters of the Kronecker product
[D(1)

2d ]1 × [D(2)
2d ]1 ≡ χ and the characters of some ordinary

irreps of the point group D(1)
2d

D(1)
2d E S4x S−1

4x C2x Uyz Uyz̄ σy σz

χ 4 2 2 0 0 0 0 0

a1 1 1 1 1 1 1 1 1
a2 1 1 1 1 −1 −1 −1 −1
e 2 0 0 −2 0 0 0 0

Table 5. Kronecker products [D(1)
2d ]i × [D(2)

2d ] j of projective single-
and double-valued irreps of the little co-group D2d in terms of or-
dinary irreps of the point group D2d and subduction of ordinary
irreps of Oh point group onto the point group D(1)

2d

W1 W2 W3 W4 W5 W6 W7

W1 a1, a2, e b1, b2, e ē1 ē2 ē1 ē2 ē1, ē2

W2 b1, b2, e a1, a2, e ē2 ē1 ē2 ē1 ē1, ē2

W3 ē1 ē2 a2 b1 a1 b2 e
W4 ē2 ē1 b1 a2 b2 a1 e
W5 ē1 ē2 a1 b2 a2 b1 e
W6 ē2 ē1 b2 a1 b1 a2 e
W7 ē1, ē2 ē1, ē2 e e e e a1, a2, b1, b2

[Oh]i (⇑ O7
h) 0+

1 0+
2 0+

3 0+
4 0+

5 0+
6 0+

7 0+
8

[Oh]i ↓ D2d a1 b2 a1, b2 a2, e b1, e ē2 ē1 ē1, ē2

[Oh]i (⇑ O7
h) 0−1 0−2 0−3 0−4 0−5 0−6 0−7 0−8

[Oh]i ↓ D2d b1 a2 a2, b1 b2, e a1, e ē1 ē2 ē1, ē2

based on the Frobenius reciprocity theorem (see Section 2).
Such possibility arises in the two following cases:
a) when the rep [F̃

k( f )
m

]Kr is irreducible itself, i. e. its
characters satisfy the condition

∑
g∈F̃

|χ([F̃])(g)|2 = nF̃ (37)

where nF̃ is the order of F̃ (see Section 3.2);
b) when the subduction of the irreps of the co-group F

k( f )
m

onto the group F̃k( f )
m

gives directly the irreps of F̃k( f )
m
.

Besides, the irreps of F̃
k( f )

m
can be taken from Ref. [6]

where the characters of the standard form for all the
projective irreps with all the possible factor systems for all
the crystallographic point groups are given.

In our example of the [G](
∗W(p))
1 × [G](

∗W(i ))
1 Kronecker

product, the following intersections of point groups
are considered: F̃0 ≡ FW(1) ∩ FW(2) (D(1)

2d ∩ D(2)
2d = D(1)

2d ) for

0-component, F̃X(x) ≡ FW(1) ∩ FW(1) (D(1)
2d ∩ D(1)

2d = D(x)
2d ) for

X-component, and F̃6 ≡ FW(1) ∩ FW(4) (D(1)
2d ∩ D(4)

2d = Cs) for
6-component (see Table 2 or 3).
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Table 6. 0 states in the Kronecker products [G](
∗W)

i × [G](
∗W)
j

W1 W2 W3 W4 W5 W6 W7

W1 1+, 2−, 3±, 4+(2), 4−, 5+, 5−(2) 1−, 2+, 3±, 4+, 4−(2), 5+(2), 5− 6−, 7+, 8± 6+, 7−, 8± 6−, 7+, 8± 6+, 7−, 8± 6±, 7±, 8±(2)
W2 1−, 2+, 3±, 4+, 4−(2), 5+(2), 5− 1+, 2−, 3±, 4+(2), 4−,5+, 5−(2) 6+, 7−, 8± 6−, 7+, 8± 6+, 7−, 8± 6−, 7+, 8± 6±, 7±, 8±(2)

W3 6−, 7+, 8± 6+, 7−, 8± 2−, 3−, 4+ 1−, 3−, 5+ 1+, 3+, 5− 2+, 3+, 4− 4±, 5±

W4 6+, 7−, 8± 6−, 7+, 8± 1−, 3−, 5+ 2−, 3−, 4+ 2+, 3+, 4− 1+, 3+, 5− 4±, 5±

W5 6−, 7+, 8± 6+, 7−, 8± 1+, 3+, 5− 2+, 3+, 4− 2−, 3−, 4+ 1−, 3−, 5+ 4±, 5±

W6 6+, 7−, 8± 6−, 7+, 8± 2+, 3+, 4− 1+, 3+, 5− 1−, 3−, 5+ 2−, 3−, 4+ 4±, 5±

W7 6±, 7±, 8±(2) 6±, 7±, 8±(2) 4±, 5± 4±, 5± 4±, 5± 4±, 5± 1±, 2±, 3±(2),
4±, 5±

Rema r k. Numbers (m) in parentheses mean that the preceding irrep enters m times in the product.

