Величина и температурная зависимость псевдощели в YBCO, полученные из резистивных измерений

© Д.Д. Прокофьев, М.П. Волков, Ю.А. Бойков

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 16 августа 2002 г. В окончательной редакции 3 декабря 2002 г.)

Анализируется температурная зависимость добавочной проводимости $\Delta \sigma$ эпитаксиальных пленок YBCO. Добавочная проводимость определялась по разности экстраполированного в область низких температур нормального сопротивления и измеренного сопротивления. Обнаружено, что температурная зависимость добавочной проводимости хорошо описывается выражением $\Delta \sigma = A(1 - T/T^*) \exp(\Delta^*/T)$. В предположении, что эта зависимость отражает появление псевдощели при температурая значительно выше критической температуры сверхпроводимости T_c , вычислены величина и температурная зависимость псевдощели Δ^* . Проведено сравнение с экспериментальными и теоретическими литературными данными. Обсуждается переход к флуктуационной проводимости вблизи критической температуры T_c .

При измерениях электрических, магнитных и оптических свойств ВТСП-монокристаллов с концентрацией носителей, соответствующей максимальной величине Т_с ("оптимально легированных"), или с меньшей концентрацией ("недолегированных") обнаружены особенности, появляющиеся при температурах ниже некоторой температуры T^* , где $T^* > T_c$ и тем выше, чем ниже концентрация носителей [1]. Для объяснения этих особенностей выдвинуто предположение об образовании в спектре возбуждений ВТСП-монокристаллов "псевдощели" при температурах значительно выше T_c , т.е. при уменьшении плотности состояний в интервале энергий в несколько десятков meV около уровня Ферми, но не до нуля (как было бы в случае сверхпроводящей щели при $T < T_c$), а до некоторой конечной величины. В настоящее время существуют два основных подхода к вопросу о происхождении псевдощели: 1) ее источником являются флуктуации "диэлектрического" типа (антиферромагнитные, типа волны зарядовой плотности, а также фазового расслоения); 2) псевдощель имеет сверхпроводящую природу. Дискуссия по этому вопросу продолжается [2,3]. Мы будем следовать второму подходу, суть которого состоит в следующем: при температуре T^* образуются сверхпроводящие пары, а при Т_с возникает когерентность (фазы параметра порядка) в объеме образца и устанавливается собственно сверхпроводящее состояние [4-7]. Тогда наличие сверхпроводящих пар при $T_c < T < T^*$ должно отражаться в температурной зависимости сопротивления в этой области температур.

1. Образцы и методика измерений

В настоящей работе изучались эпитаксиальные пленки YBa₂Cu₃O_{7- δ} (YBCO), полученные лазерным напылением на подложках SrTiO₃ [8]. Рентгеновские измерения показали, что ось с пленок ориентирована нормально к подложке. Из пленок толщиной 260 nm были сформированы мостики шириной 3 μ m и длиной 40 µm. Электрические контакты образованы напылением серебряных пленок, к которым провода приклеивались проводящим клеем на основе серебряной пудры. Малое удельное сопротивление при комнатной температуре ($\rho_{300} \sim 160 \,\mu\Omega \cdot cm$), большое отношение $ho_{300}/
ho_{100}\sim 2.1$ и малая ширина перехода $\Delta T_c = T(0.9R_n) - T(0.1R_n) = 2.7 \, {
m K}$ свидетельствуют о структурном совершенстве пленок. Содержание кислорода в пленках несколько ниже оптимального, что связано с образованием пленки in situ, без дополнительного отжига в атмосфере кислорода. Содержание кислорода оценивалось по значению $T_c(0.5R_{100}) = 89.5 \,\mathrm{K}$ и величине параметра решетки и составляло $(7 - \delta) \sim 6.85$. Измерение температурной зависимости сопротивления пленок проводилось четырехзондовым методом на постоянном токе с плотностью J_a от $10^3 \,\mathrm{A/cm^2}$ при комнатной температуре до $10 \,\mathrm{A/cm^2}$ при низких T и при ступенчатом изменении температуры с шагом 1.5-2К при высоких температурах и с шагом 0.2 К в области сверхпроводящего перехода. Температура измерялась медь-константановыми термопарами. Стабилизация температуры на каждой температурной ступеньке была порядка 0.02 К, при этом с целью уменьшения систематической ошибки определения температуры образца на каждой ступеньке при помощи дополнительного нагревателя минимизировался градиент температуры вблизи образца. Использованная методика измерений и хранение образца между экспериментальными циклами при температуре жидкого азота обеспечили воспроизводимость измерений в пределах нашей экспериментальной точности $\sim 0.005 \,\Omega$.

2. Экспериментальные результаты и их обработка

На рис. 1 (кривая I) приведена температурная зависимость сопротивления для одного из измеренных мостиков. При высоких температурах (от 300 до \approx 200 K)

Puc. 1. Зависимость от температуры сопротивления R, производной dR/dT и функции R_n , аппроксимирующей R(T) в интервале 200–300 К. Среднеквадратичное отклонение $R_n(T)$ в этом интервале температур равно 0.01 Ω . I — экспериментальная зависимость R(T), 2 — экстраполированная зависимость $R_n = -1.749 \cdot 10^{-4}T^2 + 0.2774T + 13.98$, 3 — производная d(R(T))/dT, 4 — экстраполяция высокотемпературного участка зависимости d(R(T))/dT. На вставке показана зависимость $R_n(T) - R(T)$.

