Влияние дефектности на электрокинетические и магнитные свойства неупорядоченного монооксида титана

© А.И. Гусев, А.А. Валеева

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: gusev@ihim.uran.ru

(Поступила в Редакцию 5 ноября 2002 г.)

Исследованы проводимость и магнитная восприимчивость неупорядоченного монооксида титана TiO_y ($0.920 \le y \le 1.262$) с вакансиями в подрешетках титана и кислорода. Температурные зависимости проводимости монооксидов TiO_y с $y \le 1.069$ описываются функцией Блоха—Грюнайзена с температурой Дебая 400-480 K, а температурные зависимости восприимчивости включают вклад парамагнетизма Паули электронов проводимости. Поведение проводимости и восприимчивости монооксидов титана TiO_y с $y \ge 1.087$ характерно для узкощелевых полупроводников с невырожденными носителями заряда, подчиняющимися статистике Больцмана. Ширина энергетической щели ΔE между валентной зоной и зоной проводимости монооксидов TiO_y ($y \ge 1.087$) равна 0.06-0.17 eV.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 03-03-32033а).

Неупорядоченный нестехиометрический монооксид титана TiO_v имеет кубическую кристаллическую структуру В1, обладает широкой областью гомогенности от TiO_{0.70} до TiO_{1.25} и содержит по 10–15 at.% структурных вакансий в подрешетках титана и кислорода [1]. Представление состава монооксида титана в виде ТіО_у не содержит информации о концентрации структурных вакансий в металлической и неметаллической подрешетках, поэтому более верно записать состав монооксида с учетом содержания структурных вакансий в каждой подрешетке, т.е. в виде $Ti_x O_z \equiv Ti_x \blacksquare_{1-x} O_z \Box_{1-z} \equiv TiO_y$ $(y = z/x; \blacksquare$ и \Box — структурные вакансии в подрешетках титана и кислорода соответственно). Такая форма записи отражает как реальный состав, так и структуру монооксида. Даже монооксид TiO_{1.00}, который формально имеет стехиометрический состав, содержит по 16.7 at.% вакансий в подрешетках титана и кислорода, поэтому его реальный состав $\sim Ti_{0.833}O_{0.833}$.

Свойства ТіО, изучены мало. Причины этого следующие: монооксид ТіО, сложно синтезировать, так как уже при 700-800 К он имеет нестабильный состав и даже при контролируемом парциальном давлении кислорода может диспропорционировать с образованием Ti₂O $(TiO_{0.50})$ или Ti_3O_2 $(TiO_{0.67})$ и кубического оксида или же кубического оксида и Ti_2O_3 ($TiO_{1.50}$), а также других фаз гомологического ряда Ті_nO_{2n-1} (n — целое, от 2 до 10). Неупорядоченное состояние монооксида титана термодинамически стабильно при T > 1500 K, а при температуре ниже 1500 К в разных концентрационных и температурных интервалах образуются упорядоченные фазы разного типа с различной симметрией. Однако неупорядоченное состояние монооксида TiO_v легко сохраняется в результате закалки от $T > 1500 \,\mathrm{K}$ и может существовать при комнатной температуре сколь угодно долго как метастабильно устойчивое состояние. При температурех $\sim 700, \sim 1000, \sim 1100 \, {\rm K}$ в ТіО_у происходят фазовые превращения, связанные с образованием сверхструктур. Тип и симметрия сверхструктур зависят от реального исходного состава монооксида титана. Достоверно установлено и неоднократно экспериментально подтверждено существование моноклинной (пространственная группа C2/m(A12m/1)) сверхструктуры Ті₅∎О₅□ [2-6]. Удовлетворительно описана также структура упорядоченной тетрагональной фазы Ti₄ O₅, соответствующей монооксиду с номинальным составом ТіО_{1.25} [2,4]. Что касается других упорядоченных фаз (орторомбические $TiO_{0.7-0.9}$, $TiO_{1.19}$, $Ti_{2.5}O_3$ ($Ti_5 \blacksquare O_6$) и кубическая Ti_{22.5}O_{22.5} (Ti₅■O₅□)), информация о них сводится к определению симметрии на основе электронно-микроскопических и дифрационных данных и к предположениям о возможной принадлежности этих фаз к одной из трех-четырех перечисляемых пространственных групп [4,7]. Авторы [4,7] рассматривают эти фазы как переходные от неупорядоченной кубической фазы ТіО, к упорядоченной моноклинной фазе Ti₅O₅. В работе [8] теоретически показана возможность существования упорядоченных орторомбических (пространственная группа *Immm*) фаз Ті₃О₂□ и Ті₂∎О₃. В фазе Ті₃О₂□ упорядочиваются атомы кислорода и неметаллические структурные вакансии, а в Ті₂∎О₃ упорядочение атомов Ті и металлических структурных вакансий происходит в подрешетке титана при статистическом распределении неметаллических вакансий.

При использовании обычных методов синтеза образцы TiO_y почти всегда двухфазны и содержат неупорядоченную и упорядоченную фазы одновременно. Для получения однофазных неупорядоченных образцов нужно применять специальную закалку. Температурные измерения кинетических и магнитных свойств TiO_y , проведенные в 60–70 гг., показали, что измерения начинали на образце одного химического и фазового состава, а после

измерения химический и фазовый состав были уже другими. Это обусловило противоречивость результатов. Например, для температурного коэффициента $d\rho/dT$ удельного сопротивления ρ неупорядоченного монооксида TiO_y с $y \approx 1$ в одних работах получено положительное значение [9–11], а в других — отрицательное [12]. В то же время все авторы экспериментальных исследований сходятся в одном: термоэдс и коэффициент Холла монооксидов TiO_y с y > 0.85 отрицательны [9–12].

