Низкотемпературная пластичность и динамика решетки твердого параводорода с изотопической примесью

© Л.А. Алексеева, Е.С. Сыркин, Л.А. Ващенко

Физико-технический институт низких температур Национальной академии наук Украины, 61103 Харьков, Украина

E-mail: alekseeva@ilt.kharkov.ua

(Поступила в Редакцию 31 июля 2002 г. В окончательной редакции 1 октября 2002 г.)

> Исследованы особенности низкотемпературной пластической деформации твердого поликристаллического параводорода, легированного изотопической примесью (дейтерием). Получены зависимости скорости установившейся ползучести p-H₂ от концентрации примеси и напряжения. Процесс деформации p-H₂ описан с привлечением нулевых среднеквадратичных смещений образующих кристалл частиц. Сравнение теоретически вычисленных и экспериментально полученных величин $\langle x^2 \rangle$ проведено для двух возможных изотопных форм молекул (а именно HD и D₂) при трех уровнях напряжения. Установлена корреляция величин $\langle x^2 \rangle$ с увеличением силовых констант p-H₂, легированного изотопической примесью. Обсуждается рост среднеквадратичных смещений p-H₂ в кристалле с ростом растягивающей нагрузки. Высказывается предположение о "деформационном очищении" кристалла p-H₂ от изотопической примеси.

Твердый параводород являет собой пример уникального кристаллического вещества, обладающего достаточно высокой степенью квантовости (см., например, [1]), которая, однако, может легко подавляться контролируемым образом [2–4]. Большая энергия нулевых колебаний H_2 полностью определяет динамику его решетки и кинетику деформации, а также динамику дислокационной подсистемы, причем во всей области существования кристалла, поскольку его температура кристаллизации много ниже дебаевской температуры Θ (см. [1]).

Проявлению квантовых туннельных эффектов в пластичности твердого параводорода препятствуют, в частности, локальные несовершенства кристаллов — присутствие в них даже в сравнительно небольших количествах примесных молекул ортоводорода или дейтерия.

Наиболее радикально подавляет квантово-механические особенности изотопическая примесь. Поэтому вопрос о ее влиянии на кинетику деформации параводорода относится к фундаментальным проблемам физики квантовых кристаллов. В этой связи прогресс в исследовании пластических и прочностных свойств *p*-H₂ тесно связан с расширением объема экспериментально полученной информации относительно влияния изотопической примеси на параметры деформации.

В настоящей работе исследовано влияние изотопической примеси на низкотемпературные пластические свойства твердого параводорода. Измерены концентрационные зависимости скорости $\dot{\varepsilon}$ его деформации в режиме установившейся ползучести под действием постоянно приложенного к образцам напряжения σ при температурах жидкого гелия. В дополнение к работе [5], в которой обнаружено влияние примеси дейтерия на скорость стационарного течения $\dot{\varepsilon}$ *p*-H₂ только при одном уровне напряжения σ , здесь величины $\dot{\varepsilon}$ измерены при варьировании не только содержания тяжелого изотопа H₂ в образцах, но и величины приложенной к кристаллам нагрузки. Полученные результаты про-

анализированы с учетом теоретических расчетов температурных зависимостей среднеквадратичных смещений частиц. На основании такого анализа делается вывод о характере и величине изменения межмолекулярного взаимодействия в твердом *p*-H₂ с примесью молекул его стабильных изотопных форм.

1. Методика эксперимента

Исследование проведено на поликристаллических образцах p-H₂. Образцы выращивались в ампуле криостата [6] из жидкой фазы параводорода. Концентрация ортомодификации была понижена до ~ 0.2% в результате длительного выдерживания нормального водорода в конверторе в присутствии катализатора конверсии Fe(OH)₃ при температуре кипения. С целью очистки от неводородных примесей напускаемый в конверторе газообразный водород пропускался через охлажденный до температуры кипения азота активированный уголь, а отбираемые над жидким *p*-H₂ пары — через находящийся при 20.4 К фильтр с высокой избирательностью по Н2. В результате селективности фильтра чистота исследованного *p*-H₂ относительно посторонних примесей значительно увеличивалась (с учетом предельно низкой [7] упругости пара неводородных примесей — не менее чем до 99.9999 mol.% (см. [5])).