зависимость R(T) хорошо описывается выражением вида $R_n(T) = AT^2 + BT + C$ с небольшим по величине коэффициентом А. Экстраполяция этой зависимости в область низких температур показана сплошной кривой 2. На вставке к рис. 1 приведена зависимость разности экстраполированного и измеренного сопротивления $R_n(T) - R(T)$. Видно, что, начиная с некоторой величины $T^* \approx 203$ K, сопротивление уменьшается с понижением температуры более резко, чем при высоких температурах. Такое поведение сопротивления наблюдалось во многих работах для оптимально легированных и недолегированных монокристаллов ҮВСО и других купратов [1,9–11]. На рис. 1 также приведена зависимость dR/dT от температуры (кривая 3); из этого рисунка видны линейная зависимость dR(T)/dT (кривая 4) в интервале $T = 300 - 200 \,\mathrm{K}$ и достаточно выраженное отклонение от нее при $T \sim T^*$. Кривые 3 и 4 дают наглядную иллюстрацию изменения характера зависимости R(T) при прохождении температуры через T^* .

Рассматривая более резкое уменьшение сопротивления ниже T^* как следствие образования при этой температуре сверхпроводящих пар, мы провели анализ экспериментальных данных в терминах добавочной, или избыточной, проводимости $\Delta\sigma$, вычисляемой по значениям измеренного и экстраполированного сопротивления $\Delta\sigma = 1/\rho(T) - 1/\rho_n(T)$, т.е. методом, аналогичным применяемому при исследовании флуктуационной добавки к проводимости в сверхпроводниках при температурах, немного превышающих критическую. На рис. 2 приведены зависимости добавочной проводимости $\Delta\sigma$ (кривая 1) и $\ln \Delta\sigma$ (кривая 2) от обратной температуры.

Видно, что в широком температурном интервале кривая $\ln \Delta \sigma(T)$ хорошо аппроксимируется линейной зависимостью $\ln(\Delta \sigma) = a + b/T$ (кривая 3), т.е.

$$\Delta \sigma = D \exp(b/T),\tag{1}$$

где a, b, D — константы. Введение множителя $(1 - T/T^*)$ позволяет существенно улучшить аппроксимацию экспериментальной кривой при высоких температурах, т.е.

$$\Delta \sigma = A(1 - T/T^*) \exp(\Delta^*/T), \qquad (2)$$

где Δ^* и A — константы, определяемые при аппроксимации экспериментальных данных этой формулой. Температурная зависимость $\ln \Delta \sigma$, вычисленная как логарифм выражения (2), представлена на рис. 2 кривой 4.

Из сравнения кривых 2 (эксперимент) и 4 видно, что формула (2) хорошо описывает экспериментальные данные в интервале температур от 95 до 165 К; при более высоких температурах (165 К $< T < T^* = 203$ К) $\Delta \sigma$ уменьшается при приближении *T* к *T*^{*} быстрее, чем следует из (2). Более подробно этот температурный интервал показан на вставке *a*, на которой приведен набор кривых, построенных по формуле (2) с параметром Δ^* , изменяющимся от 524 до 0 К (величина *A* для всех кривых одинакова). Кривые 2–4 пересекают экспериментальную кривую I в точках, в которых $\Delta^*(T) = 400$, 300 и 200 К соответственно. Очевидно, что отклонение экспериментальной кривой от кривой *1* на вставке *a* при $T \ge 165$ К (или, что то же самое, кривой 2 от кривой *4* на рис. 2) можно описать температурно-зависимой

Puc. 2. Зависимости избыточной проводимости и ее логарифма, а также аппроксимирующих функций (формулы (1) и (2)) от обратной температуры. $I, 2 - \Delta \sigma(T^{-1})$ и $\ln \Delta \sigma(T^{-1})$ соответственно; 3, 4 — зависимости $\ln \Delta \sigma$, рассчитанные с помощью (1) и (2) соответственно ($T^* = 203.3 \pm 0.5$ K, $D = 1.244 \Omega^{-1} \cdot \text{cm}^{-1}$, b = 676 K, $A = 10.9 \pm 0.3 \Omega^{-1} \cdot \text{cm}^{-1}$ и $\Delta^* = 524 \pm 3$ K); 5 — зависимость $\ln \Delta \sigma(T^{-1})$, где $\Delta \sigma$ рассчитана по формуле (2), в которой Δ^* есть $\Delta^*(T)$, удовлетворяющая формуле (3). На вставке *a*: I — экспериментальные данные; I-5 рассчитаны с помощью формулы (2) для $\Delta \sigma$, в которой величина Δ^* взята равной 524, 400, 300, 200 и 0 K соответственно. На вставке *b* приведены обработанные данные работы [9] для монокристалла YBa₂Cu₃O_{6.78}: I — экспериментальные данные; *I* и 2 рассчитаны по формуле (2) для $\Delta \sigma$, а 3 и 4 — по формуле (П2). Значения параметров T^* , Δ^* , A, M приведены в тексте и таблице. Значение M определялось по экспериментальным данным в непосредственной близости от T^* , где мало отношение $\Delta^*(T)/T$ (вклад в $\ln \Delta \sigma < 0.5\%$). 5 — зависимость $\ln \Delta \sigma(T^{-1})$, в которой избыточная проводимость $\Delta \sigma$ рассчитана по формуле (2) табо с T^{-1} .

функцией $\Delta^*(T)$. Следовательно, по экспериментальной кривой $\ln \Delta \sigma$ можно построить зависимость Δ^* от температуры вплоть до T^* . На рис. 3 (кривая 3) приведена полученная таким образом зависимость $\Delta^*(T)$. В широком температурном интервале Δ^* почти не зависит от температуры, а вблизи T^* функция $\Delta^*(T)$ хорошо аппроксимируется корневой зависимостью

$$\Delta^*(T) = 95.5\sqrt{203.2} - T,$$
(3)

показанной кривой 5 на рис. 2.