Ненадежность и противоречивость экспериментальных данных обусловили появление большого числа работ по расчету электронной структуры TiO_v. Однако результаты расчетов, в том числе и ab initio, также противоречивы. Согласно [13–17], в электронно-энергетическом спектре кубического монооксида титана О2ри Ti3d-полосы разделены широкой (несколько eV) запрещенной зоной. По мнению авторов [17], наличие вакансий приводит к появлению в *p*-*d*-щели локальных пиков электронной плотности (вакансионных пиков); это согласуется с выводами расчетов [18,19] о наличии вакансионных состояний в незаполненных частях энергетического спектра TiO_v ниже уровня Ферми. Наличие щели шириной около 2 eV в гипотетическом бездефектном монооксиде TiO_{1.0} подтверждают авторы [20], однако, по их расчетам, появление вакансий сопровождается возникновением вакансионных состояний только вблизи дна полосы проводимости и не уничтожает p-d-щель. Согласно расчету [21], между О2pи Ti3d-полосами бездефектного монооксида TiO имеется щель шириной около 1.8 eV, а в упорядоченном моноклинном монооксиде Ti₅O₅ ширина щели равна 1.2 eV. Наличие запрещенной щели подтверждают экспериментальные исследования рентгеновских фотоэмиссионных спектров [20,22], спектров тормозного излучения и ультрафиолетовых фотоэмиссионных спектров [20], оптической проводимости [23] неупорядоченного монооксида TiO_v.

По результатам другой группы расчетных работ [24–26], в электронном спектре TiO_y нет p-d-щели. Теоретические выводы об отсутствии p-d-щели подтверждаются экспериментальными исследованиями рентгеновских эмиссионных спектров монооксида TiO_y с разным содержанием кислорода [27], результатами изучения рентгеновских фотоэлектронных и рентгеновских эмиссионных спектров [28] моноклинного упорядоченного монооксида Ti_5O_5 и бездефектного кубического монооксида $\text{TiO}_{1.0}$, полученного при высоком давлении.

Таким образом, имеющиеся экспериментальные и теоретические данные противоречивы, и до сих пор неясно, является ли монооксид титана металлом или полупроводником.

В данной работе сообщаются экспериментальные результаты по электропроводности (сопротивлению) и магнитной восприимчивости монооксида TiO_y во всей области гомогенности кубической фазы.

Образцы нестехиометрического кубического монооксида титана ТіО, с разным содержанием кислорода $(0.920 \le y \le 1.262)$ синтезированы твердофазным спеканием порошковых смесей металлического титана Ті и диоксида титана TiO₂ в вакууме 0.001 Ра при температуре 1770 К в течение 70 h с промежуточным перетиранием продуктов спекания через каждые 20 h. Все дифракционные исследования выполнены в СиКа12 -излучении на автодифрактометрах Siemens D-500 и STADI-P (STOE). Для достижения неупорядоченного состояния синтезированные образцы отжигали в течение 3 h при температуре 1330 К в кварцевых ампулах, вакуумированных до остаточного давления 0.0001 Pa; затем ампулу с образцами сбрасывали в воду, скорость закалки составляла $\sim 200 \,\mathrm{K}\cdot\mathrm{s}^{-1}$. На рентгенограммах закаленных образцов наблюдаются отражения только кубической неупорядоченной фазы ТіО, со структурой В1 (в образцах с $y \ge 1.112$) или отражения неупорядоченной TiO_v и моноклинной упорядоченной Ti₅O₅ [5] фаз (в образцах с у ≤ 1.087). Содержание кислорода в закаленных образцах TiO_v оказалось больше, чем можно было предположить, исходя из состава шихты. Это означает, что в процессе синтеза и отжига происходило частичное обеднение образцов титаном и обогащение кислородом.

Удельное сопротивление ρ измеряли четырехзондовым методом в интервале 77–300 К, сопротивление TiO_{1.262}, TiO_{1.087} и TiO_{0.920} измерено также при 4.2 К. Для обеспечения надежного электрического контакта на контактные поверхности образцов наносили In–Ga пасту.

Магнитную восприимчивость χ монооксида TiO_y (0.920 $\leq y \leq 1.262$) измеряли в интервале температур от 4.0 до 400 К в полях напряженностью 8.8, 25, 30 и 50 kOe на вибромагнитометре MPMS-XL-5 Quantum Design. Восприимчивость TiO_{0.946}, TiO_{1.069}, TiO_{1.067}, и TiO_{1.262} дополнительно измерена от 300 К температуры начала перехода беспорядок \leftrightarrow порядок (около 1000 К) методом Фарадея на маятниковых магнитных весах типа Доменикали.

Химический и фазовый состав образцов контролировали до и после измерений.

Измерения намагниченности M в полях напряженностью H до 50 kOe при температурах 4, 130 и 300 K показали, что изученные образцы монооксидов TiO_y не имеют остаточной намагниченности, так как зависимости M(H), построенные для разных температур, проходят через начало координат (рис. 1). Отсутствие остаточной намагниченности означает, что образцы TiO_y не содержат каких-либо ферромагнитных примесей.

Температурные зависимости удельного электросопротивления $\rho(T)$ монооксидов титана TiO_y разного состава показаны на рис. 2. В изученном температурном интервале при переходе от TiO_{0.920} к TiO_{1.262} сопротивление ρ увеличивается.