Поскольку водород характеризуется наибольшей относительной разностью масс изотопных разновидностей с заметно различающимся давлением насыщенных паров над жидкими фракциями [7], в результате различия парциального давления изотопа и H_2 в процессе начального медленного отбора газа для выращивания образцов происходило его естественное обеднение менее летучим изотопом и обогащение более летучим основным компонентом (см., например, [8]). Концентрирование менее летучего изотопа в жидкой фазе и соответственно в парах молекулярного p-H₂ приводило к росту концентрации изотопической примеси в каждом выращенном последующем твердом параводородном образце по отношению к предыдущему. Это подтверждено анализами изотопных проб, выполненными с помощью масс-спектрометров (типа POMC-1, г. Харьков; МХ-7304, г. Сумы). Из них следовало, что отношение числа атомов D к числу протонов H изменялось от образца к образцу от $c = 0.01\% \pm 0.005$ at. % до $c = 0.2 \pm 0.002$ at. %.

Выращенные образцы освобождались от стенок заключающего их контейнера посредством откачки паров над ними, отжигались вблизи T = 11 К и медленно охлаждались до заданной температуры. Их нагружение осуществлялось весами высокой чувствительности. Удлинение кристаллов измерялось индуктивным датчиком перемещения с точностью $\pm 10^{-4}$ сm, температура — полупроводниковыми термометрами сопротивления с точностью $\pm 2 \cdot 10^{-2}$ К. Изменение деформации ε во времени *t* непрерывно записывалось автоматическим электронным потенциометром КСП4. Поликристалличность образцов (размер зерен до 1.5 mm) подтверждалась их визуальным наблюдением в скрещенных поляроидах. Температура варьировалась в интервале 1.8–4.2 К.

2. Экспериментальные результаты и их обсуждение

На рис. 1 приведены типичные кривые ползучести $\varepsilon(t)$ поликристаллических образцов *p*-H₂, полученные при напряжении 53.9 kPa для трех различных концентраций c (0.01, 0.04, 0.22%). Видно, что изменение концентрации существенно влияет на характер кривых $\varepsilon(t)$ и на определяемые из них параметры пластичности. Из рис. 1 следует, что уменьшение значений с приводит к росту достигаемой за один и тот же период времени при $\sigma = \text{const}$ величины деформации *p*-H₂, а также к значительному сокращению времени, по истечении которого поликристаллы *p*-H₂ оказываются в режиме стационарного пластического течения с неменяющейся во времени величиной производной $d\varepsilon/dt$. Из рис. 1 также следует, что по мере уменьшения величины с скорость деформации є кристаллов р-Н2 на стадии установившейся ползучести существенно возрастает и достигает предельно высоких значений на нижней границе исследованного концентрационного интервала c = 0.01%.

Эксперименты, проведенные на тождественных по изотопному составу образцах при разных температурах, показали, что на фоне резкой зависимости скорости деформации p-H₂ от содержания в нем изотопической примеси величина $\dot{\varepsilon}$, измеренная для большого набора значений концентрации при одинаковой нагрузке, во всем изученном интервале σ , c и T оказалась практически не зависящей от температуры. Эту особенность иллюстрирует рис. 2, на котором для одной из нагрузок ($\sigma = 53.9$ kPa) представлены значения $\dot{\varepsilon}$, полученные для образцов p-H₂ с различным содержанием D/H. Для

Рис. 1. Кривые ползучести образцов *p*-H₂, полученные для указанных на рисунке значений концентрации c ($\sigma = 53.9$ kPa, T = 1.8 K).

Рис. 2. Температурные зависимости скорости ползучести *p*-H₂, полученные для напряжения $\sigma = 53.9$ kPa при указанных на рисунке значениях *c*. Сплошная кривая — данные [6] для поликристаллов *n*-H₂ (см. в тексте).

сравнения в виде сплошной кривой показана температурная зависимость $\dot{\varepsilon}(T)$ скорости ползучести, измеренная в [6] примерно для той же величины σ (58.8 kPa) в случае поликристаллов *n*-H₂ (75% орто-H₂). Видно, что изменение температуры более чем вдвое от 1.8 до 4.2 К практически не приводит к изменению величины $\dot{\varepsilon}$, поэтому ее влиянием на низкотемпературные величины $\dot{\varepsilon}$ по сравнению с влиянием примеси можно пренебречь.