При описанной выше обработке экспериментальных данных вводится величина Δ^* , которая обладает следующими свойствами.

1) Δ^* определяет некоторый процесс тепловой активации через энергетическую щель, что следует из вида формулы (1).

2) $\Delta^* \neq 0$ в том же температурном интервале, в котором в купратах проявляются отклонения от фермижидкостного поведения, связанные с существованием псевдощели в спектре возбуждений [1,9–11]. 3) Величина Δ^* на низкотемпературном плато $\Delta_m^* \approx 520 \,\mathrm{K}$ (45 meV) близка к значению псевдощели $\Delta^* \approx 500 \,\mathrm{K}$, полученному в [12] для тонких пленок YBaCuO с такой же концентрацией кислорода при анализе релаксации фотоиндуцированного уменьшения пропускания света с пикосекундным разрешением.

4) Поведение Δ^* вблизи T^* характерно для температурной зависимости параметра порядка вблизи точки фазового перехода второго рода (что допускается теорией [13], хотя предполагается, что между нормальным состоянием и состоянием с ненулевой псевдощелью более вероятен плавный переход (кроссовер)).

Описание зависимости $\Delta\sigma(T)$ формулой (2) имеет, по нашему мнению, следующий смысл: добавочная проводимость пропорциональна плотности сверхпроводящих носителей, которая в первом приближении может быть оценена не слишком далеко от T^* выражением вида $n_s \sim (1 - T/T^*)$, и обратно пропорциональна числу пар $\sim \exp(-\Delta^*/kT)$, разрушенных тепловым движени-

Рис. 3. Зависимости величины псевдощели Δ^* от температуры в YBCO при различном содержании кислорода. Кривые 1–5 соответствуют последовательно уменьшающейся концентрации кислорода $(7 - \delta) = 6.93$, 6.88, 6.85, 6.78, 6.68 в YBa₂Cu₃O_{7- δ}. Сплошными линиями показаны соответствующие аппроксимирующие корневые зависимости, их параметры приведены в таблице. Кривая 4*a* — зависимость псевдощели Δ^* от температуры, полученная с помощью формулы (2) (приведена для сравнения с кривой 4, представляющей зависимость $\Delta^*(T)$, рассчитанную по формуле (П2)).

ем. Применимость в качестве первого приближения в области температур $T \leq T^*$ формул, характерных для теории Бардина–Купера–Шриффера (БКШ), основана на рассуждениях работы [4], в которой T^* рассматривается как среднеполевая температура сверхпроводящего перехода, а интервал температура сверхпроводящего перехода, а интервал температур $T_c < T < T^*$, в котором существует псевдощелевое состояние, определяется жесткостью фазы параметра порядка, убывающей при уменьшении уровня легирования (т. е. концентрации носителей). Авторы работы [14], в которой проведен анализ экспериментальных данных для разных купратов, сделали аналогичный вывод, что $T^* \sim T^{MF}$, где T^{MF} — температура сверхпроводящего перехода в приближении среднего поля.

Перечисленные свойства дают основания считать, что величина Δ^* , полученная при анализе температурной зависимости избыточной проводимости, тождественна псевдощели, которая наблюдается в ВТСП с помощью ряда других экспериментальных методик [1]. Поскольку псевдощель существует в широкой области концентраций носителей, меньших оптимальной (с $T_c < T_{c \max}$), представляется интересным расширить исследование избыточной проводимости YBCO с помощью привлечения данных по R(T) при различном содержании кислорода в этом материале. Мы провели обработку литературных данных по зависимости сопротивления от температуры бездвойниковых монокристаллов YBa2Cu3O7-6, полученных с различным содержанием кислорода ($\delta = 0.07$, 0.12, 0.22, 0.32) [9]. Приведенные в работе [9] зависимости $f(T) \equiv (\rho(T) - \rho_0)/\alpha T$ (где ρ — удельное сопротивление монокристаллов вдоль оси **a**, α — коэффициент в линейной зависимости $ho_n(T) =
ho_0 + lpha T$) позволяют вычислить $\Delta \sigma = \rho^{-1} - \rho_n^{-1} = (1 - f(T))/((1 + \rho_0/\alpha T)\rho(T))$ и получить $\Delta^*(T)$ на основе формулы (2). На рис. 3 приведены зависимости $\Delta^*(T)$ для монокристаллов с $\delta = 0.07$ и 0.12 (кривые 1 и 2 соответственно). Добавочная проводимость сильно недолегированных монокристаллов ($\delta = 0.22$ и 0.32) также может быть описана на основе формулы (2), за исключением области температур в непосредственной близости от T^* , где предэкспоненциальный множитель уменьшается быстрее, чем по закону $1 - T/T^*$. На примере материала с $\delta = 0.22$ это показано на вставке b к рис. 2. Экспериментальная кривая I для $\ln \sigma(T)$ при $\sim 200 \, \mathrm{K} < T$ расположена ниже кривой 2, полученной по формуле (2) при значении $\Delta^* = 0$, поэтому, чтобы получить описание $\Delta \sigma$ до T^* (исключая из рассмотрения значения $\Delta^* < 0$), необходимо введение более сильного, чем в (2), закона спадания предэкспоненциального множителя с температурой. В пункте 1 Приложения рассмотрена возможность модификации формулы (2) для описания добавочной проводимости этих сильно недолегированных монокристаллов.