Рис. 1. Зависимость намагниченности M монооксидов титана TiO_y с различным содержанием кислорода от напряженности H магнитного поля при t = 4 и 300 K. Отсутствие остаточной намагниченности означает, что образцы TiO_y не содержат ферромагнитных примесей.

Рис. 2. Температурные зависимости удельного электросопротивления $\rho(T)$ неупорядоченных кубических монооксидов титана TiO_y с различным содержанием кислорода. Аппроксимация экспериментальных результатов функцией (3) для моноокисдов TiO_y с $y \le 1.069$ и функцией (13) для монооксидов TiO_y с $y \ge 1.087$ показана сплошными линиями.

Сопротивление оксидов TiO_{1.069}, TiO_{0.985}, TiO_{0.946} и TiO_{0.920} с повышением температуры растет, хотя температурный коэффициент сопротивления невелик. В веществах с электронной проводимостью в области T < 300 К температурная зависимость среднего времени свободного пробега $\bar{\tau}$, обусловленного рассеянием на фононах, неплохо описывается полуэмпирической функцией Блоха–Грюнайзена

$$\frac{1}{\bar{\tau}} = \frac{4\pi\lambda k_B \theta_D}{\hbar} \left(\frac{2T}{\theta_D}\right)^5 \int_0^{\theta_D/2T} \frac{x^5 dx}{\sinh^2 x},$$
 (1)

где λ — константа электрон-фононного взаимодействия, θ_D — характеристическая температура Дебая. В общем случае интеграл $\int_0^{\theta_D/2T} (x^5/\sinh^2 x) dx$ вычисляется следующим образом:

$$\int_{0}^{\theta_{D}/2T} \frac{x^{5} dx}{\sinh^{2} x} = -x^{5} \operatorname{cth} x \Big|_{0}^{\theta_{D}/2T} + 5 \int_{0}^{\theta_{D}/2T} x^{4} \operatorname{cth} x \, dx. \quad (2)$$

Поскольку удельное сопротивление $\rho = m/ne^2 \bar{\tau}$ (*m* и *n* — масса и концентрация носителей), то с учетом (2) и остаточного сопротивления $\rho(0)$ температурную зависимость сопротивления можно представить в виде

$$\rho(T) = \rho(0) + \frac{4\pi m\lambda k_B \theta_D}{ne^2 \hbar} \left(\frac{2T}{\theta_D}\right)^5 \int_0^{\theta_D/2T} \frac{x^5 dx}{\sinh^2 x}$$
$$\equiv \rho(0) + \frac{4\pi m\lambda k_B \theta_D}{ne^2 \hbar} \left(\frac{2T}{\theta_D}\right)^5$$
$$\times \left[-\left(\frac{\theta_D}{2T}\right)^5 \operatorname{cth}\left(\frac{\theta_D}{2T}\right) + 5 \int_0^{\theta_D/2T} x^4 \operatorname{cth} x \, dx \right]. \quad (3)$$

В разных интервалах температур интеграл $\int_0^{\theta_D/2T} (x^5/\sinh^2 x) dx$ имеет различный вид. Для T < 80 К и $\theta_D \sim 400-500$ К величина $\theta_D/2T > 3.14$; в этом случае интеграл $\int_0^{\theta_D/2T} (x^5/\sinh^2 x) dx$ вычисляется следующим образом:

$$\int_{0}^{\theta_{D}/2T} \frac{x^{5} dx}{\sinh^{2} x} = x^{5} (1 - \operatorname{cth} x) \Big|_{0}^{\theta_{D}/2T} + 10 \int_{0}^{\theta_{D}/2T} x^{4} [\exp(-2x) + \exp(-4x) + \dots + \exp(-2nx)] dx.$$
(4)

Химический состав ТіО _у	Состав с учетом дефектности подрешеток Ti _x O _z	Период решетки <i>a_{B1}</i> , nm	Функция	Параметры функций				
				$ ho(0),\ \mu\Omega\mathrm{m}$	$\sigma(0),\ \mu\Omega^{-1}\mathrm{m}^{-1}$	$\Delta E,$ eV	$ heta_D, ext{K}$	
TiO _{0.920}	Ti _{0.887} O _{0.816}	0.41867	3	2.01	0.4969	-	471	
TiO _{0.946}	Ti _{0.877} O _{0.829}	0.41840	3	2.10	0.4773	_	470	
TiO _{0.985}	Ti _{0.868} O _{0.855}	0.41834	3	2.02	0.4952	_	400	
TiO _{1.069}	Ti _{0.837} O _{0.895}	0.41808	3	2.56	0.3911	_	481	
TiO _{1.087}	Ti _{0.833} O _{0.906}	0.41738	13	3.81	0.2626	0.028	_	
TiO _{1.112}	Ti _{0.816} O _{0.907}	0.41711	13	4.17	0.2397	0.025	-	
TiO _{1.153}	Ti _{0.804} O _{0.927}	0.41704	13	6.16	0.1623	0.006	-	
TiO _{1.201}	Ti _{0.792} O _{0.952}	0.41688	13	7.99	0.1251	0.006	-	
TiO _{1.227}	Ti _{0.787} O _{0.965}	0.41674	13	5.47	0.1828	0.021	-	
TiO _{1.233}	Ti _{0.780} O _{0.961}	0.41665	13	5.99	0.1668	0.034	_	
TiO _{1.262}	$Ti_{0.771}O_{0.973}$	0.41662	13	6.54	0.1528	0.032	—	