3.1. 0 s t a t e s i n t h e K r o n e c k e r p r o d u c t s
[G](

∗W)
i × [G](

∗W)
j . In this case, the irreps of F̃

k( f )
m

= F̃0

are ordinary irreps of the point group D(1)
2d . The char-

acters of the Kronecker product of the projective irreps
[FW(1) ]1 × [FW(2) ]1 ≡ [D(1)

2d ]1 × [D(2)
2d ]1 obtained from Table 1

are given in Table 4 with the characters of those ordinary
irreps of the little co-group D(1)

2d which appear in the
decomposition

[D(1)
2d ]1 × [D(2)

2d ]1 = a1 + a2 + e. (38)

This rep of D(1)
2d induces into F0 = Oh the rep

0+
1 0

−
2 0

±
3 0

±
4 0

±
5 0

+
4 0

−
5 . This decomposition of the induced

rep is obtained using the Frobenius reciprocity theorem (see
Table 5).

Table 7. Characters of single- and double-valued projective irreps
of the little co-group D(x)

2d with the factor system corresponding

to the little co-group D(x)
4h

D2d E S4x S−1
4x C2x Uyz Uyz̄ σy σz

[D(x)
2d ]1 ≡ 1 1 −i i −1 1 −1 −i i

[D(x)
2d ]2 ≡ 2 1 i −i −1 −1 1 −i i

[D(x)
3d ]3 ≡ 3 1 −i i −1 −1 1 i −i

[D(x)
2d ]4 ≡ 4 1 i −i −1 1 −1 i −i

[D(x)
2d ]5 ≡ 5 2 0 0 2 0 0 0 0

[D(x)
2d ]6 ≡ 6 2

√
2i

√
2i 0 0 0 0 0

[D(x)
2d ]7 ≡ 7 2 −√

2i −√
2i 0 0 0 0 0

The same procedure may be used for all possible
Kronecker products [D(1)

2d ]i × [D(2)
2d ] j (i , j = 1− 7) both for

single- and double-valued irreps. As a result, one obtains
Table 5 where the subduction of single- and double-valued
ordinary irreps of Oh on D(1)

2d are also given. For example,

the direct product [G](
∗W)
3 × [G](

∗W)
4 has the 0-component

0−1 0
−
3 0

+
5 (rep [Oh]Kr is induced from the ordinary irrep b1

of D(1)
2d ). After induction (15), one obtains Table 6 that

gives directly the 0-components of the Kronecker products
involved.

3.2. X s t a t e s i n t h e K r o n e c k e r p r o d u c t s
[G](

∗W)
i × [G](

∗W)
j . The irreps of F̃X(x) ⊂ D(x)

4h may be

obtained directly from Table 1 by multiplying [D(1)
2d ]3 on

[D(1)
2d ]3−7 (for the single-valued projective irreps [D(x)

2d ]1−5)
and [D(1)

2d ]1−2 (for the double-valued projective trreps

[D(x)
2d ]6−7), respectively (see Table 7).
As seen from Table 2 for ∗k(p) = ∗k(i ) = ∗W,

γ (p) = γ (i ) = 1, the space of eight functions (27) with
n = l = 1, 2, t(p) = t(i ) = 2 transforms according to some
small rep of the little co-group D(x)

4h . Four function (27)
with n = l = 1, t(p) = t(i ) = 2 transform according to the
projective rep

α ≡ (D(1)
2d )1 × (D(1)

2d )1 = (D(x)
2d )1 + (D(x)

2d )3 + (D(x)
2d )5 (39)

of the point group D(x)
2d = D(1)

2d with the factor system

corresponding to the little co-group D(x)
4h . The functions (27)

with n = l = 1 and n = l = 2 can be considered as basis
functions of the projective rep of the little co-group D(x)

4h

induced by the rep α (39) of D(x)
2d with the factor system

corresponding to the little group D(x)
4h . This induction can

be made using the Frobenius theorem.

Table 8. Kronecker products [D(1)
2d ]i × [D(1)

2d ] j in terms of the pro-

jective irreps of D(x)
2d (with the factor system of the little co-

group D(x)
4h , Table 7) and subduction of the projective irreps

of the little co-group D(x)
4h onto the point group D(x)

2d

W1 W2 W3 W4 W5 W6 W7

W1 1,3,5 2,4,5 6 7 6 7 6, 7
W2 2,4,5 1,3,5 7 6 7 6 6, 7

W3 6 7 1 2 3 4 5
W4 7 6 2 1 4 3 5
W5 6 7 3 4 1 2 5
W6 7 6 4 3 2 1 5
W7 6, 7 6, 7 5 5 5 5 1,2,3,4

[D(x)
4h ]i (⇑ GX(x) ) X1 X2 X3 X4 X5

[D(x)
4h ]i ↓ D(x)

2d 5 5 2, 3 1, 4 6, 7
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Table 9. X states in the Kronecker products [G](
∗W)

i × [G](
∗W)
j

W1 W2 W3 W4 W5 W6 W7

W1 1,2,3,4 1,2,3,4 5 5 5 5 5(2)
W2 1,2,3,4 1,2,3,4 5 5 5 5 5(2)

W3 5 5 4 3 3 4 1, 2
W4 5 5 3 4 4 3 1, 2
W5 5 5 3 4 4 3 1, 2
W6 5 5 4 3 3 4 1, 2
W7 5(2) 5(2) 1, 2 1, 2 1, 2 1, 2 3(2), 4(2)

Rema r k. Numbers (m) in parentheses mean that the preceding irrep
enters m times in the product.