Полученные в экспериментах зависимости, таким образом, указывают на решающую роль примесных молекул тяжелого изотопа водорода в развитии деформации p-H₂ под действием постоянно приложенного напряжения. При этом наблюдается значительное упрочнение p-H₂ уже при слабом легировании. При введении в параводород сравнительно небольшого количества изотопической примеси (по числу атомов D/H ~ 0.2%) значения скорости $\dot{\varepsilon}$ стационарного течения образцов поликристаллического p-H₂ приближаются по величине к характерным для поликристаллов водорода нормального орто-пара состава (75% o-H₂). Наблюдаемое влияние изотопической примеси на скорость $\dot{\varepsilon}$ аналогично влиянию на другие физические величины, в частности, на коэффициент теплопроводности H₂ [9].

Проведенные эксперименты показали, что скорость стационарного пластического течения p-H₂ в интервале гелиевых температур 1.8–4.2 К оказалась величиной, чрезвычайно чувствительной к содержанию в образцах изотопов. Резкая зависимость скорости ползучести $\dot{\varepsilon}$ p-H₂ от концентрации изотопической примеси указывает на то, что регистрируемые для σ = const низкотемпературные значения $\dot{\varepsilon}$ обусловлены взаимодействием дислокаций с примесными молекулами. Практическая независимость $\dot{\varepsilon}$ от температуры, реализованная на фоне резкой чувствительности $\dot{\varepsilon}$ к содержанию изотопической примеси, свидетельствует от том, что в процессах открепления дислокаций от примесных центров основную роль в p-H₂ играют не термические, а квантовые флуктуации [10].

Скорость пластической деформации в зависимости от температуры в ряду криокристаллов (включая p-H₂ [11]) может быть представлена в пределе $T \rightarrow 0$ K в форме закона соответственных состояний [12]

$$\dot{\varepsilon} \sim f(\langle x_0^2 \rangle / \langle x_m^2 \rangle). \tag{1}$$

Величины $\dot{\varepsilon}$ при этом определяются относительным уровнем нулевых среднеквадратичных смещений $\langle x_0^2 \rangle$ образующих криокристалл частиц. Опираясь на закон соответственных состояний [12], скорость ползучести твердых растворов на основе *p*-H₂ для области низких температур можно записать (с точностью до константы, примерно равной единице) с помощью выражения аррениусовского типа

$$\dot{\varepsilon} = \dot{\varepsilon}_0 \exp\left(-\frac{U - \gamma\sigma}{(\langle x_0^2 \rangle / \langle x_m^2 \rangle) k T_m}\right),\tag{2}$$

где $\langle x_0^2 \rangle$, $\langle x_m^2 \rangle$ — среднеквадратичные смещения частиц при 0 К и температуре плавления T_m . Это выражение предполагает протекание деформации посредством направленного, инициируемого напряжением σ потока

Рис. 3. Концентрационные зависимости скорости ползучести *p*-H₂ в полулогарифмических координатах, полученные для разных значений приложенного напряжения: *I* — 16.7, *2* — 53.9 [5], *3* — 99.0 kPa.

дислокаций через седловую точку барьера U, обусловленного в данном случае упругими напряжениями, возникающими в решетке *p*-H₂ из-за размерного несоответствия примесных и матричных молекул. Связанная с напряжением σ энергия определяется также размером γ активационного объема кристалла, в котором разыгрывается элементарный акт деформации. Зависимость величины у от концентрации примесей определяет поведение скорости *і*: в зависимости от концентрации примесных молекул. С их появлением в кристалле прямолинейное положение дислокации оказывается нестабильным. Она принимает сложную зигзагообразную форму, которая обеспечивает выигрыш в энергии связи дислокации с примесными молекулами при проигрыше в энергии линейного натяжения и увеличении ее длины [13]. Поэтому уже на ранних стадиях деформации исследованного *p*-H₂ в нем начинают превалировать дислокационные конфигурации в виде сегментов, "зависших" на примесях. В этом случае для классических (например, металлических) кристаллов при описании поведения параметров пластичности теория указывает (см. [14–16]) на необходимость учета вероятности прохождения дислокаций через образованный примесью барьер из-за наличия распределения дислокационных сегментов по их длинам.