Таблица 1. Параметры функций (3) и (13), описывающих проводимость σ (сопротивление ρ) кубического монооксида титана TiO_v \equiv Ti_xO_z (y = z/x) в интервале температур 4.2–300 K

После преобразований выражение (4) с учетом пределов интегрирования приобретает вид

$$\begin{split} & \theta_{p}/2^{2T} \frac{x^{5} dx}{\sinh^{2} x} = x^{5}(1 - \operatorname{cth} x) \\ &+ 10 \left\{ \frac{3}{4} + \frac{3}{128} + \frac{1}{324} + \frac{3}{4096} + \ldots + \frac{24}{a^{5}} \right. \\ &- \exp(-2x) \left[\frac{x^{4}}{2} + x^{3} + \frac{3x^{2}}{2} + \frac{3x}{2} + \frac{3}{4} \right] \\ &- \exp(-4x) \left[\frac{x^{4}}{4} + \frac{x^{3}}{4} + \frac{3x^{2}}{16} + \frac{3x}{32} + \frac{3}{128} \right] \\ &- \exp(-6x) \left[\frac{x^{4}}{6} + \frac{x^{3}}{9} + \frac{x^{2}}{18} + \frac{x}{54} + \frac{1}{324} \right] \\ &- \exp(-8x) \left[\frac{x^{4}}{8} + \frac{x^{3}}{16} + \frac{3x^{2}}{128} + \frac{3x}{512} + \frac{3}{4096} \right] - \ldots \\ &- \exp(-2nx) \left[\frac{x^{4}}{2n} + \frac{4x^{3}}{(2n)^{2}} + \frac{12x^{2}}{(2n)^{3}} + \frac{24x}{(2n)^{4}} + \frac{24}{(2n)^{5}} \right] \right\}, \end{split}$$

где $x = \theta_D / 2T$, причем $\theta_D / 2T > 3.14$.

При T > 80 К и $\theta_D \sim 400-500$ К величина $\theta_D/2T < 3.14$, поэтому интеграл $\int_0^{\theta_D/2T} x^4 \operatorname{cth} x \, dx$ находят как ряд $\int_0^{\theta_D/2T} x^4 \operatorname{cth} x \, dx = \sum_{k=0}^{\infty} 2^{2k} B_{2k} x^{4+2k} / [(4+2k)(2k)!]$, где B_{2k} — числа Бернулли. С учетом этого получаем

$$\int_{0}^{x} x^{4} \operatorname{cth} x \, dx = \frac{x^{4}}{4} + \frac{x^{6}}{18} - \frac{x^{8}}{360} + \frac{x^{10}}{4725} - \frac{x^{12}}{56700} + \frac{x^{14}}{654885} - \dots$$
(6)

Подставляя (6) в (2), получим

$$\int_{0}^{x} \frac{x^{5} dx}{\sinh^{2} x} = -x^{5} \operatorname{cth} + 5\left(\frac{x^{4}}{4} + \frac{x^{6}}{18} - \frac{x^{8}}{360} + \frac{x^{10}}{4725} - \frac{x^{12}}{56700} + \frac{x^{14}}{654885} - \dots\right), \quad (7)$$

где $x = \theta_D/2T$, причем $\theta_D/2T < 3.14$. После подстановки (7) в (3) и простых преобразований получим разложение в ряд формулы Блоха–Грюнайзена для случая, когда $\theta_D/2T < 3.14$

$$\rho(T) = \rho(0) + \frac{4\pi m\lambda k_B \theta_D}{ne^2\hbar} \left[-\operatorname{cth} x + 5\left(\frac{1}{4x} + \frac{x}{18} - \frac{x^3}{360} + \frac{x^5}{4725} - \frac{x^7}{56700} + \frac{x^9}{654885} - \dots \right) \right]_{x=\theta_D/2T}.$$
(8)

При аппроксимации температурной зависимости сопротивления монооксидов TiO_{1.069}, TiO_{0.985}, TiO_{0.946} и TiO_{0.920} формулами (3) и (5), когда $\theta_D/2T > 3.14$, разложение (5) ограничивали слагаемым с экспоненциальным множителем $\exp(-8x)$. В случае $\theta_D/2T < 3.14$ при аппроксимации сопротивления этих же монооксидов в разложении (8) учитывали слагаемые с множителем до x^{13} .

Экспериментальные зависимости $\rho(T)$ оксидов ТіО_{1.069}, ТіО_{0.985}, ТіО_{0.946} и ТіО_{0.920} (рис. 2) хорошо аппроксимируются функцией (3); найденные параметры $\rho(0)$ и θ_D приведены в табл. 1. Величина θ_D для изученных оксидов ТіО_y (0.920 $\leq y \leq 1.069$) равна 400–480 K, что хорошо согласуется с литературными данными. Согласно [10], θ_D равна от 350 до 410 K для эквиатомного монооксида ТіО_{1.00} и увеличивается при уменьшении температуры отжига. Для упорядоченного моноклинного монооксида Ті₅О₅ $\theta_D = 500$ K [21]. Сопротивление монооксидов TiO_y с $y \ge 1.087$ с ростом температуры от 4.2 до 300 К быстро уменышается. Малая величина удельного сопротивления (~ $10^{-6} \Omega \cdot m$) всех монооксидов титана характерна для металлов, однако отрицательный температурный коэффициент сопротивления $d\rho/dT$ монооксидов TiO_y с $y \ge 1.087$ является одним из основных признаков диэлектрического поведения. В интервале 4.2–300 К изменение сопротивления $\Delta \rho$ вследствие этого эффекта составляет 20–50%, что не позволяет рассматривать $\Delta \rho$ как малую поправку в приближении времени релаксации.