На рис. З приведены зависимости $\Delta^*(T)$ для разных уровней легирования $(7 - \delta)$, а также кривые аппроксимации высокотемпературных частей $\Delta^*(T)$ корневой зависимостью $\Delta^* \sim \sqrt{(T_{sqr} - T)}$. Видно, что спадающий участок кривых $\Delta^*(T)$ может быть описан корневой зависимостью практически полностью (до T^*) в материалах с $(7 - \delta) = 6.93 - 6.85$ или (при меньших уровнях

Рис. 4. Экспериментальные и теоретические зависимости псевдощели от температуры в приведенных координатах. I-5 — нормированные на максимальное значение зависимости $\Delta^*(t)/\Delta_m^*$ от относительной температуры $t = T/T^*$ в той же последовательности, что на рис. 3: $(7 - \delta) = 6.93 \rightarrow 6.68$. 6-9 — полученные в теории кроссовера БКШ-БЭК [6] в среднеполевом приближении зависимости приведенной щели $\Delta^*(t)/\Delta(0)$ от T/T^* для значений параметра кроссовера $\mu/\Delta(0) = 10$ (предел БКШ), -2, -5, -10 (предел БЭК) соответственно. μ — химический потенциал системы носителей. $\Delta(0) \equiv \Delta(T = 0)$. На вставке: 1, 2 — зависимости 4 и 5 (см. основную часть рисунка) псевдощели $\Delta^*(T)$, построенные относительно аргумента $t = T/T_{sqr}$ для $(7 - \delta) = 6.78$ и 6.68 соответственно, T_{sqr} — параметр корневой аппроксимации $\Delta^*(T \to T^*)$; 3, 4 — теоретические зависимости приведенной псевдощели $\Delta^*(t)/\Delta(0)$ [6] для значений параметра кроссовера – 2 и – 5 соответственно.

легирования) в значительном температурном интервале; в последнем случае параметр корневой аппроксимации $T_{
m sqr} < T^*$. Возможность построения корневой аппроксимации обсуждается в пункте 2 Приложения. В таблице приведены полученные при описанной выше обработке значения параметров материалов с различными δ .

На рис. 4 представлены зависимости $\Delta^*(t)/\Delta_m^*$ от приведенной температуры $t = T/T^*$ (Δ_m^* — значение Δ^* на плато при T существенно ниже T^*). На этом же рисунке показаны зависимости $\Delta^*(t)/\Delta(0)$, рассчитанные в рабо-

Полученные путем анализа зависимости сопротивления от температуры значения параметров ВТСП-соединения $YBa_2Cu_3O_{7-\delta}$ с различным содержанием кислорода

$(7-\delta)$	<i>т.</i> к	<i>T</i> * K	T _{corr} K	Δ_m^*		$O K^{1/2}$	k
(/ 0)	10,11	1,11	1 sqr, 1x	Κ	meV	2, R	ĸ
6.93	91.2	133	133	180	15.5	72.2	4.62
6.88	90.8	189	189	602	52	148	3.38
6.85	89.5	203.3	203.2	524	45	95.5	2.6
6.78	80.5	220	198	298	25.7	37.4	1.86
6.68	58.7	268	231	299	25.7	33.8	1.72

Примечание. T_c — критическая температура, T^* — температура открытия псевдощели в спектре возбуждений, Δ_m^* — величина псевдощели на плато при T существенно ниже T^* , T_{sqr} — подгоночный параметр в формуле аппроксимации $\Delta^*(T \to T^*)$ корневой зависимостью $\Delta^*(T) = Q \sqrt{T_{\text{sqr}} - T}$ или $\Delta^*(t) / \Delta_m^* = k \sqrt{1 - T/T_{\text{sqr}}}$.

те [6] в рамках теории кроссовера от механизма БКШ к механизму бозе-эйнштейновской конденсации (БЭК) для различных значений параметра теории $\mu/\Delta(0)$, где μ — химический потенциал носителей заряда, $\Delta(0)$ — величина энергетической щели при T = 0. Теоретические кривые 6-9 находятся между группой экспериментальных кривых 1-3 с $(7-\delta) = 6.93$, 6.88, 6.85 и экспериментальных кривых 4,5 с $(7-\delta) = 6.78$, 6.68.

На вставке к рис. 4 показаны зависимости Δ^*/Δ_m^* от приведенной температуры, полученной путем нормировки на T_{sqr} ($t = T/T_{sqr}$) в отличие от рис. 4, где $t = T/T^*$ (кривая 1 для ($7 - \delta$) = 6.78, кривая 2 для ($7 - \delta$) = 6.68). В этом случае экспериментальные кривые, особенно кривая 1, достаточно близки к теоретической кривой 3 с $\mu/\Delta(0) = -2$.

3. Обсуждение результатов

Экспоненциальная температурная зависимость избыточной проводимости в ВТСП наблюдалась в ряде работ. В [15] избыточная проводимость следовала зависимости (1) с $b \approx 800$ и ≈ 400 К для YBaCuO-и LaSrCuO-керамик соответственно. В работе [16] также наблюдалась экспоненциальная зависимость избыточной проводимости в образцах YBa₂(Cu_{1-x}Mg_x)₃O_{7- δ}; линейный участок на зависимости ln($\rho^{-1} - \rho_n^{-1}$) от T^{-1} наблюдался приблизительно в том же интервале тем-

ператур, что и в настоящей работе (кривая 3 на рис. 2) и в [15]. Авторы [16] высказали предположение, что величина b, стоящая в числителе показателя экспоненты, представляет собой величину псевдощели (изменяющуюся от 1000 К вблизи оптимального уровня легирования (x = 0.002) до 170–200 К при увеличении содержания Mg до $x \sim 0.02$). Значения b, приведенные в [15,16], хорошо согласуются с полученными нами при обработке по формуле (1) величинами $b \sim 900 \, {
m K}$ для $(7 - \delta) = 6.88$ и ~ 680 K для $(7 - \delta) = 6.85$, особенно если учесть, что концентрация носителей известна приближенно. Однако с помощью зависимости вида (1) можно описать только часть полученной из экспериментальных данных кривой $\Delta \sigma(T)$, относящуюся к интервалу температур ~ 100-140 K. В то же время зависимость, представленная в виде (2), достаточно хорошо описывает избыточную проводимость практически во всем температурном интервале существования псевдощели в YBa₂Cu₃O_{7-δ} вблизи оптимального уровня легирования (при $(7 - \delta) = 6.93 - 6.85$), а после некоторой модификации (см. (П2)) — и при концентрации кислорода 6.78 и 6.68.