At the same time, they are the basis functions of the
small rep of the little group GX(x) contained in the basis of
the Kronecker product (26) and which, due to the relation

[G](
∗X)

WW =
(
(α ↑ FX(x) ) ⇑ GX(x)

) ↑ G, (40)

determines all the ∗X-components in the Kronecker pro-
duct (26). For example, the single-valued irreps [GX]i
i = 1, 2, 3, 4 are contained in (26) (see Table 8 where all

the Kronecker products [D(1)
2d ]i × [D(1)

2d ] j and the subduction

of single- and double-valued projective irreps of D(x)
4h on

D(x)
2d are given). After induction (15), one obtains Table 9

that gives directly X-components of the Kronecker products
involved.

4. Selection rules for electrical dipole
transitions

The symmetry of the dipole operator is the vector rep
of O7

h: 0v = [G0]4− = 0−4 . Since the vector k(p) = 0,

k( f )
m = k(i )

l (the so called direct transitions 0 ↔ 0, X ↔ X,
L ↔ L, W ↔ W etc are only allowed). The symmetry of
allowed final states for W ↔ W transitions is pointed out
in Table 5 by the entries of the columns containing b2

and e (0−4 ↓ D2d = b2 + e) in the row corresponding to
the symmetry of the initial state. For example, the direct
transition is allowed from the initial state of symmetry W3

to the final states of symmetry W6 and W7.
In the case of phonon-assisted electric dipole transitions,

these selection rules have to be supplemented with the
selection rules where the operator has the symmetry of the
phonon participating in the transition. In silicon crystal Si
atoms occupy the site a of symmetry Td. The symmetries
of phonons in this crystal are given by the rep of the space
group G = O7

h induced (indrep) by the vector rep t2 of the
site symmetry group Td [8,11]. The short symbol of this
indrep is

0(4−, 5+), X(1, 3, 4), L(1+, 2−, 3+, 3−), W(1, 2, 2).

It gives symmetry of phonons at the symmetry points of the
BZ. For example, the electric dipole transitions are allowed
from the initial electronic W3 state to the intermediate W6

and W7 states (when spin-orbit interaction is taken into
account, see Table 5). From these states, with assistance
of the phonons of symmetry W1, the transitions are allowed
in the final 0 and X states of symmetry 0+

6 , 0
−
7 , 0

±
8 , X5 and

0±6 , 0
±
7 , 20

±
8 , 2X5 (see Table 5, 8).

5. Conclusions

Our approach to the selection rules in crystals is based on
the projective irreps of point groups and consists of three
steps.

1) At first, one finds the wave vector selection rules. The
results may be given in the form of tables where the rows
and columns are numbered by wave vectors of the direct
product factors. Any row (column) of this table contains the
representatives of all the irreducible stars of the Kronecker
product.

2) Next, it is sufficient to fix one row (the first wave
vector) of this table and then consider only columns (the
second wave vector) giving on the intersection with the
chosen row the wave vectors of different irreducible stars.
Each wave vector is related to some little co-group. Two
co-groups correspond to the two factors in the Kronecker
product and the third — to the resulting one. The
intersection of two former co-groups is also a subgroup
of the resulting co-group (the corresponding wave vectors
satisfy the wave vector selection rule). The Kronecker
product of the projective irreps of these co-groups taken
on elements of their intersection is a small projective rep
with the needed factor system of the resulting co-group and
can be decomposed on the irreducible components, if the
projective irreps of the latter are known.

3) At last, the induction procedure from the projective rep
of the two initial co-groups intersection to the resulting little
co-groups is realized in order to find the definitive selection
rules for allowed transitions (subduction coefficients of
Kronecker products). The Frobenius reciprocity theorem
may be used at this stage, if the projective rep of the co-
groups intersection is decomposed into the irreducible ones.

The suggested approach seems to be the most easy-to-
use, if comparing to the traditional subgroup [1–4] and
full grup [5] methods. It does not depend either on the
choice of the coordinate system origin and of the k-star
vectors in the description of space groups and their small
irreps, or on the form of presentation of irreps of space
groups (small irreps of little groups [9,10] or p-equivalent
projective irreps of little co-groups [11]). Our approach may
be easily supplemented to the computer program generating
the irreps of space groups given at Bilbao Crystallographic
Server [12,13].
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