Удельная электропроводность σ пропорциональна произведению концентрации носителей n на их подвижность u, т.е.

$$\sigma(T) = en_{e,h}(u_e + u_h). \tag{9}$$

Если носители подчиняются статистике Больцмана, а энергетические зоны параболичны, что практически всегда справедливо вблизи краев зон [29], то концентрацию носителей можно представить в виде

$$n_e = 2(m^*)^{3/2} (k_B T / 2\pi\hbar^2)^{3/2} \exp(-\Delta E / 2k_B T), \quad (10)$$

где m^* — эффективная масса носителей заряда; ΔE — энергетический параметр, который имеет смысл энергии активации и в случае собственной проводимости равен ширине энергетической щели E_g между валентной зоной и зоной проводимости. Для больцмановского распределения подвижность носителей обратно пропорциональна температуре

$$u \sim AT^{-q}.$$
 (11)

Поскольку все образцы монооксида титана имеют не равное нулю остаточное сопротивление, с учетом (10) и (11) проводимость оксидов TiO_y ($y \ge 1.087$) можно представить в виде

$$\sigma(T) = \sigma(0) + 2(k_B m^* / 2\pi \hbar^2)^{3/2} T^{(3/2-q)} \times \exp(-\Delta E / 2k_B T).$$
(12)

Постоянная составляющая $\sigma(0)$ имеет смысл "несобственной" проводимости системы и означает, что проводимость не обращается в нуль при T = 0 K.

Экспериментальные зависимости $\sigma(T)$ монооксидов титана TiO_y ($y \ge 1.087$) описывались функцией (12) и функцией $\sigma(T) = \sigma(0) + B \exp(T^{-1/4})$, характерной для моттовских полупроводников при низкой температуре [30]. Численная аппроксимация показала, что зависимости $\sigma(T)$ значительно лучше описываются функцией (12), причем величина q лежит в интервале от 0.9 до 1.1; с учетом ошибок измерений можно принять, что $q \approx 1$, т.е.

$$\sigma(T) = \sigma(0) + BT^{1/2} \exp(-\Delta E/2k_B T).$$
(13)

Параметр q = 1 характерен для многоатомных полупроводников, в которых рассеяние происходит не только на акустических, но и на оптических фононах. Численные значения параметров функции (13), использованной

Рис. 3. Температурная зависимость проводимости $\sigma(T)$ монооксидов титана TiO_y в координатах $\ln\{[\sigma(T) - \sigma(0)]/T^{1/2}\} - 1/T$.

для описания зависимостей $\sigma(T)$ монооксидов TiO_y ($y \ge 1.087$), приведены в табл. 1.

Представление температурно-зависимой части проводимости (13) монооксидов TiO_y ($y \ge 1.087$) в координатах "In{ $[\sigma(T) - \sigma(0)]/T^{1/2}$ } – 1/*T*" (рис. 3) показывает, что линейная зависимость наблюдается во всем изученном интервале температур. Энергия активации ΔE для монооксидов от TiO_{1.087} до TiO_{1.227} мала и составляет ~ 0.01-0.03 eV, и лишь для TiO_{1.233} и TiO_{1.262} немного больше 0.03 eV(расчет по более точной формуле (12) дает для TiO_{1.262} величину $\Delta E = 0.043$ eV). Если собственная проводимость появляется около 300 K и выше, то нельзя определенно сказать, является ли найденная величина ΔE шириной запрещенной зоны собственного полупроводника или же это энергия активации примесного уровня. Выяснить это позволяет анализ магнитной восприимчивости.

Измерения магнитной восприимчивости χ показали, что на температурных зависимостях $\chi(T)$ всех образцов TiO_y (рис. 4, 5) можно выделить два участка с противоположным изменением χ как функции температуры. Убывание восприимчивости на низкотемпературном участке (при T < 150-200 K) характерно для парамагнитной составляющей описываемой модифицированным законом Кюри $\chi(T) = \chi(0) + C/(T + \Delta)$ с температурно-независимым парамагнитным вкладом $\chi(0)$ и с $\Delta > 0$. При температуре выше 150–200 K восприимчивость $\chi(T)$ включает наряду с вкладом $\chi(0) + C/(T + \Delta)$ также линейную, квадратичную или более сложную функцию температуры.

Парамагнетизм Кюри единицы объема вещества равен $\chi_V = N n_m \mu_{eff}^2/3k_B T$, где N — число атомов в единице объема, n_m — относительная концентрация атомов, имеющих магнитный момент, $\mu_{eff} = p\mu_B$ эффективный магнитный момент и μ_B — магнетон Бора. Поскольку $N = N_A d/M$ (N_A — число Авогадро, d — плотность, M — молекулярная масса), измерен-