Перечислим существенные особенности, проявляющиеся на зависимостях $\Delta^*(T)$, представленных на рис. 3: 1) наличие большого участка температур с $\Delta^*(T) \sim \text{const}$ (плато) при $(7 - \delta) = 6.88$ и 6.85; 2) резкий рост $\Delta^*(T)$ при понижении T от T^* для составов с легированием вблизи оптимального уровня и регулярный переход к более плавной зависимости $\Delta^*(T)$ при увеличении δ ; 3) немонотонное изменение Δ_m^* (значения Δ^* на плато) с ростом δ — достаточно резкий и несимметричный максимум величины Δ_m^* при δ немного ниже оптимального уровня; 4) монотонный рост T* при увеличении δ ; 5) существенное отличие свойств материалов состава с $(7 - \delta) = 6.93$, 6.88 и 6.85 от свойств менее легированных материалов с $(7 - \delta) = 6.78$ и 6.68. В первой группе добавочная проводимость хорошо описывается формулой (2); полученная зависимость $\Delta^*(T)$ имеет широкое плато при низких температурах, а вблизи T^* следует корневой зависимости, T_{sqr} совпадает с Т*. Во второй группе для описания добавочной проводимости необходимо использовать более сложную формулу (П2) (см. Приложение); полученная с ее помощью величина $\Delta^*(T)$ в непосредственной близости от Т* отклоняется от корневой зависимости, приводя к $T_{sqr} < T^*$.

Эти свойства псевдощели, определенной с помощью анализа данных по температурной зависимости сопротивления YBaCuO, можно сравнить с опубликованными в литературе результатами.

Отметим, что монотонный рост T^* при уменьшении легирования наблюдается во всех работах по псевдощели [1]. Измерения методом фотоэлектронной спектроскопии с угловым разрешением (ARPES) [17] показали, что в Bi₂Sr₂CaCu₂O₈ существует зависящая от волнового вектора щель в спектре при $T_c < T$, которая

достаточно быстро убывает с ростом Т. В представленных нами данных в случае оптимального легирования $(\delta = 0.07)$ зависимость $\Delta^*(T)$, быстро уменьшающаяся от $\Delta_m^* \approx 16 \text{ meV}$ при T = 110 K до 0 при T = 133 K, имеет качественное сходство с зависимостью $\Delta^*(T)$, наблюдаемой в экспериментах по ARPES, а также по измерению электронной теплоемкости [1]. Не зависящая от Т в широком температурном интервале величина Δ^* наблюдалась в работе [12] в пленках YBaCuO (фотоиндуцированное уменьшение пропускания света), а также в работе [18] на кристаллах $Bi_{2,1}Sr_{1,9}CaCu_2O_{8+\delta}$ (сканирующая туннельная микроскопия (STM)); это согласуется с результатами, полученными нами для $\delta = 0.22 - 0.25$. Величина псевдощели также близка к полученной в [12] для этой концентрации. Различие наблюдается при приближении температуры к Т*, где разрешение методики релаксации фотоиндуцированного уменьшения пропускания света недостаточно для того, чтобы увидеть зависимость $\Delta^* \to 0$ при $T \to T^*$.

Наблюдающееся при дальнейшем росте δ немонотонное изменение Δ_m^* отличается от результатов [12,14], где $\Delta^* \sim 1/(0.6 - \delta)$, т.е. монотонно растет с уменьшением уровня легирования. В работе [16], в которой, как и в настоящей работе, были построены зависимости избыточной проводимости от температуры, наблюдалось уменьшение величины показателя *b* в формуле (1) (который пропорционален величине Δ_m^* , получаемой при обработке результатов по формуле (2)) при увеличении содержания Mg в $YBa_2(Cu_{1-x}Mg_x)_3O_{7-\delta}$. Поскольку рост концентрации Мд сопровождается увеличением удельного сопротивления материала и уменьшением критической температуры, естественно считать, что при возрастании х концентрация носителей становится меньше оптимальной, т.е. увеличивается "степень недолегирования" материала. Таким образом, в работе [16], по-видимому, наблюдается уменьшение величины псевдощели при понижении концентрации носителей от уровня, немного меньшего оптимального при наименьшей концентрации 0.002 at.% Mg, т.е. при углублении в "недолегированную" область. Такое поведение похоже на наблюдавшееся нами снижение величины Δ_m^* при уменьшении $(7 - \delta)$ от 6.88 до 6.78. В литературе также имеются некоторые данные, не укладывающиеся в простую картину монотонного роста величины псевдощели при уменьшении уровня легирования. Ослабление подавления низкочастотных возбуждений (т.е. ослабление проявления псевдощели) при уменьшении уровня легирования в области относительно небольших концентраций в BiSrCaCuO отмечено в [19]. В этой же работе наблюдалась трансформация 2Д-квазичастичного пика рамановского сдвига при $\lambda^{-1} = 420 \,\mathrm{cm}^{-1}$ (52 meV) при уменьшении уровня легирования от уровня, несколько превышающего оптимальный, в пик $\lambda^{-1} \sim 540 \, \mathrm{cm}^{-1}$ (67 meV) при оптимальном легировании и далее в частично когерентный пик при $\lambda^{-1} \sim 600 \, \mathrm{cm}^{-1}$ (75 meV). Таким образом, в работе [19] при уменьшении концентрации носителей наблюдается как ослабление псевдо-