На рис. З в полулогарифмической шкале представлены концентрационные зависимости скорости установившейся ползучести образцов *p*-H₂ для трех разных значений приложенного напряжения (16.7, 53.9 и 99 kPa). Имея в виду теоретические результаты [16], мы выбрали в качестве абсциссы произведение $(c^{-2/3}\sigma)$. Из рис. З видно, что все три полученные зависимости $\ln \dot{\varepsilon} = f(c^{-2/3}\sigma)$ характеризуются наличием протяженных прямолиней-

Экспериментально найденные величины нормированных нулевых среднеквадратичных смещений $\overline{\delta_0^2}(\exp)$ в *p*-H₂ для трех растягивающих напряжений

Молекула	$(\Delta V/V)$	Величина	$\sigma,$ kPa		
			16.7	53.9	99.0
HD	-0.068	$\overline{\delta_0^2}(\exp)$, HD	0.628	0.837	1.004
D_2	-0.138	$\overline{\delta_0^2}(exp), D_2$	0.496	0.661	0.794

ных участков, что указывает на решающую роль для деформации p-H₂ примесных молекул, находящихся в объеме кристалла [17]. Отклонение от прямой в области малых c обусловлено включением при больших скоростях движения дислокаций механизмов торможения, определяемых наличием в образцах остаточной примеси o-H₂. При этом на эффективную длину свободного пробега дислокаций могут влиять как одиночные ортомолекулы, так и их кластеры [18] (для ортосодержания $\sim 0.2\%$ в основном парные [19]). По характеру взаимодействия с дислокацией они мало отличаются от обычной дилатирующей примеси. Преодоление таких препятствий может осуществляться как за счет термических, так и за счет квантовых флуктуаций (подробнее см. в [19]).

Для области концентраций *с* > 0.03–0.04% энергетический барьер для дислокаций в исследованных образцах *p*-H₂ обусловлен в основном локальными нарушениями не столько вращательной, сколько трансляционной инвариантности кристалла из-за присутствия в образцах изотопных форм стабильного изотопа H₂. В этом случае при проведении полного анализа поведения функции $\dot{\varepsilon}(T, c, \sigma)$ открывается уникальная возможность определения (пусть даже на уровне количественной оценки из соотношения (2)) представляющих несомненный интерес величин относительных среднеквадратичных смещений $\overline{\delta_0^2}(\exp) = \langle x_0^2 \rangle / \langle x_m^2 \rangle$ молекул водорода в реальных образцах *p*-H₂, прямые способы измерения которых отсутствуют. Используя выражение (2) и записывая величину объема, охваченного флуктуацией, через известные [20,21] значения ($\Delta V/V$) дилатации решетки $p-H_2$ вокруг примесных молекул HD и D₂, по значениям тангенсов углов наклона tg α прямолинейных отрезков экспериментальных зависимостей $\ln \dot{\varepsilon} - c^{-2/3}$, измеренных для $\sigma = \text{const}$, можно вычислить величины $\overline{\delta_0^2}(\exp)$ по формуле

$$\overline{\delta_0^2}(\exp) = \frac{(\Delta V/3V)^{-1/3}\overline{\sigma}db^2}{k \operatorname{tg} \alpha T_m},$$
(3)

где tg $\alpha = \Delta(\ln \dot{\epsilon})/\Delta(c^{-2/3}), d = 2^{-1}\sqrt{8/3}a$ (*a*, *d* — расстояния между ближайшими соседями и базисными плоскостями в гексагональном плотноупакованном (ГПУ) *p*-H₂ соответственно, $\overline{\sigma}$ — средняя величина напряжения, b = a — величина вектора Бюргерса, *k* — константа Больцмана. Вычисленные величины $\overline{\delta_0^2}(\exp)$ приведены в таблице для случаев присутствия дейтерия

5* Физика твердого тела, 2003, том 45, вып. 6

в *p*-H₂ как в виде молекул *HD*, так и в виде молекул D₂. В качестве параметра *a* использовалось экстраполированное значение для T = 0 К (a = 0.37835 nm [22]). Из измеренных величин tg α по формуле (3) получены значения $\overline{\delta_0^2}(\exp)$ нулевых среднеквадратичных смещений частиц в *p*-H₂. Эти значения приведены в таблице для случаев обеих изотопных форм в *p*-H₂ и трех значений растягивающего напряжения.

С целью анализа полученных результатов проведена теоретическая оценка величин $\overline{\delta_0^2}$ для *p*-H₂, в том числе с присутствующими в нем примесными молекулами природных стабильных изотопных форм. Для этого мы воспользовались температурной зависимостью среднеквадратичных смещений атомов в чистых и примесных ГЦК кристаллах из [23]. Поскольку среднеквадратичное смещение в идеальных бездефектных структурах определяется главным образом числом ближайших соседей, и учитывая "идеальное" отношение параметров *с/а* ГПУ структуры *p*-H₂ [1], а также полную эквивалентность этих решеток по числу ближайших соседей, величины $\langle x^2 \rangle$, вычисленые с помощью Якобиевых матриц в модели ГЦК кристалла, не должны сильно отличаться от значений $\langle x^2 \rangle$ для идеальной ГПУ структуры.