TiOy	Функция	Интервал температур, К	Параметры функций						
			$\chi(0) \cdot 10^{6}, \ cm^{3} g^{-1}$	$\frac{C \cdot 10^6}{\mathrm{cm}^3 \mathrm{K} \mathrm{g}^{-1}}$	Δ, K	$b \cdot 10^{12},$ cm ³ K ⁻² g ⁻¹	$a \cdot 10^9,$ cm ³ K g ⁻¹	$\Delta E,$ eV	$p_{ ext{aver}},\ \mu_B$
TiO _{0.920}	14	4.0-400	1.629	17.9	55.0	0.501	_	-	0.089
TiO _{0.946}	14	4.0 - 1000	1.410	22.9	88.6	0.493	_	_	0.100
TiO _{0.985}	14	4.0 - 400	1.290	10.7	55.4	0.469	_	_	0.069
TiO _{1.069}	14	4.0 - 1000	1.237	0.54	8.5	0.659	—	_	0.015
TiO _{1.087}	16	4.0 - 1000	1.196	14.9	71.8	—	—	0.061	0.081
TiO _{1.112}	17	4.0 - 400	1.059	44.9	96.0	_	0.889	_	0.225
TiO _{1.153}	17	4.0 - 400	0.909	56.4	89.7	_	0.898	_	0.224
TiO _{1.201}	17	4.0 - 400	0.798	58.3	39.5	_	1.243	_	0.195
TiO _{1.227}	17	4.0 - 400	0.806	51.7	34.6	_	1.025	_	0.178
TiO _{1.233}	17	4.0 - 400	0.917	28.1	14.5	_	0.578	_	0.118
TiO _{1.262}	16	4.0 - 1000	0.847	24.1	7.8	—	—	0.173	0.101

Таблица 2. Параметры функций (14) и (16), описывающих магнитную восприимчивость χ, и некоторые магнитные характеристики кубического монооксида титана TiO_γ

ная магнитная восприимчивость единицы массы равна $\chi = \chi_V/d = (n_m N_A/M)(p\mu_B)^2/(3k_BT) \equiv C/T$. Отсюда $p^2 = (CM/n_m)(3k_B/N_A\mu_B^2)$ или с учетом значений N_A , μ_B и $k_B \quad p \approx \sqrt{8CM/n_m}$, где константа Кюри C имеет размерность сm³ K g⁻¹. Если концентрация n_m атомов, обладающих магнитным моментом, неизвестна, то усредненный по всем атомам магнитный момент определяется как $p_{\rm aver} \approx \sqrt{8CM}$. Заметим, что для правильной оценки величин p или $p_{\rm aver}$ нужно использовать молекулярную массу M, которая соответствует реальному составу монооксида титана с учетом содержания вакансий в каждой подрешетке, т. е. $Ti_X O_z$.

Расчет с использованием найденных величин константы C показал, что усредненный по всем атомам эффективный магнитный момент μ_{eff} составляет

Рис. 4. Магнитная восприимчивость χ неупорядоченных кубических монооксидов титана TiO_y с различным содержанием кислорода в интервале температур от 4.0 до 400 K (измерения выполнены в поле напряженностью H = 25 kOe).

0.015-0.225 магнетона Бора (табл. 2). Малая величина μ_{eff} указывает на то, что вклад Кюри в восприимчивость является, скорее всего, примесным.

Рис. 5. Магнитная восприимчивость монооксидов TiO_y в интервале от 4.0 K до температуры начала перехода беспорядок \leftrightarrow порядок (около 1000 K). На вставке высокотемпературная восприимчивость монооксидов TiO_{1.087} и TiO_{1.262} показана в координатах $\ln \{[\chi(T) - \chi(0)]/T^{1/2}\} - 1/T$.

По-видимому, в монооксиде TiO_y большинство ионов Ti^{2+} имеет спаренные электроны или существует обменное катион-катионное взаимодействие. Определить методом ЭПР наличие в монооксиде TiO_y каких-либо ионов с нескомпенсированным магнитным моментом не удалось из-за высокой концентрации делокализованных электронов. Поскольку ферромагнитные примеси в образцах TiO_y отсутствуют, наличие малого эффективного магнитного момента может быть обусловлено ионами Ti^{2+}

и Ti³⁺, имеющими примесную природу. Содержание таких примесных ионов составляет, судя по величине p, от 2 до 8 at.%. Наиболее отчетливо парамагнетизм Кюри наблюдается для монооксидов титана TiO_y с относительно большим содержанием кислорода, y > 1.2 (рис. 5).

Зависимость $\chi(T)$ монооксидов титана TiO_y с $y \leq 1.069$ (рис. 4, 5) во всем изученном температурном интервале (4.2–400 или 4.2–1000 K) хорошо описывается функцией

$$\chi(T) = \chi(0) + C/(T + \Delta) + bT^2.$$
(14)

Наличие квадратичного члена bT^2 характерно для парамагнетизма Паули электронов проводимости. Это согласуется с металлическим типом проводимости этих монооксидов.

Температурные зависимости восприимчивости монооксидов TiO_y с $y \ge 1.087$ более сложные — это особенно заметно в высокотемпературной области (рис. 5). Если концентрация носителей заряда в TiO_y с $y \ge 1.087$ при T > 300 K описывается формулой (10), то в этом случае в соответствии с формулой Кюри $\chi_p(T) = n_e (\mu_B)^2 / k_B T$ часть магнитной восприимчивости, зависящая от температуры, будет иметь парамагнитную составляющую

$$\chi_p(T) = 2 (m^* / 2\pi\hbar^2)^{3/2} (k_B)^{1/2} (\mu_B)^2 T^{1/2} \exp(-\Delta E / 2k_B T)$$

$$\equiv AT^2 \exp(-\Delta E / 2k_B T), \qquad (15)$$

где $A = 2 (m_0/2\pi\hbar^2)^{3/2} (k_B)^{1/2} (\mu_B)^2 (m^*/m_0)^{3/2}$ = 3.008 · 10⁻⁹ $(m^*/m_0)^{3/2}$ [K^{-1/2}]; m_0 — масса электрона. Заметим, что формула (15) описывает безразмерную восприимчивость единицы объема. Учитывая отмеченные ранее особенности зависимостей $\chi(T)$ и $A_m = A/d$, измеренную массовую восприимчивость монооксидов TiO_y c $y \ge 1.087$ в температурном интервале от 4.2 до 1000 К можно аппроксимировать функцией

$$\chi(T) = \chi(0) + A_m T^{1/2} \exp(-\Delta E/2k_B T) + C/(T + \Delta),$$
 (16)