щели при величине сдвига ~ 10 meV (в области небольших концентраций), так и рост энергии пика в рамановском спектре (т.е. величины $2\Delta^* \sim 50-75 \text{ meV}$) при уровне легирования вблизи оптимального. Авторы работы [20], в которой измерялось время релаксации возбужденных лазерным импульсом квазичастиц в YBa₂Cu₃O_{7- δ}, установили, что при $(7 - \delta) \sim 6.8 - 6.85$ происходит существенное изменение вида зависимости времени релаксации квазичастиц от концентрации: выше этого значения при увеличении концентрации кислорода (до оптимальной) время релаксации довольно резко растет, ниже — почти не зависит от δ . Таким образом, есть основания считать, что при уменьшении концентрации кислорода ниже 6.8 происходит существенное изменение свойств YBaCuO, и с этим связаны особенности поведения псевдощели, определяемой из резистивных данных. Мы предполагаем, что причиной расхождения с данными работ [12,14] при относительно низких концентрациях является гораздо более высокий уровень возбуждения системы в экспериментах по измерению рамановского сдвига, релаксации после оптической накачки и в методе STM по сравнению с экспериментом по измерению проводимости.

Поскольку метод анализа добавочной проводимости позволяет в отличие от других методов получить зависимость $\Delta^*(T)$ в достаточно полном виде вплоть до Т*, оказывается возможным сравнение с теорией. Как видно из рис. 4, наблюдается расхождение между результатами теории кроссовера БКШ-БЭК и полученными при анализе экспериментальных результатов зависимостями Δ^*/Δ_m^* от T/T^* . В случае материалов с концентрацией вблизи оптимальной невозможность описания полученных из эксперимента кривых теорией [6] связана с существованием широкого температурного плато $\Delta^*(T) \sim \text{const}$ и резким уменьшением Δ^* вблизи T^* . Математически последнее выражается в большой величине k = 2.5 - 4.6 в приведенной корневой зависимости $\Delta^*(t)/\Delta_m^* = k \sqrt{1 - T/T_{\text{sqr}}}$ для этих материалов (для сравнения в теории БКШ $k \approx 1.74$). В материалах с меньшим уровнем легирования наблюдается относительное согласие между зависимостями $\Delta^*(t)/\Delta_m^*$ и $\Delta^*(t)/\Delta(0)$, полученными в работе [6] для значения параметра теории $\mu/\Delta(0) = -2$ после замены аргумента T/T^* на T/T_{sqr} , где T_{sqr} определяется как параметр корневой аппроксимации спадающего участка кривой $\Delta^*(T)$. Исключением является область в непосредственной близости от Т*, и это находится в соответствии с представлением теории о переходе при T^* как о плавном кроссовере (более вероятном, чем фазовый переход); по этой причине авторы работы [6] не ожидают, что полученные в приближении среднего поля зависимости $\Delta^{*}(t)/\Delta(0)$ будут применимы вблизи T^{*} . Таким образом, сравнение с теорией 1) подчеркивает особые свойства YBaCuO при концентрации, немного меньшей оптимальной; 2) в определенной степени подтверждает предложенную нами интерпретацию данных для материалов с $(\delta - 7) < 6.8$ (введение характерной температуры T_{sqr}, а также применение формулы (П2) при обработке результатов); 3) позволяет получить дополнительный аргумент в пользу того, что в относительно слабо легированном YBaCuO при температурах заметно ниже T* применима теория среднего поля (вблизи Т* для объяснения экспериментальных результатов необходимо использовать другие методы теории). Последний вывод непосредственно — в рамках нашей интерпретации выражения (2) для избыточной проводимости — следует из рассмотрения $\Delta\sigma$ в этих материалах. Предэкспоненциальный множитель в формуле (2) вблизи T^* уменьшается быстрее, чем по закону $1 - T/T^*$ (что приводит к необходимости использовать формулу ($\Pi 2$)), т.е. n_s отклоняется от среднеполевой зависимости; следовательно, теория среднего поля становится неприменимой. В существенной степени подтверждает это заключение и тот факт, что описание $\Delta^*(T)$ корневой зависимостью (кривая 5 на вставке b к рис. 2) перестает быть справедливым приблизительно при той же температуре (~ 195 К), при которой становится неприменимой формула (2).

В заключение рассмотрим вопрос о том, как происходит переход в режим флуктуационной проводимости при приближении температуры к Т_с. Из рис. 3 видно, что вблизи T_c кривые $\Delta^*(T)$ начинают отклоняться от плато вверх при понижении температуры. В этой области температур (до T_c) существует флуктуационная проводимость с более быстрым ростом $\Delta \sigma$ при понижении Т, чем описанный выше. По-видимому, в области перехода в режим парапроводимости сверхпроводящие пары перестают быть независимыми, во всяком случае описание $\Delta \sigma$ предложенной выше экспоненциальной зависимостью в области парапроводимости неприменимо. Для образца с $(7 - \delta) = 6.85$, для которого данные наиболее точны, мы установили, что в интервале $T = 92.5 - 106 \,\mathrm{K} \,\Delta \sigma$ хорошо описывается теорией Асламазова-Ларкина [21] для 2D-системы

$$\Delta \sigma = (e^2/16\hbar d)T_c/(T-T_c),$$

где d — толщина слоя, в котором существуют сверхпроводящие флуктуации, а при $T \cong 92.3$ К происходит переход в 3*D*-режим с