На рис. 4 приведены температурные зависимости $\langle x^2 \rangle$ для матричных молекул p-H₂ в идеальном кристалле и молекул изотопической примеси с $\Delta \mu$, равным 0.5 и 1.0, где $\Delta \mu$ — "дефект массы" $\Delta \mu = (m_1 - m)/m$, m_1 — масса примесного атома ($\Delta \mu = 0.5$ соответствует примеси HD, $\Delta \mu = 1$ соответствует примеси D₂). Из рис. 4 видно, что среднеквадратичные смещения примесных частиц существенно ниже значений $\langle x^2 \rangle$ для идеальной решетки. Отсюда можно сделать вывод, что наличие изотопической примеси в p-H₂ должно приводить к "замораживанию" молекулярного движения, в том числе нулевых колебаний матричных молекул

Рис. 4. Температурная зависимость среднеквадратичных смещений молекул идеального кристалла (верхняя кривая) и примесных молекул с величинами "дефекта массы" 0.5 (средняя кривая) и 1.0 (нижняя кривая) в единицах $\hbar^2/(km\Theta)$ для $\Theta = 118.5$ K (см. [24]).

в кристалле. Это следует из полученных значений $\overline{\delta_0^2}$, соответственно равных 0.910, 0.878 и 0.836 для матричных молекул H₂, и примесных молекул D₂ и HD. Сравнение полученных теоретических величин δ_0^2 с приведенными в таблице показано, что по сравнению с гипотетическим идеальным бесконечным кристаллом p-H₂, обладающим бездефектной структурой, в реальных, полученных в лабораторных условиях образцах имеет место снижение интенсивности молекулярного движения. Наблюдаемое уменьшение амплитуды среднеквадратичных смещений частиц при этом эквивалентно значительному увеличению межмолекулярного взаимодействия (ужесточению решетки) в твердом р-Н2, обусловленному наличием примесных молекул. Степень ужесточения решетки и понижение интенсивности молекулярного движения в исследованном твердом *p*-H₂ существенно разнятся в зависимости от того, в каком виде присутствует в кристаллах дейтерий — в виде молекул HD или молекул D₂. Обнаруженные особенности имеют чисто квантовую природу, поскольку полностью определяются различием в амплитудах нулевых колебаний изотопов. Интересно, что полученные величины $\delta_0^2(\exp)$ скорее близки к вычисленным для примеси HD, чем для D₂. Это приводит к выводу о том, что большая часть дейтерия в исследованном *p*-H₂ находится в виде молекулы HD, а не D₂, что согласуется с результатами анализов образцов, а также с тем фактом (см. [8], с. 295), что природный изотоп дейтерий содержится в водороде в форме молекул дейтероводорода HD.

Полученный материал позволяет проанализировать влияние приложенной к образцам *p*-H₂ нагрузки на величину среднеквадратичных смещений. Из рис. 3 хорошо видно, что угол наклона прямолинейных зависимостей $\ln \dot{\varepsilon} = f(c^{-2/3}\sigma)$, измеренный для *p*-H₂ при постоянной нагрузке $\sigma = \text{const}$, явно уменьшается с увеличением σ . Из таблицы следует, что с ростом величины σ имеет место заметное возрастание значений $\sigma_0^2(\exp)$. Как следует из работ [2-4], для квантовых кристаллов характерно, что точечные дефекты в них являются квазичастицами и могут свободно перемещаться к границам зерен (блоков) или внешней поверхности. Наблюдаемое увеличение среднеквадратичных смещений $p-H_2$ с повышением σ может означать выход примеси дейтерия под действием нагрузки из объема параводородного кристалла ("деформационное очищение"). По своим свойствам при этом кристалл становится близким к идеальному беспримесному кристаллу, в котором среднеквадратичное смещение частиц заметно выше, чем в примесном кристалле. Способность самовосстановления ("self-repairing") твердого $p-H_2$ отмечена ранее в работах [25-27].

Авторы глубоко признательны В.Г. Манжелию, М.А. Стржемечному, В.Д. Нацику, А.И. Прохватилову и Ю.Е. Стеценко за обсуждение экспериментальных результатов и полезные замечания, С.И. Коваленко, Э.И. Индану и Н.В. Крайнюковой — за проведение анализов водорода на масс-спектрометре РОМС-1, Д.Н. Казакову (Россия, Москва) и О.М. Вовку — за анализ водорода с помощью масс-спектрометра МХ-7304, Т.Ф. Лемзяковой — за хроматографический анализ водорода.