учитывающей температурно-независимый вклад $\chi(0)$, парамагнитный вклад Паули для электронной системы с энергетической щелью и парамагнитный вклад Кюри. При T < 400 К второе слагаемое в (16) можно заменить линейным по температуре членом aT, поэтому воспри-имчивость монооксидов TiO_y с $y \ge 1.087$ в интервале 4.0-400 К описывалась как

$$\chi(T) = \chi(0) + C/(T + \Delta) = aT.$$
 (17)

Численные значения параметров функций (14), (16) и (17), которыми аппроксимировали зависимости $\chi(T)$ изученных монооксидов титана TiO_y , приведены в табл. 2.

Коэффициенты A_m зависимости (16)для монооксидов TiO_{1.087} и TiO_{1.262} составляют $0.012\cdot 10^{-6}$ и $0.034 \cdot 10^{-6} \, \text{cm}^3 \, \text{g}^{-1} \, \text{K}^{-1/2}$, плотности $\text{TiO}_{1.087}$ и TiO_{1.262} равны 4.97 и 4.82 g cm⁻³. Эффективная масса носителей, выраженная через m_0 , равна $m^* = 4.799 \cdot 10^5 (A_m d)^{2/3} m_0$. С учетом этого эффективная масса носителей в TiO_{1.087} и TiO_{1.262} составляет $\sim 7m_0$ и $\sim 14m_0$. Достаточно большая эффективная подтверждает правомерность масса применения распределения Больцмана для описания концентрации носителей в монооксидах TiO_v с y > 1.087.

Найденные из зависимостей $\chi(T)$ (16) монооксидов TiO_{1.087} и TiO_{1.262} величины ΔE равны 0.061 и 0.173 eV. Значения ΔE , определенные для этих же монооксидов из температурных зависимостей проводимости, равны 0.028 и 0.032 eV. Можно полагать, что значения ΔE , найденные из низкотемпературных зависимостей проводимости, соответствуют энергии активации примесных уровней, тогда как значения ΔE , полученные для более широкого интервала температур из магнитной воспри-имчивости, определяют ширину запрещенной зоны в случае собственной проводимости. Малая величина запрещенной зоны позволяет рассматривать монооксид титана TiO_y с $y \geq 1.087$ как узкощелевой полупроводник.

Таким образом, совокупность полученных кинетических и магнитных данных позволяет считать, что при увеличении содержания кислорода в электронной структуре неупорядоченного кубического монооксида титана ТіО_v появляется узкая щель между валентной зоной и зоной проводимости. В соответствии с этим в зависимости от содержания кислорода монооксид ТіО_у может вести себя как *d*-металл или как полупроводник. Это означает, что при увеличении содержания кислорода в неупорядоченном монооксиде TiO_v, т.е. при уменьшении концентрации кислородных вакансий и одновременном росте концентрации титановых вакансий, экспериментально наблюдается переход металл-полупроводник. Возникает вопрос, не является ли этот концентрационный переход моттовским переходом. Действительно, согласно [30-32], сильно легированные полупроводники (с концентрацией примесных атомов до десятых долей процента) являются неупорядоченными структурами, и в них при температуре 0К наблюдается концентрационный переход металл-изолятор, а при T > 0 К происходит обусловленный корреляциями переход металл-полупроводник. Такими полупроводниками являются, например, оксиды переходных металлов типа NiO [30]. Измерение электропроводности при переходе металл-изолятор является функцией некоторого внешнего параметра, приводящего к изменению периода (объема) решетки. Таким параметром может быть состав, давление, магнитное поле. При меньшем периоде решетки вещество может обладать электронной проводимостью, а при большем — становится изолятором [29,33,34]. В случае монооксида титана ТіО_у рост периода решетки а_{В1}, происходящий при увеличении содержания кислорода, сопровождается изменением проводимости от металлической к полупроводниковой. Однако для моттовских полупроводников в области низких температур проводимость имеет следующую температурную зависимость: $\sigma(T) \sim \exp(T^{-1/4})$ [30]; тогда как в данной работе для TiO_y при y > 1 численый анализ температурных зависимостей проводимости показал, что $\sigma(T) \sim T^{1/2} \exp(T^{-1})$. Кроме того, концентрация структурных вакансий в монооксиде титана на несколько порядков (в тысячи и даже десятки тысяч раз) выше, чем концентрация неупорядоченно распределенных примесных атомов в моттовских полупроводниках. С учетом этого можно полагать, что концентрационный переход металл—полупроводник в неупорядоченном монооксиде титана TiO_y не является моттовским переходом.

Высокая концентрация структурных вакансий в подрешетках титана и кислорода монооксида TiO_y является предпосылкой к упорядочению. В [35] экспериментально и теоретически показано, что в моноклинной сверхструктуре типа Ti_5O_5 в определенных кристаллографических направлениях существуют непрерывные вакансионные каналы (структура Ti_5O_5 подробно описана и проанализирована в монографии [36]). В связи с этим в дальнейшем представляет значительный интерес изучение электрокинетических и магнитных свойств упорядоченного нестехиометрического монооксида титана.