$$\Delta\sigma = \left(e^2/32\hbar\xi(0)\right) \left(T_c/(T-T_c)\right)^{1/2}$$

где $\xi(0)$ — длина когерентности при T = 0. Полученные значения $d \approx 91$ nm согласуются с данными [22], $\xi(0) \approx 0.23$ nm близка к величинам, приведенным в [23]. В настоящей работе нас интересует, до какой температуры зависимость $\Delta\sigma(T)$ может быть описана в рамках представлений о флуктуационной проводимости, так как избыточную проводимость мы вычисляем из экспериментальных данных по той же формуле $\Delta\sigma = 1/\rho(T) - 1/\rho_n(T)$, что и флуктуационную проводимость. Ранее экспериментально было обнаружено [24], что при достаточно большом повышении температуры над T_c флуктуационная проводимость убывает

быстрее, чем предсказывает теория. Предполагалось, что причина этого заключается в недооценке вклада коротковолновых флуктуаций параметра порядка, в то время как он увеличивается с ростом температуры. В работе [25] проведен микроскопический расчет $\Delta \sigma$ с учетом всех компонент параметра порядка. Мы сравнили наши данные для образца с $(7 - \delta) = 6.85$ с теорией [25] и получили согласие с теорией до $T \sim 118$ К. Таким образом, в интервале температур $100-118 \,\mathrm{K} \,\Delta\sigma$ может быть описана с нашей точностью измерений как предложенной выше экспоненциальной зависимостью (формула (2)), так и на основе улучшенной теории флуктуационной проводимости [25]. При дальнейшем росте температуры $\Delta \sigma$ уменьшается быстрее, чем следует из теории [16], экспоненциальное же описание остается справедливым, причем до $T \sim 160 \,\mathrm{K}$ параметр $\Delta^* \sim \text{const.}$ В заключение отметим следующее: если считать, что переход в режим флуктуационной проводимости при понижении температуры происходит при температуре T_{fl} , при которой начинается подъем $\Delta^*(T)$ над плато, то оказывается, что относительная температурная область парапроводимости $(T_{fl} - T_c)/T_c$ уменьшается, проходя ряд значений $(T_{fl}/T_c - 1) = 0.217, 0.137, 0.106,$ 0.0646 при уменьшении $(7 - \delta)$ от 6.93 до 6.78. Отсюда можно сделать вывод, что ослабление сверхпроводящих корреляций при уменьшении легирования относительно оптимального уровня, в результате которого уменьшается критическая температура, приводит к сокращению области температур, где существует достаточно выраженная флуктуационная проводимость.

Таким образом, в настоящей работе получены следующие основные результаты.

1) Обнаружено, что в пленках и монокристаллах YBaCuO при концентрации носителей, несколько меньшей оптимальной, существует широкий температурный интервал, в котором избыточная проводимость подчиняется экспоненциальной температурной зависимости. Выдвинуто и обосновано предположение, что показатель экспоненты для этого диапазона концентраций представляет собой величину Δ^*/T , где Δ^* — величина псевдощели.

2) В рамках простых предположений получена зависимость псевдощели от температуры в интервале от $T = T^*$ до области выше критической температуры, в которой определяющую роль играет флуктуационная проводимость.

3) Температурная зависимость избыточной проводимости для концентраций вблизи оптимальной (включительно) $0.07 \le \delta < 0.2$ может быть естественным образом интерпретирована в терминах, принятых в теории среднего поля; зависимость псевдощели от температуры вблизи T^* для этого диапазона концентраций также имеет форму, характерную для описания фазовых переходов второго рода в теории среднего поля.

4) При переходе к менее легированным образцам $(\delta > 0.2)$ величина псевдощели уменьшается, а зависимость псевдощели от температуры изменяется таким

образом, что может быть достигнуто неплохое согласие с теорией кроссовера БКШ–БЭК (за исключением области вблизи T^*). Показано, что для этих концентраций низкотемпературная часть кривой зависимости $\Delta^*(T)$ может быть описана в терминах теории среднего поля; вблизи T^* это приближение неприменимо.

Приложение

1. Модифицируем формулу (2). На вставке *b* к рис. 2 приведены вычисленные с помощью формулы (2) кривые *I* и *2* с $\Delta^* = 294$ и 0 K соответственно, $A = 270 \,\Omega^{-1} \cdot \text{сm}^{-1}$ для материала с $(7 - \delta) = 6.78$. При ~ 195 K < *T* экспериментальная кривая I проходит ниже кривой *2*, поэтому, чтобы описать добавочную проводимость до температуры *T*^{*}, необходимо, как указывалось выше, изменить формулу (2) таким образом, чтобы задать более быстрое уменьшение предэкспоненциального множителя в этом интервале температур. Для этого $\Delta \sigma$ может быть представлена в виде

$$\Delta \sigma = A(1 - T/T^*)^{\beta(T)} \exp(\Delta^*/T), \qquad (\Pi 1)$$

где $\beta = 1$ при T < 195 К и растет при $T \to T^*$ до $\beta(T^*) \sim 1.34$. Множитель $(1 - T/T^*)^{\beta(T)}$ удобно заменить на более простое для сравнения с экспериментальными данными выражение $(1 - T/T^*) \exp(-M/(T^* - T))$, где M — константа. На вставке b к рис. 2 приведены зависимости 3 и 4, построенные по формуле

$$\Delta \sigma = A \exp\left(-M/(T^* - T)\right) (1 - T/T^*) \exp(\Delta^*/T) \quad (\Pi 2)$$