Список литературы

- A.I. Prokhvatilov. Plasticity and Elasticity of Cryocrystals. Begell House, inc., N.Y.–Wallington, UK (2001). 326 p.
- [2] А.Ф. Андреев, И.М. Лифшиц. ЖЭТФ 56, 2057 (1969).
- [3] А.Ф. Андреев. ЖЭТФ 68, 2341 (1975); УФН 118, 251 (1976).
- [4] Ю. Каган, Л.А. Максимов. ЖЭТФ 84, 792 (1983).
- [5] И.Н. Крупский, А.В. Леонтьева, Л.А. Индан, О.В. Евдокимова. Письма в ЖЭТФ 24, 297 (1976).
- [6] И.Н. Крупский, А.В. Леонтьева, Л.А. Индан, О.В. Евдокимова. ФНТ 3, 933 (1977).
- [7] B.I. Verkin, V.G. Manzhelii, V.N. Grigoriev, V.A. Koval', V.V. Pashkov, V.G. Ivantsov, O.A. Tolkacheva, N.M. Zvyagina, L.I. Pastur. Handbook of Properties of Condensed Phases of Hydrogen and Oxygen. Hemisphere Publishing Corporation, N.Y.–Washington–Philadelphia–London (1991).
- [8] Б.М. Андреев, Я.Д. Зельвенский, С.Г. Катальников. Тяжелые изотопы водорода в ядерной технике. Энергоатомиздат, М. (1987). 456 с.
- O.A. Korolyuk, B.Ya. Gorodilov, A.I. Krivchikov, V.G. Manzhelii. DHT 25, 8/9, 944 (1999); B.Ya. Gorodilov, O.A. Korolyuk, A.I. Krivchikov, V.G. Manzhelii. JLTP 119, 497 (2000).
- [10] V.D. Natsik, A.I. Osetskij, V.P. Soldatov, V.I. Startsev. Phys. Stat. Sol. (b) 54, 99 (1972).
- [11] И.Н. Крупский, А.В. Леонтьева, Ю.С. Строилов, Л.А. Индан. ФНТ 1, 749 (1975).
- [12] И.Н. Крупский, А.В. Леонтьева, Ю.С. Строилов. ЖЭТФ 65, 1917 (1973).
- [13] Ж. Фридель. Дислокации. Мир, М. (1967). 644 с.
- [14] P. Haasen. Physical Mettallurgy / Ed. by R.W. Cahn, P. Haasen. North-Holland, Amsterdam (1983). Vol. 2. P. 1341.
- [15] V.N. Kovaleva, V.A. Moskalenko, V.D. Natsik. Phil. Mag. A70, 3, 423 (1994).
- [16] R. Labush. Phys. Stat. Sol. 41, 659 (1970); Acta Met. 20, 917 (1972); N.F. Mott, F.R.N. Nabarro. Conf. on Strength of Solids. Phys. Soc. London (1947). P. 1.
- [17] А.М. Косевич. Физическая механика реальных кристаллов. Наук. думка, Киев (1981). С. 290.
- [18] A.B. Harris, L.I. Amstutz, H. Meyer, S.M. Myers. Phys. Rev. 175, 603 (1968).
- [19] С.Е. Кальной, М.А. Стржемечный. ФНТ 11, 803 (1985).
- [20] А.И. Прохватилов, М.А. Стржемечный, Г.Н. Щербаков. ФНТ 19, 622 (1993).
- [21] M.A. Strzhemechny, A.I. Prokhvatilov, G.N. Shcherbakov, N.N. Galtsov. JLTP 115, 3/4, 109 (1999).
- [22] И.Н. Крупский, А.И. Прохватилов, Г.Н. Щербаков. ФНТ 9, 83 (1983).
- [23] В.И. Пересада, Е.С. Сыркин, В.П. Толстолужский. ФКС XXX1116 30–35 (1974).
- [24] Phusics of Cryocrystals / Ed. be V.G. Manzhelii, Yu.A. Freiman. AIP Press, Woodbury, N.Y. (1996).
- [25] Л.А. Алексеева. ФНТ 17, 451 (1991).
- [26] Τ. Oka. ΦΗΤ **22**, 134 (1996).
- [27] T. Momose. JLTP 111, 3/4, 469 (1998).