Авторы благодарят R. Henes'а за помощь в измерении сопротивления монооксидов $TiO_{1.262}$, $TiO_{1.087}$ и $TiO_{0.920}$ при 4.2 K.

Список литературы

- А.И. Гусев, А.А. Ремпель. Нестехиометрия, беспорядок и порядок в твердом теле. УрО РАН, Екатеринбург (2001). 580 с.
- [2] D. Watanabe, J.R. Castles, A. Jostsons, A.S. Malin. Nature 210, 5039, 934 (1966); Acta Crystallogr. 23, 2, 307 (1967).
- [3] E. Hilti, F. Laves. Naturwissenschaften 55, 3, 131 (1968).
- [4] D. Watanabe, O. Terasaki, A. Jostsons, J.R. Castles. In: The Chemistry of Extended Defects in Non-Metallic Solids / Ed. by L. Eyring, M.O. Keeffe. North-Holland Publ., Amsterdam–London (1970). P. 238.
- [5] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Письма в ЖЭТФ 71, 11, 675 (2000).
- [6] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Неорган. материалы 37, 6, 716 (2001).
- [7] E. Hilti. Naturwissenschaften 55, 3, 130 (1968).
- [8] А.И. Гусев. Письма в ЖЭТФ 74, 2, 96 (2001).
- [9] A.D. Pearson. J. Phys. Chem. Solids 5, 4, 316 (1958).
- [10] S.P. Denker, J. Appl. Phys. 37, 1, 142 (1966).
- [11] М.И. Айвазов, И.А. Домашнев, А.Г. Саркисян, Т.В. Резчикова. Изв. АН СССР. Неорган. материалы 6, 4, 745 (1970).
- [12] M.D. Banus, T.B. Reed, A.J. Strauss. Phys. Rev. B 5, 8, 2775 (1972).
- [13] M. Schoen, S.P. Denker. Phys. Rev. 184, 3, 864 (1969).
- [14] L.F. Mattheis. Phys. Rev. B 5, 2, 290 (1972).
- [15] A. Neckel, P. Rastl, R. Eibler, P. Weinberger, K. Schwarz. J. Phys. C: Solid State Phys. 9, 4, 579 (1976).
- [16] A. Neckel. Intern. J. Quant. Chem. 23, 4, 1317 (1983).

- [17] L.M. Huisman, A.E. Carlsson, C.D. Gellat, H. Ehrenreich. Phys. Rev. B 22, 2, 991 (1980).
- [18] V.A. Gubanov, A.L. Ivanovsky, G.P. Shvelkin, D.E. Ellis. J. Phys. Chem. Solids 45, 7, 719 (1984).
- [19] A.L. Ivanovsky, V.I. Anisimov, D.L. Novikov, A.I. Lichnetstein, V.A. Gubanov. J. Phys. Chem. Solids 49, 5, 465 (1988).
- [20] S.R. Barman, D.D. Sarma. Phys. Rev. B 49, 23, 16141 (1994).
- [21] C. Leung, M. Weinert, P.B. Allen, R.M. Wentzcovitch. Phys. Rev. B 54, 11, 7857 (1996).
- [22] G.K. Wertheim, D.N.E. Buchanan. Phys. Rev. B 17, 6, 2780 (1978).
- [23] S. Gokhale, S.R. Barman, D.D. Sarma. Phys. Rev. B 52, 20, 14526 (1995).
- [24] D.R. Jennison, A.B. Kunz. Phys. Rev. Lett. 39, 7, 418 (1977).
- [25] J.K. Burdett, T. Hughbanks. J. Amer. Chem. Soc. 106, 11, 3101 (1984).
- [26] G. Hobiger, P. Herzig, F. Schlapansky, A. Neckel. J. Phys.: Condens. Matter 2, 20, 4595 (1990).
- [27] K. Tsutsumi, O. Aita, K. Ichikawa. Phys. Rev. B 15, 10, 4638 (1977).
- [28] S. Bartkowski, M. Neumann, E.Z. Kurmaev, V.V. Fedorenko, S.N. Shamin, V.M. Cherkashenko, S.N. Nemnonov, A. Winarski, D.C. Rubie. Phys. Rev. B 56, 16, 10656 (1977).
- [29] И.М. Цидильковский. Бесщелевые полупроводники новый класс веществ. Наука, М. (1986). 238 с.
- [30] N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials. Clarendon Press, Oxford (1971). 451 p.
- [31] Н. Мотт. Электроны в неупорядоченных структурах. Мир, М. (1969). 172 с.
- [32] N.F. Mott. Metall-Insulator Transitions. Taylor & Francis, London (1974). 294 p.
- [33] C. Kittel. Introduction to Solid State Physics. 7th ed. Wiley & Sons, N.Y. (1996). P. 284.
- [34] И.М. Цидильковский. Электронный спектр бесщелевых полупроводников. УрО АН СССР, Свердловск (1991). 224 с.
- [35] А.А. Валеева, Г. Танг, А.И. Гусев, А.А. Ремпель. ФТТ 45, *1*, 84 (2003).
- [36] A.I. Gusev, A.A. Rempel, A.A. Magerl. Disorder and Order in Strongly Nonstoichiometric Compounds. Transition metal carbides, nitrides and oxides. Springer, Berlin–Heidelberg–N.Y. (2001). 607 p.