с теми же значениями A и Δ^* (294 K для кривой 3 и 0 для кривой 4), что для кривых 1 и 2, и M = 5.86 К. Видно, что кривые, рассчитанные по формуле (П2), при T < 200 K достаточно близки к кривым, полученным с помощью формулы (2), и в результате перехода от (2) к (П2) появляется возможность описать проводимость до температуры $T = T^*$. На рис. 3 кривые 4 и 5 представляют зависимости $\Delta^*(T)$, полученные путем применения формулы (П2) для описания экспериментальных данных для монокристаллов с содержанием кислорода $(7 - \delta) = 6.78$ и 6.68 соответственно. Для сравнения на рис. 3 (кривая 4*a*) приведена зависимость $\Delta^*(T)$, вычисленная по формуле (2). Как и ожидалось, при низких (< 190 К) температурах различие между кривыми 4 и 4а невелико, в то же время, как мы полагаем, кривая 4 дает качественное представление о ходе зависимости $\Delta^*(T)$ в непосредственной близости от T^* .

2. Определение возможности описания $\Delta^*(T)$ вблизи T^* корневой зависимостью проводилось следующим образом: 1) определялось, существует ли линейный участок на зависимости Δ^* от $(T^* - T)^{1/2}$ вблизи T^* ; 2) проводилось варьирование характерной температуры, которую мы назвали T_{sqr} (square root), таким образом, чтобы линейная зависимость получилась в виде $\Delta^* = Q(T_{\text{sqr}} - T)^{1/2}$ (свободный член должен быть равен нулю). Кривые $\Delta^*(T)$, вычисленные по полученным T_{sqr} и Q, показаны на рис. 3 сплошными линиями.

Список литературы

- [1] T. Timusk, B. Statt. Rep. Progr. Phys. **62**, 61 (1999).
- [2] В.М. Садовский. УФН 171, 5 539 (2001).
- [3] P. Pieri, G.C. Strinati, D. Moroni. Phys. Rev. Lett. 89, 12, 127 003 (2002).
- [4] V.J. Emery, S.A. Kivelson. Nature **374**, 434 (1995); V.J. Emery, S.A. Kivelson, O. Zachar. Phys. Rev. B **56**, 7, 6120 (1997).
- [5] V.M. Loktev, R.M. Quick, S.G. Sharapov. Physica C 314, 233 (1999).
- [6] E. Babaev, H. Kleinert. Cond-mat/9804206 (1998); E. Babaev, H. Kleinert. Phys. Rev. B 59, 18, 12 083 (1999).
- [7] V.B. Geshkenbein, L.B. Ioffe, A.L. Larkin. Phys. Rev. B 55, 5, 3173 (1997).
- [8] Yu.A. Boikov, T. Claeson. J. Appl. Phys. 81, 7, 3232 (1997);
 Yu.A. Boikov, Z.G. Ivanov. J. Alloys Comp. 251, 193 (1997).
- [9] K. Takenaka, K. Mizuhashi, H. Takagi, S. Uchida. Phys. Rev. B 50, 9, 6534 (1994).
- [10] Z. Konstantinovic, Z.Z. Lee, H. Raffy. Physica C **341–348**, 859 (2000).
- [11] K.Q. Ruan, Q. Cao, S.Y. Li, G.G. Qian, C.Y. Wang, X.H. Chen, L.Z. Cao. Physica C 351, 402 (2001).
- [12] V.V. Kabanov, J. Demsar, B. Podobnic, D. Mihailovic. Phys. Rev. B 59, 2, 1497 (1999).
- [13] В.П. Гусынин, В.М. Локтев, С.Г. Шарапов. ФНТ 23, 8, 816 (1997).
- [14] M. Oda, K. Hova, N. Momonj, T. Nakano, A. Sakai, M. Ido. J. Phys. Chem. Sol. 59, 10–12, 2071 (1998).
- [15] А.Ф. Прекул, В.А. Рассохин, А.Б. Рольщиков, Н.И. Щеголихина, С.В. Ярцев. СФХТ 3, 3, 381 (1990).
- [16] A. Vyas, C.C. Lam, L.J. Shen. Physica C 341-348, 935 (2000).
- [17] H. Ding, J.C. Campuzano, M.R. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, D.G. Hinks. J. Phys. Chem. Sol. 59, 10–12, 1888 (1998).
- [18] A. Matsuda, S. Sugita, T. Watanabe. Phys. Rev. B 60, 2, 1377 (1999).
- [19] G. Blumberg, M.V. Klein, K.K. Kadowaki, C. Kedziora, P. Guptasarma, D. Hinks. J. Phys. Chem. Sol. **59**, *10–12*, 1932 (1998).
- [20] D. Mihailovic, B. Podobnic, J. Demsar, G. Wagner, J. Evetts.
 J. Phys. Chem. Sol. 59, 10–12, 1937 (1998).
- [21] Л.Г. Асламазов, А.И. Ларкин. ФТТ 10, 4, 1104 (1968).
- [22] А.И. Головашкин, К.В. Мицен, Г.П. Мотулевич, Ч. Шукуров. СФХТ 5, 12, 2205 (1992).
- Y. Matsuda, A. Fujiama, S. Komiama, S. Hikami, A.G. Aronov,
 T. Terashima, Y. Bando. Phys. Rev. B 45, 9, 4901 (1992);
 M. Hikita, M. Suzuki. Phys. Rev. B 41, 1, 834 (1990).
- [24] R. Hopfengartner, B. Hensel, G. Saemann-Ischenko. Phys. Rev. B 44, 2, 741 (1991).
- [25] L. Reggani, R. Vaglio, A.A. Varlamov. Phys. Rev. B 44, 17, 9541 (1991).